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Abstract

To what extent are sensory responses in the brain compatible with first-order principles? The efficient coding hypothesis
projects that neurons use as few spikes as possible to faithfully represent natural stimuli. However, many sparsely firing
neurons in higher brain areas seem to violate this hypothesis in that they respond more to familiar stimuli than to
nonfamiliar stimuli. We reconcile this discrepancy by showing that efficient sensory responses give rise to stimulus
selectivity that depends on the stimulus-independent firing threshold and the balance between excitatory and inhibitory
inputs. We construct a cost function that enforces minimal firing rates in model neurons by linearly punishing
suprathreshold synaptic currents. By contrast, subthreshold currents are punished quadratically, which allows us to
optimally reconstruct sensory inputs from elicited responses. We train synaptic currents on many renditions of a particular
bird’s own song (BOS) and few renditions of conspecific birds’ songs (CONs). During training, model neurons develop a
response selectivity with complex dependence on the firing threshold. At low thresholds, they fire densely and prefer CON
and the reverse BOS (REV) over BOS. However, at high thresholds or when hyperpolarized, they fire sparsely and prefer BOS
over REV and over CON. Based on this selectivity reversal, our model suggests that preference for a highly familiar stimulus
corresponds to a high-threshold or strong-inhibition regime of an efficient coding strategy. Our findings apply to songbird
mirror neurons, and in general, they suggest that the brain may be endowed with simple mechanisms to rapidly change
selectivity of neural responses to focus sensory processing on either familiar or nonfamiliar stimuli. In summary, we find
support for the efficient coding hypothesis and provide new insights into the interplay between the sparsity and selectivity
of neural responses.
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Introduction

Brains of higher vertebrates analyze the sensory world in

hierarchical networks. In lower sensory brain areas, neurons tend

to respond to generic stimulus features, whereas in higher areas

they typically respond to only very small subsets of natural stimuli

[1,2]. Neural responses in lower areas are usually characterized by

the stimulus property that correlates most strongly with spike

responses, based on which neurons are termed feature detectors

for that particular property. For neurons in higher brain areas, the

concept of feature detector is often abandoned in favor of stimulus

selectivity (assessed in terms of the stimulus that elicits the maximal

response), e.g., neurons in higher auditory areas are selective for a

particular birdsong [3], or, in visual areas, they are selective to the

face of a particular person [4].

Feature tuning in sensory neurons can be explained by a

neuronal strategy to efficiently encode natural stimulus ensembles,

such as e.g. in simple cells of primary visual cortex or in auditory

cells of the cochlear ganglion [5,6]. However, it is unclear whether

(unsupervised) efficient coding principles can also explain complex

response selectivity, as proposed in [7], in particular when

selectivity applies to a behaviorally relevant stimulus such as the

tutor song for a juvenile songbird. Naively, the selectivity for tutor

song (TUT) or the bird’s own song (BOS) that is commonly

observed in song-control brain areas [8,9] seems to violate the

efficient coding hypothesis, according to which responses to

frequent stimuli should be minimized [7,10], not maximized.

Hence, it is an open question how complex selectivity (maximal

response to BOS) can be reconciled with the sparse firing that

often accompanies such selectivity.

The rationale of our work is that the firing sparsity of cells is

governed by slow developmental mechanisms that construct

efficient representations of natural stimulus statistics and by faster

mechanisms influenced by the recent stimulus history and the state

of the animal and its environment. In many cells, excitatory and

inhibitory currents are balanced in proximity of the firing

threshold, though currents can be dominated by inhibition, as

for example in some sparsely firing neurons [11]. Also, shifts in the

excitatory/inhibitory balance are commonly observed, for exam-

ple as a function of stimulus intensity [12] or during sensory

adaptation [13]. Mechanistically, the excitation-inhibition balance

can be controlled by neuromodulatory mechanisms such as the

serotonergic system [14], and, a link has been suggested to exist

between the excitation-inhibition balance and attention [15]. We

study the dependence of response selectivity in model neurons on

fast shifts in the balance between excitatory and inhibitory inputs.

In our model, we reflect the asymmetry imposed by the firing

threshold (supra- versus sub-threshold responses) by an asymmetric
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cost on sub- and suprathreshold synaptic currents. We train neurons

using a particular firing threshold and thereafter we explore the

consequences of shifts in the excitatory/inhibitory balance by

evaluating neural responses for an entire range of firing thresholds.

Our model is applicable to sensory systems in general but

presented as a model of the auditory forebrain pathway of

songbirds. This pathway extends over the nucleus ovoidalis to field

L, and from there up to HVC [9,16,17], Figure 1A. A crucial

function of this pathway is to subserve song learning, a process in

which birds first memorize a template of a tutor’s song (TUT) and

then refine their vocalizations to gradually approximate the

template [18]. During these two learning phases, neurons in the

lower auditory brain area field L develop a broad response

selectivity for natural sounds, in particular the songs of conspecific

birds (CON) [19]. By contrast, neurons in higher areas develop

selectivity for the TUT and the BOS in particular [20,21].

Preference for BOS over CON and REV is first observed in the

caudal mesopallium (CM). BOS preference is even stronger in the

nucleus interface of the nidopallium (NIf) and highest in the

premotor area HVC [8,9]. Notable about this gradual increase in

BOS selectivity along the main auditory pathway is a conjunctive

increase in firing sparsity, illustrated by NIf neurons firing rather

densely and HVC projection neurons bursting only once during a

song or song motif [8,22].

Results

We model the auditory pathway as a feedforward network that

receives (indirect) auditory input from the cochlea in the form of

spectro-temporal sound patterns. These patterns are mean-

subtracted, multiplied by synaptic weights, and summed, to result

in the total synaptic current impinging onto neurons. Given this

linear model we interpret the set of synaptic weights onto a neuron

as its spectro-temporal receptive field (STRF). We devised an

algorithm that optimizes synaptic weights for their propensity to

decorrelate (whiten) and sparsify synaptic inputs: First, we

whitened cochlear inputs using a projection matrix P (principal

component analysis, PCA), and then we applied a sparseness

transformation using a matrix W that minimizes an asymmetric

cost imposed on total synaptic currents, Figure 1B. This cost

depends on the firing threshold h. Subthreshold synaptic currents

are punished quadratically, whereas suprathreshold currents are

punished linearly. The location of minimal quadratic cost is freely

selectable using the parameter y0, Figure 1C. For simplicity, in

most simulations we neglected this parameter by setting y0~0 (we

set y0=0 when our goal was to optimally reconstruct cochlear

inputs from suprathreshold currents, in which case there is a better

choice for y0 than zero, see Methods).

This model guarantees zero mean synaptic current and minimal

variance (see Equation 8). Intuitively, to minimize the cost,

frequent cochlear input patterns must elicit weak subthreshold

currents (quadratic cost is smaller than linear cost). By contrast,

rare cochlear input patterns must elicit strong suprathreshold

currents (linear cost smaller than quadratic). We defined firing

rates to be equal to suprathreshold synaptic currents, meaning that

the linear cost of suprathreshold currents is in effect a cost on the

average population firing rate. In the Methods we show that the

quadratic cost of subthreshold currents is a cost on a reconstruc-

tion error associated with simple decoding of cochlear inputs from

firing rates. Thus, the algorithm tries to maximally sparsify

population responses without discarding any relevant sensory

information. We minimized the cost function over training data

consisting mostly of renditions of a particular zebra finch song

(BOS) and a few CONs. After training, we evaluated neural

responses for a wide range of firing thresholds (thresholds during

training could deviate from thresholds during evaluation).

Changes in firing thresholds modeled changes in the excitatory/

inhibitory balance. Details are presented in the Methods.

Spectro-temporal receptive fields (STRFs)
After training, neurons displayed a large diversity of STRFs.

Typically, STRFs were patchy and had multiple adjacent inhibitory

Figure 1. Efficient coding of cochlear spectrograms. (A) Schematic of the auditory pathway in the songbird forebrain. Auditory input to the
pallial field L is provided by the thalamic nucleus ovoidalis (Ov). From field L, auditory information is relayed to the caudal mesopallium (CM), and
from there to the nucleus interface of the nidopallium (NIf) and to HVC. (B) Network model. At time t, the auditory input to the network is a 50-ms
window X t of the sound spectrogram. This input is multiplied by synaptic weights j~WP to result in total synaptic currents Y t~(yt

1, . . . ,yt
N ) onto N

neurons. P stands for whitening and dimensionality reduction (principal component analysis), and W stands for a sparseness transformation. Neural
firing rates are given by rectified synaptic currents. (C) Cost function for a threshold h~0. Subthreshold synaptic currents y are punished quadratically
and suprathreshold currents are punished linearly. The parameter y0 defining the subthreshold current eliciting minimal cost is set to the expected
subthreshold current yE{. Synaptic currents are reported in units of mean-subtracted standard deviations (z-scores). A threshold h~0 implies that
suprathreshold currents are depolarizing (positive), whereas subthreshold currents are hyperpolarizing (negative). c~1.
doi:10.1371/journal.pone.0025506.g001
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and excitatory spectral/temporal subfields. In many neurons,

STRFs were regularly arranged into horizontal or vertical stripes

(Figure 2A), similar to receptive fields in field-L neurons that encode

elementary spectro-temporal sound features such as sound onsets or

a particular sound pitch [23–26].

Model STRFs had excitatory and inhibitory subfields that

together covered the entire spectro-temporal window of the

STRF. Typically STRFs in field L are of considerably lower

density in that they mostly possess only two or three subfields

instead of more than six. We therefore explored whether STRFs in

our model would be of lower density when we added a third term

to the cost function, a term corresponding to a linear cost on

absolute synaptic weights. We found indeed low-density STRFs if

the parameter cs weighing this third term exceeded roughly 0.1,

Figure 2B. Density of STRFs could be controlled independently of

the sparseness of model responses, explored next.

We explored the correspondence between STRFs and the

stimulus features to which neurons responded most. In most cells,

presentation of different BOS versions elicited reliable responses to

specific song notes, Figure 3A–C. For example, the total synaptic

current in neuron 10 with a checkerboard-like STRF reliably

peaked after the down sweep of the introductory note and to a

lesser extent it also peaked at the offsets of some other syllables.

Neuron 23 with a narrow and slanted STRF responded most

strongly to the down-sweep of the harmonic stack in Syllable A1.

The STRF of Neuron 88 had sharp vertical subfields, the synaptic

current to this neuron peaked during rapid increases of sound

intensity such as during the onsets of Syllables C and D. Another

neuron with a vertically dominated STRF (Neuron 131)

responded a few milliseconds after the onsets of Syllables E and

F. This neuron was able to respond to different syllable onsets than

Neuron 88 by virtue of its sensitivity to a low-frequency tone

immediately followed by a high-frequency tone, which is a

common characteristic of both Syllables E and F. Very particular

was Neuron 106. Its receptive field and that of several other

neurons were centered on a single frequency band close to 7 kHz.

It turned out that this cell responded to electrical noise by which

our recordings were affected; during BOS presentation, the total

synaptic current to this cell was small and increased mainly during

syllable gaps where no signal except the noise was present. The

Figure 2. Spectral temporal receptive fields. (A)Spectral temporal receptive fields (STRFs) of N~100 neurons, arranged by nearest-neighbor
similarity (circular boundary conditions). Neurons tend to be either temporally tuned (vertical stripes, top right), spectrally tuned (horizontal stripes,
middle rows), or display more complex spectro-temporal patterns. Spectral resolution is 172 Hz, offset between subsequent cochlear inputs is 1.5 ms.
(B) STRFs obtained with a linear cost on synaptic weight magnitudes. The linear cost forces many synaptic weights to be close to zero (green), leading
to low-density STRFs most of which contain a smaller number of excitatory and inhibitory subfields than in A. Interestingly, excitatory and inhibitory
subfields tend to be close to each other and aligned horizontally or vertically, similar to observations in field L neurons. The 100 presented STRFs were
randomly chosen out of the total 800. cs~0:2.
doi:10.1371/journal.pone.0025506.g002
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structure of the sparsely checkered STRF of Neuron 121 was

particularly well adapted to Syllable E, the neuron responded

almost exclusively during the transition between sub-Syllables E1

and E2. Finally, Neurons 55 and 147 did not show either robust or

strong responses to BOS; a more thorough analysis revealed that

they responded strongly to a CON in the training set. When we

ordered all neurons by the time at which their synaptic currents

peaked in response to a particular version of BOS, we found that

the resulting stack plot exhibited a staircase-like shape: peak

currents were widely distributed across cells with many more peaks

seen during syllables than during syllable gaps, Figure 3D.

Some neurons were not just tuned to a particular syllable within

the motif, but had even more specific tuning to particular subsets

of that syllable. Finches often produce harmonic stack syllables

and can subtly vary the pitch of these syllables in a well-controlled

and goal-directed manner [27,28]. When we trained a network of

196 neurons on the songs of a bird produced during an entire day,

we found that synaptic currents of two neurons peaked during a

harmonic-stack syllable produced by that bird (neurons with such

harmonic-stack receptive fields have been illustrated in [26]).

Interestingly, for any given stack syllable, the synaptic current in

only one of the neurons peaked, but not in both, Figure 4. The two

neurons divided the representation of that syllable between each

other, one represented the high-pitch version of the stack, the

other the low-pitch versions, Figure 4E. Hence, our algorithm is

able to ‘allocate’ more than a single neuron to a song feature,

depending on the extent of its variability.

STRFs are optimal models of the linear part of neural

responses. Can we recover the STRFs found by our algorithm

in simulated neural responses which contain a threshold

nonlinearity? To this end, we estimated STRFs from nonlinear

responses to birdsong stimuli for a range of firing thresholds h. We

estimated STRFs using reverse correlation. Mostly, we found

strong resemblance between estimated and actual STRFs,

Figure 5. Strong resemblance was seen in all cases in which the

correlation coefficient cc between estimated and actual responses

was above 0:1, i.e. in cases in which the linear model was

reasonably good. Moreover, estimated STRFs did not change

much with increasing firing threshold h, except that with

increasing h the STRFs had a small tendency to extend over

larger time-frequency regions (Figure 5B) than the original low-

density STRFs (Figure 5A). We found similarly satisfying results

when estimating high-density STRFs (not shown). Hence,

estimated STRFs were quite insensitive to the nonlinearity and

to changes in firing threshold.

Distribution of synaptic currents
The distribution of total synaptic currents over all neurons and

over all training stimuli was highly asymmetric and contained

many positive but few negative outliers, Figure 6A. The

distribution of BOS-evoked currents could be reasonably well

approximated by a unit Gaussian on the negative side and a long-

tail exponential on the positive side. This combined Gaussian-

exponential behavior follows from the fact that minimization of

the quadratic-linear cost function is equivalent to locally

maximizing the log-likelihood of a Gaussian model density below

the threshold and of an exponential model density above the

threshold, under the global restriction of zero mean and fixed

variance. Interestingly, large synaptic currents were mostly elicited

by the BOS rather than by other stimuli, illustrating that neurons

Figure 3. Receptive fields and neurogram. (A) Power spectrogram of a bird’s own song (BOS). (B) STRFs ji of eight representative neurons
(i~10,23,55,88,106,121,131,147). The horizontal alignment of STRFs with the spectrogram in A is such that the trailing edges of the STRFs
correspond to the respective peak times of synaptic currents. The temporal axis of the STRFs is inverted for better comparison with the BOS
spectrogram. (C) Stack plot of synaptic currents of representative neurons in B in response to ten different versions of BOS, vertically aligned to A. (D)
Neurogram of synaptic currents in response to the BOS in A. The N~160 neurons are sorted according to the peak times of their synaptic currents.
Fewer neurons display synaptic current peaks during syllable gaps (blue arrows) than during syllables.
doi:10.1371/journal.pone.0025506.g003
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were best tuned to the features of the most prominent stimulus in

the training set, which was the BOS. The same finding was true

for low-density STRFs (when csw0:1 instead of zero): BOS-

elicited currents exhibited a heavier positive tail than currents

elicited by CON and REV (Figure 6B). Hence, model responses

were robustly tuned for the BOS.

We also explored the influence of other model parameters such

as y0, which sets the location of minimal quadratic cost. When we

changed y0 to nonzero values different from the firing threshold h
during training, we found that BOS tuning of synaptic currents

was qualitatively unchanged. The only effect of changing y0 was to

slightly increase the distribution of synaptic currents around y0

(where cost is minimal) and to slightly decrease it around h (not

shown).

Distribution of firing rates
We computed firing rates in model neurons by thresholding

total synaptic currents. A recent analysis of sparsely firing cells in

primary auditory cortex of unanesthetized rats has revealed that

both background and stimulus-evoked firing rates are well fit by

log-normal distributions [29]. We speculated that log-normal

firing may be a corollary of efficient coding that could be

reproduced in simulations. We inspected the distributions of firing

rates across all neurons for all BOS and CON stimuli. Indeed, we

found that the density of firing rates was best fit by a log-normal

distribution, which was especially true for low firing thresholds,

Figure 7. Note that recently published firing rate distributions of

field L neurons in zebra finch were fit by Gamma distributions

[30]. However, the published data suggests that a fit with a log-

normal distribution should be equally good.

Independence of neural responses
Training the network increased the independence of neural

responses. If responses were perfectly independent among

neurons, the size distribution of coactive neurons would be

binomial (the size distribution is the probability that a given

number of neurons fire synchronously). The sole parameter of this

binomial model is the single-neuron firing density that we

estimated in terms of the fraction of suprathreshold events

observed in the entire neuron population and for all training

stimuli. In comparison to this binomial model, the observed size

distribution elicited by whitened cochlear inputs was substantially

wider, illustrating strong firing dependencies. The sparseness

transformation significantly narrowed the observed size distribu-

tion towards the binomial case, Figure 8A. This increase of

independence (decrease in Kullback-Leibler divergence to the

binomial model) was true for both high and low firing densities,

and true for nearly all firing thresholds tested, Figure 8B, revealing

that the sparseness transformation is a robust mechanism to

increase independence of neural responses. Qualitatively, this

behavior of the network to render responses more independent

applied to all firing thresholds used during training (we tested

thresholds up to h~5).

Figure 4. Neurons encode behavioral variability, for example
song pitch. (A) Two receptive fields formed by training a network on
all songs produced by a bird on a single day. (B) Spectrograms of a song
syllable containing a harmonic stack. The left version has median pitch
1024 Hz, the right version 1138 Hz. (C) Stack plot of synaptic currents in
the two neurons elicited by 813 syllable renditions. The stack plots have
been sorted identically to reveal that for a given syllable rendition either
the left or right neuron exhibits a peak in synaptic current, but not both.

Peaks in synaptic currents are computed in intervals indicated by red
bars on the bottom. (D) Scatter plot of peak synaptic currents in the two
neurons. The distribution is sparse (‘L’-shaped). (E) Median synaptic
current in same intervals versus median song pitch of the harmonic
stack. The two neurons are detectors of low and high pitch versions of
the stack, respectively. Red and blue lines are linear regressions (Neuron
1: R2~0:68, pv10{170, Neuron 2: R2~0:69, pv10{185), N~196,
y0~0.
doi:10.1371/journal.pone.0025506.g004

Efficient Coding Links Sparsity and Selectivity

PLoS ONE | www.plosone.org 5 October 2011 | Volume 6 | Issue 10 | e25506



Decoded firing and reconstructed spectrograms
Our network allowed us to decode firing rates and reconstruct

the spectro-temporal sound patterns that elicited them, using the

pseudo-inverse of the sparseness transformation W (see Methods).

We evaluated the reconstructions for various firing thresholds

(after training at a fixed threshold of zero), Figure 9A-C. For a

threshold of zero, neurons produced dense firing patterns in

response to BOS, with roughly 50 percent of neurons active at any

time, Figure 9D. The percent active neurons decreased from 20%

for h~1, to 1–2% for h~3, and down to 0.4% for h~5. At

thresholds higher than roughly three, reconstruction errors

associated with non-BOS stimuli were often due to missed

syllables because none of the neurons fired in response to these

syllables.

In all cases, reconstruction errors increased with increasing

firing threshold in a monotonic manner, Figure 9E. For a given

Figure 5. Actual STRFs and STRFs estimated using reverse correlation. (A) A selection of twelve STRFs ji obtained after convergence of the
algorithm (N~800). (B) Estimated STRFs (reverse correlation) based on the predicted firing rates rt

i . Shown are only estimated STRFs for neurons
associated with a correlation coefficient cc between predicted and actual firing rates of ccw0:1. m~1. cs~0:2.
doi:10.1371/journal.pone.0025506.g005

Figure 6. Probability density of total synaptic currents. (A) The probability density of total synaptic currents y averaged over all neurons has a
heavy tail on the positive side. Shown are the densities for BOS (blue), CON (green), and REV (black). Near zero synaptic currents, the curves are
approximatively unit Gaussian (red), though their excessive peaks are slightly shifted to the negative side (inset, arrow). The curves cross each other
such that large positive synaptic currents are preferentially elicited by the BOS and small positive currents by REV and CON. N~400, y0~yE{. (B) The
distributions of synaptic currents for sparse STRFs (Figure 2B) are qualitatively similar to (A). The only noticeable difference is that the distribution for
REV is closer to BOS, reflecting a lower selectivity for temporal order. cs~0:2.
doi:10.1371/journal.pone.0025506.g006
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threshold, reconstructions from sparseness-transformed cochlear

inputs were much better than reconstructions from merely

whitened inputs. This superiority was true even though for

thresholds up to approximatively 1.3, mean firing rates were lower

for sparseness-transformed inputs than for merely whitened inputs.

Moreover, for a given threshold, reconstruction errors tended to

be larger for the BOS played back in reverse (REV) than for BOS

or CON, illustrating that reconstructions were optimized for

stimulus ensembles experienced during training but not for novel

ensembles. In the Methods we show that the reconstruction error

is approximatively equal to a term that grows not only with the

number of subthreshold events, but also with their variance;

hence, stimuli that induce narrow subthreshold distributions (such

as the BOS, Figure 6) lead to smaller reconstruction errors.

Smart noise suppression by selective neuron exclusion
As illustrated in Figure 10, five STRFs were encoding electrical

noise elicited by the computer monitor. When we omitted these

five neurons for BOS reconstructions, we were able to effectively

suppress the monitor noise. To demonstrate the effectiveness of

this smart noise suppression, we iteratively estimated the sound

waveform associated with the reconstructed BOS [31]. The

original and the noise-suppressed waveforms are available as

supporting information files Audio S1 and S2 in wav format.

Song selectivity is linked to firing sparseness
We explored the response selectivity of model neurons using the

psychophysical d ’ measure [32] that is routinely applied in

birdsong studies. According to this measure, the selectivity for a

Figure 7. Probability densities of mean firing rates. Mean firing rates in response to (A) a BOS stimulus and (B) a CON stimulus. For each cell we
computed the mean firing rate to one stimulus trial. Our simulation data (blue asterisks) are better fit by log-normal densities (red) than by
exponential densities (black). Firing rates are plotted in arbitrary units. Fit parameters for log-normal densities were determined by the mean and
variance of logarithmic firing rates, and for exponential densities they were determined by the mean firing rates. Thresholds varied from h~0 to h~8.
Noise amplitude k~1.
doi:10.1371/journal.pone.0025506.g007

Figure 8. Sparsification reduces firing dependences. (A) The sparseness transformation renders the size distribution of coactive neuron groups
(whitening+sparseness) closer to binomial. The probability p of the binomial distribution (that a neuron is active per unit time) was estimated in terms
of the firing density (the fraction of suprathreshold events over all neurons and training stimuli). Probabilities p were nearly identical for whitening
and whitening+sparseness when h~2 (h~0 and y0~yE{ during learning). (B) The Kullback–Leibler divergence between size distributions is smaller
when comparing the whitening+sparseness model to the binomial model than when comparing the whitening model to the binomial model, for
nearly all firing densities tested.
doi:10.1371/journal.pone.0025506.g008
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stimulus over another is given by the difference in mean firing

rates elicited by these stimuli, normalized by their standard

deviations (see Methods). We assessed the selectivity of neurons to

BOS versus matched spectro-temporal stimuli such as CON and

REV. Variability of responses to a fixed stimulus was generated by

a white-noise current source (see Methods).

We found a wide range of selectivity behaviors. Many neurons

responded more strongly to CON than to BOS, but this CON

preference often reversed to BOS preference at high firing

thresholds, Figure 11B. For a firing threshold of zero, the median

d ’ selectivity for the BOS was negative across the population, both

with respect to REV and to CON, Figure 11B. Hence, at this low

threshold, the majority of neurons preferred REV and CON over

BOS. BOS anti-preference remained true for a range of firing

thresholds h up to three. However, all of the median and mean

BOS-REV and BOS-CON selectivities became positive at

Figure 9. Reconstructing the cochlear spectrograms from firing rates. (A) Firing-rate of one example neuron in response to BOS for
increasing firing thresholds (h~0 to 12). The BOS spectrogram is shown on top. This neuron is tuned to a feature present in introductory notes and
responds to it up to thresholds higher than seven. For each threshold, ten different responses are plotted, corresponding to ten different
instantiations of synaptic noise. k~1. (B) The reconstruction of a BOS spectrogram (orig., top) using all neurons, based on a firing threshold of minus
infinity (whi., 2nd from top) is fairly complete with little information loss (arising from dimensionality reduction). With increasing thresholds (below),
more and more syllables are lost in the reconstruction, but the reconstructed spectro-temporal patterns remain clearly recognizable. The arrow points
to a down-sweep syllable. (C) Reconstructions of REV (flipped horizontally for comparison with B) are worse than reconstructions of BOS at the same
threshold; for example the down-sweep syllable is not well reconstructed (arrow), presumably because zebra finches produce almost no up-sweeps.
(D) The fraction of active neurons (averaged over all BOS stimuli) decreases with increasing threshold such that at h~3 about 1% of neurons are
active on average. This fraction decreases to 0.1% at about h~9. (E) The reconstruction errors averaged over different stimulus ensembles are
monotonic functions of the firing threshold. For a given positive threshold, reconstruction errors increase from BOS to CON to REV. N~400
threshold-linear neurons.
doi:10.1371/journal.pone.0025506.g009
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thresholds h§5, Figure 11C. Thus, the response selectivity of the

network was non trivial in that it reversed at higher thresholds.

Overall, BOS preference at high firing thresholds was seen both

for analog models (firing rates are defined as thresholded synaptic

currents) and for binary models (firing rates are defined as

binarized synaptic currents). From the point of view of stimulus

Figure 10. Smart suppression of electrical noise affecting the recordings. (A) The STRFs of five neurons that encoded monitor noise. (B)
Original BOS spectrogram. The noise is manifest as gray horizontal bands (black arrows) during syllable gaps. (C) Reconstruction of the BOS (Equation
14) from elicited responses in the network. The thresholds of all neurons were set to h~{?, with exception of the five neurons in A in which the
thresholds were set to h~z?. The monitor noise has vanished in the reconstructions, without affecting the birdsong signal.
doi:10.1371/journal.pone.0025506.g010

Figure 11. d ’ selectivity for BOS reverses at high firing thresholds. (A) Example model neuron with reversing BOS-CON selectivity. This
neuron’s STRF (inlay) codes for an up-sweep from 500 to 800 Hz over 20 ms. The resulting BOS-CON d ’ selectivity is negative for low thresholds
h~0,1 and turns positive for thresholds h§2. (B) Example cumulative distributions of BOS-REV (blue) and BOS-CON (red) d ’ selectivities across
N~400 neurons for h~0 (solid lines) and h~7 (dashed lines). For h~0 the selectivities are biased towards negative values, whereas for h~7 the
distributions are biased towards positive values. (C) Bar plot summarizing BOS-REV (blue) and BOS-CON (red) selectivities for a wide range of firing
thresholds. The colored bars indicate the median d ’ selectivity and the error bars delimit the first and third quartiles. Selectivity reverses at around
h~3 (REV) and h~5 (CON).
doi:10.1371/journal.pone.0025506.g011
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selectivity, the low-threshold regime of our network is a model of

densely firing field-L neurons and the high-threshold regime is a

model of sparsely firing HVC neurons.

Our training set contained many versions of two different

CONs. For BOS-CON selectivity reversal it did not matter

whether selectivity was tested on three novel CONS as in

Figure 11, or on twelve novel CONs, or on the two trained

CONs, because for all these cases the median and mean BOS

selectivities reversed at around h~3{4. However, when CONs

from many more birds (w20) were in the training set, then the

median BOS-CON selectivity became positive only at very high

thresholds (h§8 for 22 CONs), whereas the mean selectivity

became positive already at h§3. Thus, when responses to many

different songs are sparsified, then increasing numbers of neurons

develop a feature preference that best matches a CON in the

training set rather than the BOS; however, this match is not

particularly good as illustrated by BOS that is preferred on

average already at relatively low thresholds.

For any given threshold h, the median d ’ selectivity (be it

positive or negative) depends on the noise level. When increasing

the noise level, the median d ’ selectivity goes toward zero, and,

when decreasing the noise level, the median d ’ selectivity diverges

from zero. d ’ magnitudes are also influenced by the number of

different song renditions used to probe selectivity. When selectivity

is probed with a single BOS and a single CON file and noise is

small, d ’ values can become arbitrarily large. Hence, our model

allows for close to arbitrary scaling of d ’ values by manipulating

the intrinsic noise.

We tested the dependence of BOS selectivity on the temporal

summation window and found that our results did not depend

critically on STRF width. Model STRFs were 50 ms wide. For

100-ms wide STRFs, BOS-CON and BOS-REV selectivities

reversed at around h~2{3; and, for 25-ms wide STRFs,

selectivity reversal was seen at around h~4. Hence, with

increasing temporal summation window, selectivity reversal was

seen at lower thresholds. Note that 25-ms STRFs are much shorter

than estimated integration times in BOS-selective neurons [23,33].

We also tested the effect of neuron number on d ’ selectivity.

Doubling that number from N~400 to N~800, or reducing it to

N~200 or N~100 preserved selectivity reversal in the range

h~2{5, for all CON ensembles tested and for both firing-rate

models. Also, we found that the value of the threshold h during

learning has little influence on selectivity reversal after learning.

For h~0, h~2, and h~5 during learning, selectivity for BOS

reversed to positive values at around h~3{4 after learning. In

summary, selectivity reversal at high thresholds was very robust

and did not depend on model details.

We assessed whether our model neurons preferred CON over

artificial stimuli, as has been reported in field L [34,35]. We found

high median selectivity for CON versus tone pips, tone stacks

(ripples), and white noise (Figure 12). This CON preference was

true for all thresholds h§0 examined. Solely tones (sparse colored

noise) were preferred over CON for thresholds up to h~1. For

higher thresholds h§2, CON-tones selectivity reversed and CON

was strongly preferred.

Comparison with an ICA algorithm
The key element in our model seemed to be the positive tail of

synaptic currents. Because this tail has a non-Gaussian shape, our

model can be seen as part of a broader class of independent-

component analysis (ICA) algorithms that extract maximally non-

Gaussian components from data [36]. To test whether BOS

preference at high thresholds arises also in other ICA algorithms,

we trained an identical network using the classical ICA algorithm

by Bell and Sejnowski (results not shown) [37]. In this algorithm, as

in most similar algorithms, the final distribution of synaptic

currents is symmetric, with heavy tails on both sides. For this

reason we applied the firing threshold to absolute synaptic currents

(see Methods). We computed BOS selectivities for different firing

thresholds h and found that BOS-CON and BOS-REV

selectivities reversed as in our model, but at higher thresholds:

The median and mean BOS-REV selectivities reversed at h~4,

whereas the mean and median BOS-CON selectivities reversed at

around h~7. Thus, the emergence of BOS preference in the

ultrasparse regime of simple networks did not depend on how

efficient coding was enforced, but appears to represent a generic

consequence of non-Gaussian statistics and the choice of the

training set.

Simulation of a two-layer network
To account for the layered architecture of the auditory

pathway, we also explored a two-layer network, in which the

second layer was trained on thresholded first-layer outputs. In

simulations, first-layer outputs were first summed over consecutive

time bins (to extend receptive field widths in the second layer) and

were then subjected to whitening and sparseness transformations

(as we did for the first layer, see Figure 13). In simulated networks

in which the first layer was a universal encoder (small h), we found

that response selectivity in the second layer reversed at high firing

thresholds in preference of BOS. Hence, our high-threshold model

Figure 12. Selectivity for CON vs. different artificial stimuli. Depicted are median selectivities + quartiles. PIP = tone-pip stimuli, WN = white
noise.
doi:10.1371/journal.pone.0025506.g012
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of response selectivity in HVC can also be expressed in an

architecture that is consistent with the feedforward organization of

the auditory pathway.

Discussion

Our model offers an understanding of auditory response

selectivity based on an efficient coding hypothesis. We briefly

outline the computational roots of the network we described,

compare neural responses to those of songbird auditory neurons,

and discuss possible consequences of efficient synaptic currents for

sensory and motor processing.

ICA algorithms
Our model falls into the broad category of ICA and sparse

coding algorithms which try to linearly transform given (sensory)

inputs into independent outputs (e.g., synaptic currents). In most

ICA algorithms, independence of outputs is enforced by a

symmetric cost such as kurtosis or entropy [37–39]. Because of

this symmetry, most ICA algorithms fail to account for the

asymmetry imposed by the spike threshold. By contrast, our

algorithm explicitly includes a rectification nonlinearity which

truncates as little information as possible because we minimize an

approximate error of reconstructed spectrograms. Among the ICA

algorithms that produce asymmetrically distributed outputs with a

heavy tail, ours is most closely related to non-negative ICA [40],

although in applications we found non-negative ICA to suffer from

the problem that positive synaptic currents are completely

unconstrained, which precludes interpretations of their magni-

tudes. A non-negative sparse-coding algorithm with a cost function

similar to ours has been described [41], but imposes some tighter

restrictions on the mixing matrix J (the inverse of W ) and has the

undesirable property that outputs yt
i cannot be computed in a

single forward pass but require an iterative optimization

procedure. Last but not least, our algorithm is different from

nonnegative matrix factorization (NMF) [42], because NMF does

not allow for STRFs with inhibitory subfields.

Song selective neurons in the auditory forebrain
In our model, the prominence of BOS in the training set and

the shape of our cost function conjunctively forced neurons to

display minimal suprathreshold synaptic currents to BOS (on

average). These minimal responses explain why neurons preferred

CON over BOS at moderately low firing thresholds, very much

like field-L neurons do. At higher thresholds, neurons responded

to specific BOS features more than to other features. In the high-

threshold regime, model neurons were BOS selective, and during

BOS presentation they fired sparsely and were hyperpolarized on

average, all very much like HVC mirror neurons that project to

Area X (HVCX neurons): HVCX neurons are hyperpolarized by

playback of the BOS and produce a high frequency burst in

response to a very specific song feature [11,22]. However, at high

thresholds, our model network did no longer function as a

universal encoder of the auditory environment. Although BOS

reconstructions worsened very gracefully with increasing thresh-

old, the neural representation of non-preferred stimuli degraded

rapidly. This observation recommends the high-threshold regime

only for specialized auditory areas such as HVC and the low-

threshold regime for lower auditory areas such as field L that

respond to a large variety of sounds.

Can selectivity for the TUT also be seen as a corollary of an

efficient coding hypothesis? HVC neurons in juveniles tend to

prefer TUT over most other stimuli including the BOS [21],

whereas in adults this selectivity reverses such that HVC neurons

Figure 13. Selectivity in two layers. Median and quartile selectivities in a network of two layers for various firing thresholds h in the first layer and
h2 in the second layer. In each simulation, second-layer responses were evaluated using the first-layer threshold applied during training. As can be
seen, BOS preference in the second layer is restricted to the high-sparseness regime there (right part of the three subplots).
doi:10.1371/journal.pone.0025506.g013
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tend to prefer BOS over TUT [21,43]. Taken together, these data

could be reproduced by our high-threshold model of HVC if TUT

originally were the more prominent stimulus than BOS, but then

BOS takes over as the most prominent stimulus.

Our model may explain response properties in many higher

auditory brain areas of songbirds including CM: medial CM

responses are shaped by auditory memories and cells typically

respond more to familiar than to unfamiliar songs [44], in analogy

to BOS preference seen in HVC. Interestingly, selective CM cells

have lower spontaneous firing rates than non-selective cells, in

agreement with the high-threshold regime of our model.

Smart noise reduction
From an engineering perspective, one computational benefit of

the sparseness transformation in our model is smart noise

reduction. Using a high firing threshold during reconstruction,

sounds to which cells have not been exposed during training can

be effectively filtered out. More interestingly, by omitting certain

neurons during reconstruction (e.g., by setting their firing

thresholds to infinity), undesirable signals encountered in the

training set can be conveniently suppressed. For example, by

excluding the five neurons that encoded high-frequency noise (e.g.

Neuron 106), BOS could be efficiently cleaned from that noise (see

Audio S1 and S2). Of course the brain may make use of such

smart noise reduction without ever explicitly having to reconstruct

the original input; for example, feature-based attentional inputs

may selectively suppress the firing in some neurons to constrain

downstream processing to only relevant sensory features. Although

such selective suppression has not been found yet in songbirds,

birds may possess attentional selection mechanisms because they

can detect subtle acoustic features and adapt their songs when

negatively reinforced [27].

Song feature analysis
Our algorithm offers a powerful method for bioacoustic signal

analysis. The diversity of STRFs in our model is well matched with

the behavioral richness of birdsong. Stereotyped syllables can be

readily detected because they are represented essentially by a

single STRF, whereas more variable syllables such as harmonic

stacks may be associated with multiple STRFs as in Figure 4.

Hence, the number of STRFs allocated to a particular syllable or

sub-syllable may reflect its variability. The level of song analysis

(detailed vs coarse) can be controlled by the number of neurons in

the network. We can imagine uses of our algorithm for detecting

particular song variants (such as high-pitched versions of harmonic

stacks), or for identifying similar notes within different syllables,

etc. Last but not least, because outputs of the network are more

independent than its inputs, our algorithm may be well suited for

applications of blind source separation.

STRFs and their relation to spike responses
Our study is not the first to examine sparse coding of birdsong.

Greene et al. applied a popular sparse coding algorithm to

compute optimal linear kernels on large numbers of birdsong

spectrograms [45]. They evaluated model output in terms of

receptive field shapes and found that a stronger sparseness prior

during training led to stronger resemblance of model STRFs with

STRFs in field L. The STRFs in our similar model also

qualitatively resembled STRFs in field L. Without density prior,

model STRFs were denser in spectral and temporal modulations

than field L STRFs. However, we showed there is no principled

discrepancy because by using a suitable density prior, we were able

to modulate the STRF density almost arbitrarily (Figure 2B),

implying that our model is amenable to fitting a large variety of

experimental STRFs. Most importantly, our work suggests that

neural firing may constitute a better model read out than receptive

fields, because neural firing takes nonlinearities into account (such

as the firing threshold), whereas receptive fields are linear and

often poor descriptions of spike data. For example, we found that

as a function of the firing threshold, our model, despite its fixed

underlying STRFs, was able to reproduce qualitatively different

responses as seen in field L and HVC. Hence, a simple STRF may

be far from ideal as a characterization of neural firing, because it

may be associated with a diverse range of response behaviors.

Applicability to other sensory modalities
Our findings may have relevance for the encoding of sensory

modalities other than audition, including olfaction. In mammals,

strong odorant-selective responses arise immediately downstream

of primary sensory inputs [46]. Though the neural mechanisms of

this selectivity remain to be studied, in insects the mechanisms

giving rise to sparse odor representations have been well

characterized. The sparse odor representation in Kenyon cells

arises from synchronized excitatory inputs mediated by densely

firing projection neurons in the antennal lobe and by nonspecific

inhibitory inputs from lateral horn interneurons that in essence set

a high firing threshold to Kenyon cells [47,48]. The Kenyon cell’s

supralinear summation of EPSPs [49] represents a simple

biophysical mechanism for achieving a long tail in the distribution

of positive synaptic currents, a key element of our model. And, the

control of firing threshold in Kenyon cells by global inhibitory

input is well suited to endow these cells in principle with the ability

to change response selectivity, for example if required by external

circumstances.

Function of selectivity reversal
Our model can reproduce the selectivity reversal seen in HVCX

neurons [11]. We predict this to be a widespread phenomenon.

We predict that sparsely firing neurons, when they are depolarized

by constant current injections to fire densely, will display reduced

or negative selectivity for their normally preferred stimulus.

Similarly, we predict that densely firing neurons should lose or

also reverse their selectivity while being hyperpolarized by

constant current injection. These predictions apply to the mean

and median selectivities in a large population (not to each

individual cell) and should be relatively simple to verify using

intracellular recordings. Note that these two predictions are

surprising for neurons with monotonic frequency-current (F-I)

curves f as in our model. We can speculate about the function of

such selectivity reversal, if indeed widespread. If it were to be

found in other animals and brain areas and were under volitional

control, it could be used to attentionally screen the sensory

environment for highly familiar stimuli (high threshold case), or to

tune in on all kinds of stimuli with preference for unfamiliar ones

(low threshold case).

Regarding shifts in excitatory/inhibitory balance, our model

predicts that the effect on response selectivity depends on how

balance shifts affect firing rates. For example, if increased

inhibition leads to decreased firing rates, our model predicts

increased response selectivity (for the BOS or an equivalent

stimulus). In general, manipulations of excitation or inhibition

within a network can lead to highly non-trivial reactions, e.g.

disruption of local inhibition onto a cell can lead to lower baseline

firing rate and to significant changes in firing patterns. For

example, in Rosen and Mooney [50], decreased G-protein

coupled inhibition led to decreased baseline firing, which is

counterintuitive and may be caused by nonlinear priming effects.

Our model is not able to explain such behavior, as it would need to
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include a more complex neuronal model including synaptic

feedback. Nevertheless, because our theory applies in the direction

of firing rate changes, our model predicts increased selectivity for

the BOS when removal of inhibition decreases firing rates, which

is what has been observed [50].

As a model of HVC responses, our findings suggests that

vocal-auditory mirrored activity in HVC has a sensory origin

(activity in HVCX neurons is mirrored in that auditory-evoked

and singing-related responses in these cells are nearly identical

[22]). In particular, our interpretation is that initially, HVC

responses are shaped by the TUT; thereafter, HVC responses

and their selectivity are further shaped by auditory feedback

elicited by the BOS [21], which during early sensorimotor song

development is generated by a motor pathway that excludes

HVC [51]. During this developmental phase, a network forms

among HVC neurons and ultimately produces adult song. A

sensory origin of the HVC network would imply that motor

responses in HVC neurons learn to mirror sensory responses,

not vice versa (HVC neurons learn to use auditory-feedback-

elicited responses as future motor outputs, rather than their

learning to map auditory feedback onto the HVC neurons that

were involved in generating the feedback). In other words, when

mirror neurons fire during motor behavior, they do so mainly

because they have developed selectivity to the stimulus

preceding their firing. More specifically, mirrored activity in

HVC neurons could derive from essentially one assumption:

that the local HVC network tries to maximize the drive of cells

at the moments at which these fire, initially driven by sensory

input. Accordingly, HVC synapses would allow for cells to drive

each other at time lags at which their preferred TUT/BOS

auditory features occur. Such specific function could arise for

example by virtue of some spike-time dependent synaptic

plasticity mechanisms [52–55].

In conclusion, the architecture we have described shows that

efficient coding constraints can explain the diversity of response

specificity in higher sensory areas. Sparse/selective and dense/

antiselective responses are at opposite extremes of the same

efficient coding principle. It is possible that this link between

response specificity and firing sparseness holds true also in other

neural systems such as the neocortex. And, by extrapolation, our

work shows that efficient coding constraints may guide the

formation of sensory pathways all the way up to premotor areas,

by which our work can shorten the gap between our understand-

ing of pure sensory and pure motor codes.

Methods

Cochlear input
The cochlear input to the network at time t was formed by the

most recent t~50 ms window of the (mean-subtracted) log-power

sound spectrogram x(f ,u), where time u ranged from t{t to t,
and the frequency f from 0 Hz to 11 kHz. To form these

spectrograms, the sound was sampled at 22 kHz, multiplied with a

Hanning window of 256 or 128 samples, and Fourier transformed,

where in each frequency band we subtracted the mean spectral

log-power. The frequency resolution of spectrograms was 86 or

172 Hz, respectively. The temporal offset Dt between subsequent

cochlear inputs was 16 or 32 samples, corresponding to 0.7 and

1.5 ms, respectively. The dimension N0 of the cochlear input was

8192 for high-resolution spectrograms (86 Hz, 0.7 ms, Figures 2B

and 5 to 13) and 2048 for low-resolution spectrograms (172 Hz,

1.5 ms, Figures 2A and 3). For Figure 4 the spectrum ranged from

0 kHz to 8 kHz at a resolution of 62.5 Hz, and a temporal

resolution of 4 ms was used.

Network model
The synaptic current yt

i to neuron i (i~1, . . . ,N, where N
varied from 100 to 800) was formed by convolving the cochlear

input x(f ,u) in time with synaptic weights ji(f ,t), and by summing

over frequency bands:

yt
i~
X50ms

v~0

X11kHz

f ~0

ji(f ,v)x(f ,t{v): ð1Þ

We interpret the synaptic weights ji(f ,t) as the STRF of cell i
[56]. To simplify our notation, we vectorize the cochlear input

x(f ,u) as a column vector X t{t:t and the synaptic weights ji(f ,t)
as a row vector ji, allowing us to rewrite Equation 1 as the scalar

product

yt
i~ji

:X t{t:t: ð2Þ

We considered two separate models for transforming synaptic

currents into firing rates. In our threshold-linear or analog model,

the firing rate rt
i of cell i at time t was proportional to the total

synaptic current above a firing threshold h,

rt
i~max(yt

izgt
i{h,0), ð3Þ

where gt
i*N (0,k2) represents a source of independent Gaussian

white noise of mean zero and standard deviation k. This noise

modeled fluctuating firing rates when kw0. Note that we also

simulated a second binary model, in which neurons fired at a

constant rate when the total synaptic current exceeded h,

rt
i~H(yt

izgt
i{h), where H(:) is the Heaviside function,

H(x)~1 if xw0 and H(x)~0 otherwise.

Neural firing in our model is set by a separating hyperplane of

the input space X t{t:t. Note that such a linear thresholding

scheme might not be optimal for non-Gaussian stimulus ensembles

[57]. We may study extensions from planar to curved decision

boundaries in future work, provided suitable mathematical tools

can be devised.

Networks of two layers
We also analyzed hierarchical networks with two layers, with

the goal to evaluate BOS selectivity in the second layer as a model

of HVC.

The input ~XX t to the second layer was formed by a 50 ms

window of (mean-subtracted) first-layer firing rates rt, down-

sampled from 0.7 ms to 2.8 ms (by averaging). Neuron i in the

second layer (i~1, . . . ,N2) had a non-zero firing rate (threshold-

linear or binary) at time t when its total synaptic current

~yyt
i~

~jji
~XX tz~ggt

i exceeded a threshold h2 (with ~ggt
i representing a

source of Gaussian white noise of mean zero and standard

deviation k2). The total number of second-layer neurons N2 was

set to 800. Unlike in the first layer, the second-layer synaptic

weights ~jji cannot be interpreted as receptive field due to the

dependence of second-layer responses on first-layer synaptic

weights. To train the second-layer weights, we first whitened

first-layer responses and then picked random 50-ms sets thereof

(each with a new random noise) to iteratively update the sparseness

transformation ~WW . Hence, the training data for the second layer

depended on the first-layer firing threshold h. For training of the

second layer, we observed good convergence behavior when k~1
and k2~0 (though results did not qualitatively depend on noise

amplitudes during learning).
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Synaptic weights and the cost function
The N|N0 synaptic weight matrix j~(j1; j2; . . . ; jN ) was

given by matrix multiplication of a projection P, whitening the

cochlear input, followed by a sparseness transformation

W~(wmn):

j~WP: ð4Þ

The projection P~L{1=2:ET was determined by principal-

component analysis, where L is the diagonal matrix of the N
largest eigenvalues of the covariance matrix

C~SX t{t:t(X t{t:t)TTt of the cochlear, E is the N|N0 matrix

of corresponding orthonormal eigenvectors, and T denotes the

transpose.

For a given projection P, the sparseness transformation W was

computed iteratively by minimizing the following cost function for

synaptic currents yt
i :

W~arg min
W ’

X
i,t

f (yt
i ) ð5Þ

where

f (yt
i )~ yt

i,z{h
� �

z
c

2
(yt

i,{{y0)2: ð6Þ

In this last equation, c is the trade-off between the two summands,

yt
i,z are suprathreshold synaptic currents (yt

i,z~yt
i for yt

iwh and

yt
i,z~0 otherwise), and yt

i,{ are subthreshold synaptic currents

(yt
i,{~yt

i{yt
i,z).

This cost function contains a linear cost for suprathreshold

currents (yt
iwh) and a square cost for subthreshold synaptic

currents (yt
ivh). The function has two minima of zero cost at h

and at y0. y0 is a parameter that sets the current which elicits the

minimum subthreshold cost. Changing y0 has no qualitative

influence on our findings; in practice y0 can be set to zero both

during learning and evaluation of the network (thus considerably

simplifying the learning procedure described below). However, to

achieve minimal reconstruction error as we will show, in some

simulations we set y0 to the expected subthreshold synaptic

current, defined by yE{~
Ð h

{? yp(y)dy=
Ð h

{? p(y)dy, with p(y)
being the probability density function of synaptic currents elicited

by the training set. Hence, y0 should be regarded as a useful

parameter if close to optimal reconstructions are desirable, but

otherwise this parameter can be confidently neglected.

For most simulations we set h to zero during learning, implying

that suprathreshold currents are depolarizing (positive), whereas

subthreshold currents are hyperpolarizing (negative), Figure 1C.

The factor c was normally set to one, but the simulations showed a

high robustness even when increasing c by two orders of

magnitude.

The function f (yt
i ) in Equation 6 has a discontinuity in h, which

hinders gradient-descent algorithms. In practice, we smoothed

f (yt
i) locally at the threshold h using a sigmoidal function

Uh(y)~
1

2
tanh

1

s
y{hð Þ

� �
z1

� �
as follows:

f (yt
i)~Uh(yt

i )
: yt

i{h
� �

z 1{Uh(yt
i)

� �
: c

2
(yt

i{y0)2: ð7Þ

The variable s is a smoothing constant that should be in the range

of average sampling density in the neighborhood of the threshold

(in our simulations we chose s~0:01 for h~0 and s~1 for h~5).

To avoid the trivial optimum W~0 in Equation 5, we set the

following restriction to the (left) inverse matrix J~(jmn)

J:W~I ð8Þ

diag(JT J)~1, ð9Þ

where 1 is a vector of ones and I the unity matrix. This constraint is

motivated by functional/theoretical consideration and could

potentially be accomplished by a host of complex homeostatic

mechanisms, though such an analysis would go beyond the limits of

this work. In different sets of simulations we also examined the

weaker (volume-preserving) restriction det(J)~1 and the stronger

(orthonormal) restriction JT J~I, where I is the identity matrix. For

the entire range of thresholds h tested, the distributions of BOS-REV

and BOS-CON selectivities were almost unchanged under these two

restrictions, demonstrating robustness of our results with respect to

the synaptic weight constraint. Also, similarity of our findings with

findings obtained when using the Bell-Sejowski algorithm demon-

strates high robustness. Note that all presented simulation used a

squared projection matrix W were J~W{1 is the inverse.

Geometrically, the cost function penalizes subthreshold outliers

more than suprathreshold ones, because the square Euclidean

norm of a large vector is larger than its Manhattan norm.

Furthermore, the cost of mapping an outlier to a suprathreshold

synaptic current in just a single neuron is smaller than the cost of

distributing the outlier among multiple neurons. This can be best

seen for the special case of sparseness transformations that are

rotations (i.e. orthonormal, satisfying diag(JT J)~1), because the

Manhattan norm of a vector of fixed Euclidean norm is minimized

when it is parallel to one of the coordinate axes. Thus, the cost

function tries to produce highly selective neurons that are strongly

excited by only a very small set of inputs.

To have control over the density of STRFs (sharply tuned versus

broadly tuned neurons) we run a few simulations with an

additional term in the cost function, corresponding to a linear

cost on absolute synaptic weights,

W~arg min
W ’

X
i,t

f (yt
i)zcs

ffiffiffiffiffi
N
p

bffiffiffiffiffiffi
N0

p
Pk kF

jk k1, ð10Þ

where b denotes the batch size (number of cochlear input samples

per weight update), :k kF the elementwise Frobenius-norm, and

:k k1 an elementwise 1-norm and cs is the relative weight of the

new term. In all our simulation results reported in the Results

Section and the figures, we applied cs~0, except results shown in

Figures 2B and 5, where we used cs~0:2. In summary, for csw0:1
STRFs were of low density (Figure 2B) in closer resemblance to

experimental data (with this choice of csw0 our findings about

selectivity reversal still applied).

STRF estimation using reverse correlation
We examined the question whether estimated STRFs using

reverse correlation depend strongly on the firing threshold and

whether they resemble the STRFs encoded in the synaptic

weights. For various thresholds h we calculated the firing rates

rt
i~max(yt

izgt
i{h,0) in response to birdsong stimuli and

estimated the reverse-correlation STRFs hi in terms of

hi~ CsszmDð Þ{1
Csr, ð11Þ
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where Css is the stimulus autocorrelation matrix, D the diagonal of

the autocorrelation matrix, Csr the crosscorrelation between the

stimulus and the response, and m is a small factor used to

regularize the inverse. Using the estimated STRFs we predicted

the firing rates r̂rt
i to novel stimuli. We compared predicted firing

rates to firing rates elicited by the actual STRFs using the

correlation coefficient cc.

Minimal decoding error
The first term of the cost function in Equation 6 imposes a

linear cost on suprathreshold synaptic currents. Because supra-

threshold synaptic currents are equivalent to instantaneous firing

rates at zero noise, the first term enforces firing sparseness across

the population (for the training threshold). The second term

imposes a quadratic cost on subthreshold synaptic currents, which

is equivalent to minimizing an error bound on decoded cochlear

inputs. To see this, consider the following estimate X̂X t
p of whitened

cochlear inputs X t
p~PX t{t:t from suprathreshold synaptic

currents at time t:

X̂X t
p~J Y t

zzY t
E{

� �
, ð12Þ

where Y t
z is a time-dependent vector of suprathreshold currents

yt
i,z and the vector Y t

E{ is the vector with the expected

subthreshold currents: yt
i,E{~yE{ for yt

ivh and yt
i,E{~0 else.

The decoding error associated with the decoding X̂X t
p is given by

the mean square Euclidean norm between X̂X t
p and X t

p. This error

is related to the distribution of subthreshold currents as follows:

X
t

X t
p{X̂X t

p

			 			2

2
~
X

t

JY t{J Y t
zzY t

E{

� �		 		2

2

~
X

t

Y t
{{Y t

E{

� �T
JT J Y t

{{Y t
E{

� �

~
X

t

Y t
{{Y t

E{

� �T
(IzC) Y t

{{Y t
E{

� �

^
X

t

Y t
{{Y t

E{

� �T
Y t

{{Y t
E{

� �

~
X
yt
i
vh

yt
i{yE{

� �2

ð13Þ

where in the first line we have used that X t
p~PX t{t:t~JY t, and

in the second line I represents the identity matrix and C a matrix

with zeros on the diagonal. The vector Y t
{ is the vector of the real

subthreshold currents Y t
{~Y t{Y t

z. The approximation in the

second line is based on the assumption of equally distributed and

mutually independent subthreshold currents: p(yi,yk)~p(yi)p(yk).
Note that the approximation in Equation 13 is exact for rotations

(JT J~I), whereas for the constraint diag(JT J)~1, we found the

approximation to be within 4% of the reconstruction error for

h~0, and to be even closer for higher h.

The key insight is that for the training threshold h, the

approximated reconstruction error is proportional to the sub-

threshold term of our cost function if we choose y0~yE{ in

Equations 5 and 6. Hence, by minimizing the subthreshold term in

our cost function, we minimize the approximation of the decoding

error. The final term in Equation 13 shows that the reconstruction

error is small when the subthreshold currents are rare (p yvhð Þ is

small) and their variance is small (S y{yE{ð Þ2Tyvh is small).

Note that the decoding scheme defined in Equation 12 may not

be globally optimal, but was motivated by our assumption that

only suprathreshold events carry meaningful information. Also, a

benefit of this decoding scheme is its asymptotic robustness (for a

threshold of minus infinity the decoding error vanishes).

Our algorithm minimizes an approximation of the reconstruc-

tion error, but not the reconstruction error itself. Exploratively, we

have adapted the algorithm to directly minimize the reconstruc-

tion error (defined in Equations 13) for a given threshold hw0.

The resulting reconstruction error for BOS at the given threshold

was only marginally better than with our sparse-coding algorithm.

Synaptic current distributions were nearly bimodal with a first

peak at zero and a second peak slightly above h; interestingly,

reconstructions became worse than in Figure 9E when performed

using a different threshold than used during learning.

Reconstructed Spectrograms
From the decoded whitened inputs X̂X t

p, we reconstructed the

spectrograms (Figure 9) using the pseudoinverse P{1~EL1=2.

The element t of the reconstructed spectrogram was defined by

X t
rec~EL1=2X̂X t

p: ð14Þ

From these elements, we computed the fully reconstructed

spectrograms by averaging over all overlapping regions in the

sequence X t
rec, X tz1

rec , . . . (average over 64 time windows).

Algorithm for cost minimization
The constraint in Equation 8 was naturally enforced by our

choice of parameterization of the inverse:

jmn~
sinbmn

Mm cosbmnj j , ð15Þ

where B~(bmn) is an arbitrary parameter matrix and

Mm~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

l tan2 bml

q
is a row-wise normalization constant. We

minimized the cost function F~
P

i,t f (yt
i ) iteratively using a line

search along the direction A~{+BF of steepest descent along the

cost surface, which was given by:

amn~{
X

t,i

LF

Lyt
i

Lyt
i

Lbmn

~
sinbmn

M2
m cos3 bmn

znm

jmn

{

P
l zlmjml

Mm

� �
,

ð16Þ

where

znm~
X

t,i

yt
nwim cyt

i,{zs(yt
i,z)

� �
, ð17Þ

for the simplified cost function (Equation 6) and for y0~0. s(:)
denotes the signum function. However, for the general, smoothed

cost function (Equation 7) the calculation of znm gets more

complex:

znm~
X

t,i

yt
nwim c: yt

i{y0

� �
: 1{Uh yt

i

� �� �
{

c

2
:Vh yt

i

� �
: yt

i{y0

� �2
�

zUh yt
i

� �
zVh yt

i

� �
: yt

i{h
� ��

,

ð18Þ

where Vh yð Þ is the derivative of the sigmoid function

Vh yð Þ~ dUh

dy
~

1

2s
cosh{2 1

s
y{hð Þ

� �
.
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Starting with the identity matrix B0~I, we updated the kth

parameter matrix Bk according to

Bkz1~BkzlA ð19Þ

using an optimized step size l determined through a line search

algorithm:

l~arg min F Bzl’Að Þ:

l’
ð20Þ

After each update of Bk, we updated the inverse Jk according to

Equation 15 and the sparseness transformation W k by inversion of

Jk. In simulation in which the minimum subthreshold cost y0 was

variable, we changed y0 at each update to the expected

subthreshold current, y0~yE{. During evaluation of the network

we left y0 untouched.

Note that we also formulated an overcomplete version of our

algorithm, in which there are more neurons than principal

components (the matrix W has more rows than columns). In this

case the resulting synaptic current distribution had an even heavier

tail on the positive side, but results were qualitatively unchanged.

Batch training
Our training data consisted of 46 sound files of average duration

1.7 s. Thirty-four of these files contained different renditions of a

zebra finch song (BOS), twelve files contained conspecific songs

(CON) from two independently raised adult zebra finches in our

colony (six files each). Our results did not depend sensitively on

these file numbers and which song was chosen as the BOS, as long

as there was an overall predominance of BOS.

To train the synaptic weight matrices, we used a randomized

batch learning scheme. First we computed the whitened cochlear

inputs based on the matrix P derived from all 46 sound files. To

train the sparseness transformation, we chose a batch size of a few

thousand 50-ms windows. Each window in this set was drawn

randomly from one of the 46 files and at a random time within the

file. From this set of whitened inputs we computed the gradient

matrix A (Equation 16), performed the line search (Equation 20),

and updated y0 if necessary. This procedure was then repeated

with different sets of random windows. Typically, the number of

updates required to reach convergence was within two to ten times

the number of neurons N.

In separate simulations we also included in the training set

various numbers of files with cage noises such as wing flaps,

subsongs and other natural sounds; results did not qualitatively

change with the inclusion of these files.

Response selectivity
We measured the selectivity of neural responses using the

psychophysical d ’ measure [32]. This measure discriminates

between two different stimuli p and q based on the average firing

rates rp and rq they elicit in individual neurons (averages are

formed over stimulus presentations and over their durations):

d ’~
2 rp{rq

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

pzs2
q

q : ð21Þ

The terms s2
p and s2

q in the denominator are the variances of mean

firing rates across repeated stimulus presentations (this variance

was nonzero in our simulations due to the additive noise in

Equation 3). A positive d ’ value implies selectivity for p, whereas a

negative value implies selectivity for q. Selectivity results did not

depend qualitatively on the noise amplitude (k from 0.05 to 5).

The effect of increasing the noise amplitude k was to bring d ’
values closer to zero, but without changing their signs. In

Figure 11, BOS-CON selectivity was evaluated on 3 different

CONs that were not part of the training set.

To evaluate the d ’ selectivity in the Bell-Sejnowski architecture,

we defined the firing rate of neuron i by the symmetrically rectified

expression rt
i~ yt

izg


 

{h for yt

izg


 

wh, and rt

i~0 otherwise.

All programming was done in Matlab (Mathworks Inc).

Supporting Information

Audio S1 Original Recording of a zebra finch song.

(WAV)

Audio S2 Reconstruction of the song in Audio S1 after
smart noise suppression.

(WAV)
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