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Abstract

Sexual selection theory proposes correlated evolutionary changes in mating preferences and secondary sexual characters
based on a positive genetic correlation between preference and the preferred trait. Empirical work has provided support for
a genetic covariation between female preference and male attractiveness in several taxa. Here, we study parent and
offspring visual traits in threespine sticklebacks, Gasterosteus aculeatus. While focusing on the proximate basis of mating
preferences, we compare the red breeding coloration of males, which strongly contributes to female choice, with their
daughters’ red sensitivity measured by optomotor response thresholds. We show that the red color expression of fathers
correlates well with their daughters’ red sensitivity. Given that a within-population genetic correlation between signal and
preference was experimentally confirmed for the red coloration in sticklebacks, our results indicate a proximate mechanism
in terms of perceptual sensitivity being involved in the co-evolution of female preferences and male mating signals.
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Introduction

Many theoretical models of sexual selection assume the existence of

considerable, additive and correlated genetic variation for both the

preferred male trait and female mating preference within populations

[1–4]. Accordingly, examples of quantified variance in female mating

preferences and their co-variance with male traits have been reported

by several researchers [5–9], but not by others [10–12]. A genetic co-

variance between preference traits and sexual traits may arise through

assortative mating generating non-random associations between

alleles at different loci controlling these traits (linkage disequilibrium)

[13,14]. Moreover, genetic associations may be affected either by

genes influencing both traits that are located nearby within a

chromosomal region (physical linkage) [14] or by genes coding for the

expression of both traits (pleiotropy) [14,15]. While several genetic

studies provide support for a co-variance based on linkage

disequilibrium (e.g. [7,16,17]), empirical evidence for a genetic

coupling of both traits based on pleiotropy is comparably scarce (but

see [18,19]). Nevertheless, since genetic linkage between mating

preferences and preferred traits can shield genetic co-variance from

recombination as long as females can choose mates according to their

preferences, pleiotropy and physical linkage may in some cases

strongly contribute to the co-evolution of sexually selected traits. The

identification of potential targets of selection, especially a precise

characterization of mating preferences, may enhance understanding

the processes involved in trait elaboration [8,20].

Mating preferences comprise the entire set of sensory and

behavioral characters which lead to a bias in mating decisions and

are determined by both preference functions, defined as the

ranking order of stimuli, and choosiness, defined as the effort in

mate assessment [21]. Individual variation in mating preferences

can be influenced by condition [22–25], age [26], experience

[27,28], search costs [29], genotype by environment interactions

[30,31], genetic compatibility [32] or the assessment of multiple

traits [33–35]. Alternatively, among-individual variability in

genetic predispositions can simply be expressed in phenotypic

differences in the sensory apparatus which may, for example,

result in different perceptual and discriminatory abilities in females

[21]. However, the proximate basis of variation in female

preference functions is rarely explored [36,37] although, as

previously depicted, reliable knowledge of the underlying mech-

anisms should provide useful information on the evolution of

sexually selected traits. For instance, the sensory drive hypothesis

addresses the mechanistic basis of mating preferences in that it

predicts that females prefer a specific male signal design which

maximally stimulates their sensory system and is thus more

conspicuous and easier to detect in their local environment [38–

40]. Consequently, studying the role of sensory perception in mate

choice may further help in identifying the processes that promote

divergence in sexual signals and preferences, resulting in

reproductive isolation.

Much of the empirical work investigating sexual selection has

focused on the important role of conspicuous visual signals in mate

attraction in various taxa [41]. For example, the characteristic

carotenoid-based red throat coloration of breeding male threespine

sticklebacks (Gasterosteus aculeatus) is one of the best studied color

signals in nature [42] which has provided important insights into

intersexual [43] and intrasexual selection [44] as well as speciation

[45]. Sticklebacks are capable of responding to visual signals

incorporating wavelengths ranging from the ultraviolet (UV) to the

‘red’ part of the spectrum due to four retinal cone receptor types

(UV, S, M, L) with cone absorbance maxima at around 360, 445,

530, and 605 nm, respectively [46]. In most populations female

sticklebacks show a visual preference for mating with males that
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develop a greater intensity and extent of red coloration [47]. The

degree of red coloration in males shows large variation [48,49] and

appears to signal both direct [50] and indirect benefits [5,43] to

females. Accordingly, stickleback males fed with lower levels of

dietary carotenoids cannot maintain their red coloration and suffer

more from oxidative damage due to the dual function of carotenoids

as sexual signals and antioxidants [51].

By referring to the genetic basis of mate choice evolution in

sticklebacks, Bakker [5] found a positive genetic correlation

between female preference for male red coloration and red color

expression in males on the intra-population level. Hence, in order

to shed light on the proximate mechanisms underlying the co-

evolution of male traits and female preferences we tested here if

there is a visual component potentially accounting for among-

female variability in mating preferences and whether it is

associated with male color expression. To do this, we compared

the intensity of the red nuptial coloration in stickleback males with

their daughters’ visual sensitivity to orange-red wavelengths, which

was measured as optomotor response behavior.

A direct association between visual sensitivity and female mating

preferences is largely unknown. Nevertheless, several studies

suggested a causal relationship between visual perception and

mating decisions at the level of species divergence [36,52,53]. We

thus propose that variation in visual sensitivity in females might

contribute to mating preferences since an improved visual

perception should promote detection of male red coloration as

well as discrimination between varying degrees of male coloration.

Materials and Methods

Ethics statement
Our study adhered to the Association for the Study of Animal

Behaviour’s Guidelines for the Use of Animals in Research and was

carried out according to the German laws for experimentation with

animals (1 8 Abs. 1 TierSchG, V.m. 1 2 Abs. 1.1 TierSchZustV NW

26.9.1989). No additional licences were required for performing non-

invasive experiments with fish. After the study, all fish were kept in the

laboratory as breeding stock for future experiments.

Animal collection and maintenance
Threespine sticklebacks from an anadromous, genetically

heterogeneous population [54] were caught during spring

migration in April 2008 on the island of Texel, The Netherlands.

In the laboratory, reproductively active males were individually

moved to holding aquaria equipped with nesting material. Males

were fed daily with Chironomus spp. in excess. Ripe females were

visually presented to the males to induce nest-building. After nest

completion males were paired with randomly sampled females

from the same population to generate unrelated full-sib families.

Two hours after fertilization male coloration was quantified

spectrophotometrically (see below) and eggs were removed to

exclude paternal effects on offspring traits. Progeny was raised

artificially in full-sibling groups under standardized laboratory

conditions until sexual maturation. Individuals were fed daily with

Artemia nauplii during the first month of age and with Chironomus

spp. in excess later on. At an age of about 20 months

reproductively active females from the F1 generation (one female

from each family) were then randomly sampled from the full-sib

groups in order to use them in optomotor tests to measure their

spectral sensitivity (see below).

Measurement of male coloration
Standardized reflectance scans of each male were recorded with

a spectrophotometer (Avantes AVS-USB2000) connected to a

deuterium-halogen light source (Avantes DH-2000) for illumina-

tion. A bifurcated 200-mm fibre-optic probe with unidirectional

illumination and recording was held at a 90u angle to the body

surface with the probe end being inserted in a darkened pipette tip

in order to exclude ambient light and to take measurements at a

fixed distance of 0.3 cm from the surface. In order to eliminate

measurement errors caused by body movements, males were

quickly sacrificed by decapitation and then immediately placed on

a piece of black fabric. Scans were collected from the orange-red

cheek region below the eye. Reflectance intensity was measured

relative to a 98% Spectralon white standard over the range of

300–700 nm at about 0.5-nm resolution in wavelength. Data were

recorded with Spectrawin 5.1 (Avantes) and imported into

Microsoft Excel. Fifteen measurements were made in succession

averaged for the sample region without changing probe contact.

The whole procedure took about one minute so that postmortem

color changes due to either pigment aggregation or dispersion

could be ruled out (IPR, personal observation).

The double-peaked nature of stickleback male cheek reflectance

[55] is difficult to interpret in terms of chromatic variables [56].

We thus analyzed male orange-red coloration using two

complementary approaches. We first quantified spectral purity of

orange-red coloration from the reflectance data by computing the

colorimetric variable ‘red chroma’ as the amount of light reflected

in the range of 575–700 nm relative to the total amount of light in

the range of 300–700 nm [57] taking into account the approx-

imate visible spectrum of sticklebacks including ultraviolet (UV)

wavelengths [46].

In addition, we used a physiological model on stickleback vision

in order to quantify male red coloration as viewed through the

female visual system. Therefore, spectral sensitivity curves for the

four stickleback cone receptors were determined from cone

absorbance maxima and based on a vitamin A2 based visual

pigment template [46] by using parameters provided in Govar-

dovskii et al. [58]. In the absence of detailed information on

chromophore usage for sticklebacks from our study population we

assumed the presence of a porphyropsin-dominated retina like it is

commonly found in anadromous teleost species during the

reproductive phase in freshwater habitats (e.g. [59]).

We then calculated absolute quantum catch values for each cone

receptor (UV, S, M, L) by multiplying spectral reflectance of the red

cheek region per individual male by the spectral sensitivity of the

cones and the ambient irradiance spectrum (standard daylight

illuminant D65) between 300 and 700 nm [60]. The fish used in our

study derived from clear and shallow waters and communicate over

short distances so that we did not include absorbance and scatter by

water in our computations. Furthermore, lens transmission

properties can be neglected for the spectral range considered here

(IPR, unpublished data). Absolute quantum catches for the four

single cones were converted to relative quantum catches (QUV, QS,

QM, QL) by dividing excitation of each cone by the sum of

excitations for all four cone classes (e.g. QL = L/(UV+S+M+L)).

From these relative quantum catches we computed Cartesian

coordinates in tetrahedral color space (x, y, z) based on formulae

provided by Kelber et al. ([61]; Fig. 1A). We then determined

chromaticity as an estimate of intensity of the carotenoid-based

orange-red coloration which is calculated as the Euclidean distance

to the achromatic center (equal stimulation of all cones) [62].

Measurement of female sensitivity
One day before sensitivity measurements, ripe females, as

assessed by their distended abdomen and cloaca, were individually

placed into holding aquaria. Female perceptual sensitivity was

then estimated with the optomotor response technique, which has
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been successfully used to measure stickleback visual perception

before [45,63,64]. Therefore, a pattern of 20 alternating black and

white radial sectors arranged in a disk and rotating at 10 rpm was

generated in Microsoft Powerpoint and projected from a digital

video projector with adjusted gamma correction settings (Hitachi

CP-X1200), via a mirror, on the lower half of a spherical opal glass

lampshade, 25 cm in diameter, that served as the experimental

tank (Fig. 1B). Fish were kept in a light-adapted state for five

minutes prior to testing and for one minute between stimulus

presentations by projecting a full white stimulus reduced to an

intensity of 60% (275 lx) using a combination of neutral density

filters (ND filters, Cotech). The spectral content of the stimulus

pattern was controlled with three narrow band interference filters

(590, 610 and 630 nm, Eureca Messtechnik), which were

presented to the test fish in random order. To determine threshold

sensitivity levels, light intensity was increased using a series of five

neutral density filters (ND-filters, Andover Corporation). We chose

a stepwise increase in light intensity instead of a decrease because

preliminary trials testing both directions indicated that the former

allowed for a better differentiation between nondirectional and

directional swimming behavior of the test fish. Fifteen trials were

performed per rotation direction with each trial lasting for one

minute and being alternated with a one-minute period of

adaptation light. The second half of the experiment was performed

in an analogous manner but with reversed stimulus rotation.

Behavior of the test fish was visualized and monitored using an

infrared (IR) lightsource (Security-Center TV6700) combined with

an infrared (IR) sensitive CCD camera (Everfocus CCIR) placed

above the setup. We quantified the ‘optomotor gain’ by calculating

the difference between clockwise and counter-clockwise pattern

movement of the test female, divided it by the number of rotations

of the pattern within one minute and calculated the mean of both

pattern directions [65]. The relative sensitivity was determined for

each test wavelength as the minimal light intensity at which an

optomotor gain of 0.3 was reached in proportion to the lowest

overall light intensity (darkest ND filter). The three interference

filters differed slightly in quantal flux as revealed by spectropho-

tometric measurements of light intensity in the experimental setup

with the detector probe placed in the center of the sphere and

directed towards the striped pattern. Hence, filter transmission was

balanced by combining interference filters with additional neutral

density filters (ND filters, Cotech).

Statistical analyses
Parametric statistics were used throughout the data analysis

since data did not significantly deviate from normal distribution

according to Shapiro Wilk tests. To reach normality, a negative

reciprocal transformation was applied to the variable red chroma.

Relative sensitivity of daughters between test wavelengths was

compared using paired t-tests. Linear regressions were performed

on both color variables of fathers (red chroma, chromaticity)

versus the relative sensitivity of daughters for each separate test

wavelength. Analyses were conducted using SPSS 12. All given P-

values were based on two tailed-tests.

Results

Male coloration
Reflectance spectra of the red-colored cheek region revealed

distinct inter-male variation across the 300–700 nm waveband

and showed a characteristic bimodal pattern of reflectance

consisting of a major reflectance band at longer visible

wavelengths (500–700 nm), a secondary peak in the near UV

(300–400 nm), and a major absorption band at intervening

wavelengths (400–500 nm). This is due to the absorptive

properties of carotenoid pigments between 400 and 500 nm in

combination with broadband reflectance of the underlying

structural coloration ([66,67]; Fig. 2A).

Female sensitivity
We found substantial variation in spectral sensitivity of daughters

towards visual stimuli in the orange-red part of the spectrum (Fig. 2B).

Furthermore, relative sensitivity varied between the 590 nm and

630 nm test wavelengths (t24 = 6.440, P,0.001) as well as between

the 610 nm and 630 nm wavelengths (t24 = 5.797, P,0.001) but not

between the 590 nm and 610 nm wavelengths (t24 = 21.259,

P = 0.220), analogous to results from previous optomotor tests on

sticklebacks [63,64], with higher values for the 590 nm and 610 nm

Figure 1. Methods used for measurement of male red
coloration and female red sensitivity. (A) Color tetrahedron based
on stickleback spectral sensitivity functions with each of the four corner
points representing the exclusive excitation of a single cone (UV, S, M,
L). The three independent coordinates x, y and z define the position of a
spectral color in the three-dimensional space. Chromaticity was
determined as the distance between a measured color point (orange
dot) and the achromatic origin (grey dot) and represents the degree of
chromatic difference between both locations. (B) Schematic represen-
tation of the optomotor setup used to measure visual sensitivity of
female threespine sticklebacks. Test fish were exposed to a rotating
stimulus pattern under three different stimulus wavelengths in the
orange-red spectral region (590, 610 and 630 nm) generated by
interference filters. To determine threshold sensitivity levels light
intensity was increased in five steps by using a series of ND filters
(see text for details).
doi:10.1371/journal.pone.0025554.g001
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steps that were closest to the absorbance maximum of the stickleback

longwave-sensitive cone visual pigment [46].

Father-daughter comparison
Variation in red chroma of fathers correlated with variation in

their daughters’ relative sensitivity for 590 nm (Fig. 3A), 610 nm

(R2 = 0.216, P,0.05) and 630 nm (R2 = 0.161, P,0.05). In

addition, the fathers’ chromaticity was positively related to their

daughters’ sensitivity for 590 nm (Fig. 3B) and, although not

significantly, for 610 nm (R2 = 0.123, P = 0.085) and 630 nm

(R2 = 0.145, P = 0.060). Taken together, these results suggest an

association between receiver design in female sticklebacks and red

color expression in males.

Discussion

A tight coupling between male sexual signals and the sensory

capabilities of females is a key mechanism influencing the direction

of sexual selection as predicted by the sensory drive hypothesis

[40] and has been demonstrated for various species [68,69].

Accordingly, red sensitivity of stickleback females was found to

increase with the onset of the breeding season thereby enhancing

the efficacy of the visual system to detect courting males [64].

Moreover, inter-population differences in stickleback male nuptial

coloration are tuned to female red sensitivity and both traits vary

depending on environmental light conditions ultimately leading to

reproductive isolation [45].

We found variation in female red sensitivity on the intra-

population level potentially acting on female mating preferences.

Individual variation in the structure and function of visual systems

may arise from various factors such as differences in the

developmental environment [70,71] or from altered environmen-

tal conditions in mature individuals, which has been shown for the

accumulation of diet-derived carotenoids in the retina of birds [72]

or for a reduced visual sensitivity in carotenoid-deprived fruitflies

[73]. Carotenoids are essential for visual perception in fish as well

since they act as a major precursor to vitamin A, which derivative,

Figure 2. Spectral data on male red coloration and female red
sensitivity. (A) Spectral reflectance for the cheek region of 25
reproductively active males. Plotted is the mean of the reflectance
intensities (black line) 6 standard deviation of the mean (shaded area).
Reflectance was measured relative to a 98% white reference standard.
(B) Mean relative sensitivity of daughters at three wavelengths of long-
wave light (590, 610 and 630 nm) as measured in optomotor response
tests. Error bars indicate standard deviation of the mean.
doi:10.1371/journal.pone.0025554.g002

Figure 3. Comparison between red color expression in fathers
and the red sensitivity of their daughters (n = 25). Relationship
between daughters’ relative sensitivity at 590 nm and fathers’ (A) red
chroma (after negative reciprocal transformation) and (B) chromaticity,
respectively. The lines are the least square regressions [(A):
Y = 0.413x+1.897, R2 = 0.547, F = 27.80, P,0.0001; (B): Y = 3.997x20.211,
R2 = 0.373, F = 13.70, P,0.01].
doi:10.1371/journal.pone.0025554.g003

Male Ornamentation and Female Perception

PLoS ONE | www.plosone.org 4 September 2011 | Volume 6 | Issue 9 | e25554



retinal, forms the chromophoric group of photopigments [74].

Given that carotenoid pigments play an important role in the

development of male nuptial coloration in sticklebacks [75], the

association between red color intensity in fathers and red

sensitivity in their daughters found in the present study may

reflect a genetic basis of pigment allocation in skin chromato-

phores in males and in photopigment expression in females.

Nevertheless, the physiological processes responsible for variation

in visual perception in this species are largely unknown and need

to be addressed at the receptoral and postreceptoral level by

especially taking into account a potential key role of carotenoid

pigments in tuning spectral sensitivity.

Theoretical modeling of color vision in another stickleback

population suggests that perceived variation in male red coloration

is largest at shorter wavelengths (,500 nm) based on an assumed

color opponency between the longwave and shortwave cones [46].

Accordingly, variation in sensitivity to longer wavelengths as found

in the present study might not account for an enhanced

discriminatory ability of females among male red coloration but

might rather improve overall detection and identification of

nuptially colored males [46]. However, electrophysiological

evidence for an opponent mechanism between the longwave and

shortwave cone is lacking for sticklebacks. Furthermore, in the

present study we did not refer to female perception at shorter

wavelengths and due to potential differences in sensory and

signaling characteristics between populations depending on light

regime [45,76] one cannot rule out that the variation between

females in sensitivity to longer wavelengths shown here is

accompanied by variation in the ability of females to discriminate

among males differing in the degree of red coloration.

In general, our results give support for a within-population

association between male ornamentation and female visual

sensitivity. However, further work using a parent-offspring

approach should include enhanced sample sizes and heritability

estimates in order to provide a reliable estimate of the strength of a

genetic correlation between both traits. Furthermore, since we did

not address the direct association between visual perception and

mating preferences more experimental data are needed in order to

clarify whether variation in mating preferences is basically

influenced by other more relevant factors (see introduction)

instead of red sensitivity alone. Moreover, from our results one

cannot conclude whether females simply vary in red sensitivity or

in overall visual perception, which should be adressed in future

research covering the whole range of potential stimulus wave-

lengths.

Nevertheless, since female preference for red could be mediated

by inter-individual variation in red perception our findings suggest

that a sensory mechanism in terms of visual sensitivity is involved

in the genetic correlation between female preference and the

preferred male trait in this species. The potential dual function of

carotenoids in both vision and signaling make pleiotropy a possible

cause for the association found here. Such a genetic coupling was

suggested by recent molecular genetic studies [8,18,19,77] for

different sensory modalities. The observed co-variance may also be

due to linkage disequilibrium for loci affecting male nuptial

coloration and female visual sensitivity maintained by assortative

mating. However, in linkage disequilibrium the genetic correlation

between unlinked genes is reduced by 50% after each generation

of random mating due to recombination while it will decline to a

lesser extent under physical linkage [14]. Since mate choice was

prevented in the present study by forced random pairings for one

generation the observed father-daughter association may rather

indicate an influence of physical linkage or pleiotropy. Nonethe-

less, distinguishing between these mechanisms is difficult since the

underlying genetic structure of our study population is unknown.

Recombination-based genomic approaches such as linkage

mapping for the identification of genes and genetic regions

underlying signal production in stickleback males as well as female

sensitivity thresholds may improve understanding the association

found here within the overall context of ornament and mating

preference co-evolution.
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