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Abstract

Alzheimer’s disease (AD) and mild cognitive impairment (MCI) are of great current research interest. While there is no
consensus on whether MCIs actually ‘‘convert’’ to AD, this concept is widely applied. Thus, the more important question is
not whether MCIs convert, but what is the best such definition. We focus on automatic prognostication, nominally using only
a baseline brain image, of whether an MCI will convert within a multi-year period following the initial clinical visit. This is not
a traditional supervised learning problem since, in ADNI, there are no definitive labeled conversion examples. It is not
unsupervised, either, since there are (labeled) ADs and Controls, as well as cognitive scores for MCIs. Prior works have
defined MCI subclasses based on whether or not clinical scores significantly change from baseline. There are concerns with
these definitions, however, since, e.g., most MCIs (and ADs) do not change from a baseline CDR = 0.5 at any subsequent visit
in ADNI, even while physiological changes may be occurring. These works ignore rich phenotypical information in an MCI
patient’s brain scan and labeled AD and Control examples, in defining conversion. We propose an innovative definition,
wherein an MCI is a converter if any of the patient’s brain scans are classified ‘‘AD’’ by a Control-AD classifier. This definition
bootstraps design of a second classifier, specifically trained to predict whether or not MCIs will convert. We thus predict
whether an AD-Control classifier will predict that a patient has AD. Our results demonstrate that this definition leads not
only to much higher prognostic accuracy than by-CDR conversion, but also to subpopulations more consistent with known
AD biomarkers (including CSF markers). We also identify key prognostic brain region biomarkers.

Citation: Aksu Y, Miller DJ, Kesidis G, Bigler DC, Yang QX (2011) An MRI-Derived Definition of MCI-to-AD Conversion for Long-Term, Automatic Prognosis of MCI
Patients. PLoS ONE 6(10): e25074. doi:10.1371/journal.pone.0025074

Editor: Maria A. Deli, Biological Research Center of the Hungarian Academy of Sciences, Hungary

Received May 10, 2011; Accepted August 25, 2011; Published October 12, 2011

Copyright: � 2011 Aksu et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: Funding supporting this work has been provided in part through NIH R01 AG02771 and the Pennsylvania Department of Health. The authors thank Dr.
Michelle Shaffer for assistance with statistical testing and Jianli Wang and Zachary Herse for assistance with segmentation. This research was supported by NIH
grants P30 AG010129, K01, AG030514, and the Dana Foundation. Data collection and sharing for this project was funded by the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904). ADNI is funded by the National Institute on Aging, the National Institute of
Biomedical Imaging and Bioengineering, and through generous contributions from the following: Abbott, AstraZeneca AB, Bayer Schering Pharma AG, Bristol-
Myers Squibb, Eisai Global Clinical Development, Elan Corporation, Genentech, GE Healthcare, GlaxoSmithKline, Innogenetics, Johnson and Johnson, Eli Lilly and
Co., Medpace, Inc., Merck and Co., Inc., Novartis AG, Pfizer Inc, F. Hoffman-La Roche, Schering-Plough, Synarc, Inc., as well as non-profit partners the Alzheimer’s
Association and Alzheimer’s Drug Discovery Foundation, with participation from the U.S. Food and Drug Administration. Private sector contributions to ADNI are
facilitated by the Foundation for the National Institutes of Health (www.fnih.org). The grantee organization is the Northern California Institute for Research and
Education, and the study is coordinated by the Alzheimer’s Disease Cooperative Study at the University of California, San Diego. ADNI data are disseminated by
the Laboratory for Neuro Imaging at the University of California, Los Angeles. The funders had no role in study design, data collection and analysis, decision to
publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: djmiller@engr.psu.edu

Introduction

The dementing illness Alzheimer’s disease (AD), and the tran-

sitional state between normal aging and AD referred to as mild

cognitive impairment (MCI) continue to be widely studied.

Individuals diagnosed with MCI have memory impairment, yet

without meeting dementia criteria. Annually&10–15% of people

with MCI are diagnosed with AD [1]. Moreover, prior to

symptom onset, brain abnormalities have been found in people

with MCI, as ascertained by retroactive evaluation of longitudinal

MRI scans [2]. There is no consensus on whether MCI patients

actually ‘‘convert’’ to AD. First, some MCI patients may suffer

from other neurodegenerative disorders (e.g., Lewy body demen-

tia, vascular dementia and/or frontotemporal dementia). Second,

it is possible that all other MCI patients already have AD, but at a

preclinical stage. AD diagnosis itself may not be considered

definitive without e.g. confirming pathologies such as the amyloid

deposits detectable at autopsy. Regardless of whether MCI

patients truly ‘‘convert’’ to AD or not, the concept of MCI-to-

AD conversion has been widely applied, e.g. [3,4,5,6,7] and is

utilitarian – defining MCI (converter and nonconverter) subgroups

allows use of statistical group difference tests and machine learning

methods to help identify early disease biomarkers and to build

models for predicting disease progression. For these purposes, the

more important question is not whether MCIs convert, but rather

what is the best such definition.

Accordingly, here we focus on the following Aim: automatic

prognostication, (nominally) using only a baseline brain scan, of

whether an MCI individual will convert to AD within a multi-year

(three year) period following an initial (baseline) clinical visit. Our
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system performs three-year ahead prediction because it is designed

based on the ADNI database, which followed participants for a

period of up to three years. (Data used in preparation of this article

were obtained from the Alzheimer’s Disease Neuroimaging

Initiative (ADNI) database adni.loni.ucla.edu. As such, the

investigators within the ADNI contributed to the design and

implementation of ADNI and/or provided data but did not

participate in analysis or writing of this report. A complete listing

of ADNI investigators can be found at: http://adni.loni.ucla.edu/

wp-content/uploads/how_to_apply/ADNI_Authorship_List.pdf).

While only image voxel-based features are evaluated here for

use by our classifier, our framework is extensible to incorporating

other baseline visit clinical information (e.g. weight, gender,

education level, genetic information, and clinical cognitive

scores such as the Mini Mental State Exam (MMSE)) into the

decisionmaking. Moreover, our approach can also incorporate the

recent, promising cerebrospinal fluid (CSF) based markers [8].

However, as this requires an invasive spinal tap, we focus here on

image scans, which are routinely performed for subjects with MCI.

We do not hypothesize that, within ADNI, there are actually

two subclasses of MCI subjects when evaluated over the very long

term – those that (eventually) convert to AD, and those that do

not. Even if an overwhelming majority of MCI subjects will

eventually convert, identifying the subgroup likely to convert within

several years has several compelling utilities: 1) early prognosis, to

assist family planning; 2) facilitating group-targeted treatments/

drug trials; 3) we identify key prognostic brain ‘‘biomarker’’ regions,

i.e. those found to be most critical for accurately discriminating our

‘‘converter’’ and ‘‘nonconverter’’ groups. These regions may shed

light on disease etiology.

Distinguishing AD converters from nonconverters is a binary

(two-class) classification problem. Moreover, it may appear this

classification problem can be directly addressed via supervised

learning methods [9]. However, it is in fact an unconventional

problem, lying somewhere between supervised classification and

unsupervised classification (clustering), and thus requiring a unique

approach. To appreciate this, consider the ADNI cohort of MCI

individuals. ADNI consists of clinical information and image scans

on hundreds of participants, taken at six-month intervals for up to

three years. A clinical label (AD, MCI, or Control) was assigned to

each participant at first visit. Clinicians derive the AD/MCI/

Control label based on multiple criteria, which may include

Clinical Dementia Rating (CDR), whose possible values are:

0 = none, 0.5 = questionable, 1 = mild, 2 = moderate, 3 = severe. Even

though a probable AD definition based on CDR and MMSE scores

and NINCDS/ADRDA criteria has been used (e.g. [10,7]) to

provide follow-up assessment for MCI patients, this is strictly a

clinically driven definition, based on a clinical rating (CDR) and a

cognitive score (MMSE) whose difficulties will be pointed out

shortly. This is not a definitive (autopsy-based) determination of

AD, nor is it a definition based on physiological brain changes.

Even if the probable AD definition has very high specificity, it may not

be sufficiently sensitive, i.e. there may be patients who are

undergoing significant physiological brain changes consistent with

conversion, yet without clinical manifestation.

Accordingly, we will approach the conversion problem from a

perspective as agnostic and unbiased as possible, and simply state

that it is not definitively known which MCI participants in ADNI

truly converted to AD within three years. In conventional

supervised classifier learning, one has labeled training examples,

used for designing the classifier, and labeled test examples, used to

estimate the classifier’s generalization accuracy. For predicting

whether MCI participants in ADNI convert to AD, we in fact

have neither. Thus, our problem is not conventional supervised

learning. On the other hand, consider unsupervised clustering [9].

Here, even if one knows the number of clusters (classes) present,

there is no prior knowledge on what is a good clustering – one is

simply looking for underlying grouping tendency in the data.

Clearly, our problem does not fit unsupervised clustering, either –

while we have no ground-truth labeled MCI converter/noncon-

verter instances per se, 1) there are two designated classes of

interest (converter and nonconverter); and 2) there are known class

characteristics – conversion to AD should, plausibly, mean that: (i)

a clinical measure such as CDR or a cognitive measure has

changed and/or (ii) there are changes in brain region features or in

CSF biomarkers more characteristic of AD subjects than normal/

healthy subjects. Note that in ADNI we do have plentiful labeled

AD and normal/healthy (Control) examples to help assess ii).

Based on the above, MCI prognosis is an interesting and novel

problem, lying somewhere between supervised and unsupervised

classification. The crux of this problem is to craft criteria through

which meaningful MCI subgroups can be defined, well-capturing

notions of ‘‘AD converter’’ and ‘‘nonconverter’’. To help guide

development and evaluation of candidate definitions, we state the

following three desiderata: 1) The proposed definition of AD

converter should be plausible and should exploit the available,

relevant information in the ADNI database (e.g. image data,

labeled AD and Control examples, and clinical information). To

appreciate 1), note that the MCI population could be dichoto-

mized in many ways, e.g. by height, and there might be significant

clustering tendency with respect to height, but such a grouping is

likely meaningless for MCI prognosis; 2) A classifier trained based

on these class definitions should generalize well on test data (not used

for training the classifier) – this quantifies how accurately we can

discriminate the classes that we have defined. Equivalently, it tells

us whether the features we are using are adequate for well-

discriminating the classes we define. If we create what we believe

to be good definitions, but ones that cannot be accurately

discriminated, that would not be useful clinically; 3) The class

definitions should be validated using known AD conversion

biomarkers ( i.e., external measures) such as measured changes

from baseline in volumes or final visit volumes of brain regions

known to be associated with the disease [11], CSF biomarkers

[12], and cognitive test scores (such as the clinical MMSE

measure).

Prior Related Work
Several prior works, e.g. [4,5,13], defined converter and

nonconverter classes solely according to whether the baseline visit

CDR score of 0:5 rose or stayed the same over all visits. Change in

CDR has also been used as surrogate ground-truth for cognitive

decline in a number of other papers, e.g. [14,6]. While CDR gives

a workable conversion definition, it should be evaluated with

respect to the three desiderata above. We will evaluate 2) and 3) in

the sequel. With respect to 1), one should challenge a CDR-based

conversion definition. First, CDR is not an effective discriminator

between the AD and MCI groups, i.e. there is very significant AD-

MCI overlap, not only with respect to CDR = 1 but even 0.5 – for

ADNI, the majority of the hundreds of AD subjects used in our

experiments start (at first visit) at CDR = 0.5 and stay at 0.5 at all

later visits; likewise, nearly all MCI subjects start at 0.5, with a

large majority of these also staying at 0.5 for all visits. This latter

fact further implies difficulties in finding an adequate number of

conversion-by-CDR subjects in ADNI, both for accurate classifier

training and test set evaluation. For the even more stringent

probable AD definition (meeting MMSE and NINCDS/ADRDA

criteria, in addition to CDR changing from 0.5 to 1) there are

necessarily even fewer MCI converters for classifier training and

MRI-Derived Definition of MCI-to-AD Conversion
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testing. Second, a purely CDR-based (or ‘‘probable AD’’ based)

conversion definition ignores the (rich) phenotypical information in

an MCI subject’s image brain scans and does not exploit the

labeled AD and normal/healthy (Control) examples in ADNI.

These prior works do treat features derived from brain scans as the

covariates (the inputs) used by the classifier/predictor. However, we

believe the MCI brain scans can themselves be used, in

conjunction with the labeled AD and Control examples, to help

define more accurate surrogate ground-truth.

Previous work has demonstrated that structural MRI analysis is

useful for identifying AD biomarkers in individual brain regions

[15,16,17] – e.g., cortical thinning [18,19], ventricle dilation and

gaping [14,3,20], volumetric and shape changes in the hippocam-

pus and entorhinal cortex [21,22,23], and temporal lobe shrinkage

[24]. It is important to capture interaction effects across multiple

brain regions [2,5,25,13]. did jointly analyze voxels (or regions)

spanning the entire brain and did build classifiers or predictors.

Moreover, as part of their work [13], investigated prediction of

future decline in MCI subjects working from baseline MRI scans,

which is the primary subject of our current paper. However, there

are several limitations of these past works. First, all these studies

used the previously discussed CDR and cognitive measures such as

MMSE, which has been described as noisy and unreliable, as

the ground-truth prediction targets for classifier/regressor training.

In [14], the authors state: ‘‘Cognitive assessments are notori-

ously variable over time, and there is increasing evidence that

neuroimaging may provide accurate, reproducible measures of

brain atrophy.’’ Even in [13], where MMSE was treated as the

measure of decline and the ground-truth regression target, the

authors acknowledged that ‘‘individual cognitive evaluations are

known to be extremely unstable and depend on a number of

factors unrelated to…brain pathology.’’ Such factors include sleep

deprivation, depression, other medical conditions, and medica-

tions. Even though MMSE is widely used by clinicians, these

comments (even if not universally accepted), do indicate MMSE

by itself may not be so reliable in quantifying the disease state.

Moreover, while [13] did build predictors of future MMSE scores

working from baseline scans, this was not a main focus of their

paper – their paper focused on predicting the current score. Their

prognostic experiments involved a very small sample size (just 26

participants from the ADNI database). Accordingly, it is difficult to

draw definitive conclusions about the accuracy of their prognostic

model and their associated brain biomarkers. The main reason the

authors chose such a small sample was, as the authors state: ‘‘A

large part of…ADNI…are from patients who did not display

significant cognitive decline…[these] would overwhelm the

regression algorithm if..used in the…experiment.’’ While this

statement (with cognitive decline measured according to MMSE)

may be true, that does not mean many of those excluded ADNI

subjects are not experiencing significant physiological brain

changes/atrophy. The novel approach we next sketch is well-

suited to identifying MCI subjects undergoing such changes.

Our Neuroimaging-Driven, Trajectory-Based Approach
Here, we propose a novel approach for prognosticating putative

conversion to AD driven by image-based information (and

exploiting AD-Control examples), rather than by a single, non-

image-based, weakly discriminating clinical measurement such as

CDR. Our solution strategy is as follows. We first build an

accurate image-based Control-AD classifier ( i.e., using AD and

Control subjects, we build a Support Vector Machine (SVM)

classifier) (Vapnik, 1998). We then apply this classifier to a training

population of MCI subjects – separately, for each subject visit, we

determine whether the subject’s image is on the AD side or the

Control side of the SVM’s fixed (hyperplane) decision boundary.

In addition to a binary decision, the SVM gives a ‘‘score’’ –

essentially the distance to the classifier’s decision boundary. Thus,

for each MCI subject, as a function of visits, we get an image-

based ‘‘phenotypical’’ score trajectory. We fit a line to each

subject’s trajectory and extend the line to the sixth visit if the sixth

visit is missing. We can then give the following trajectory-based

conversion definition: if the extended line either starts on the AD side

or crosses to the AD side over the six visits, we declare this person

a ‘‘converter-by-trajectory’’. Otherwise, this person is a ‘‘non-

converter-by-trajectory’’. (A very small percentage of the MCI

population, in our experiments often 1% and not exceeding 5%,

may unexpectedly start on the AD side and cross to the Control

side. We treat these individuals as outliers and omit them from our

experiments.) In this fashion, we derive ground-truth ‘‘converter’’

and ‘‘nonconverter’’ labels for an (initially unlabeled) training MCI

population. These (now) labeled training samples bootstrap the

design of a second SVM classifier which uses only the first-visit

training set MCI images and is trained to predict whether or not

an MCI patient is a ‘‘converter-by-trajectory’’. Essentially, this

second (prognostic) classifier is predicting whether, within three

years, an AD-Control classifier will predict that a patient has AD.

Via these two classifier design steps, we thus build a classification

system for our (unconventional) pattern recognition task.

SVMs are widely used classifiers whose accuracy is attributed to

their maximization of the ‘‘margin’’, i.e. the smallest distance from

any training point to the classification boundary. Since the SVM

finds a linear discriminant function that maximizes margin, a sig-

nificant change in score is generally needed to cross from the

control side to the AD side, which is thus suggestive of conversion

from MCI to AD. This is the premise underlying our approach.

The main contributions of our work are: 1) a novel machine

learning framework for prognostication falling somewhere be-

tween traditional supervised and unsupervised learning; 2) a novel

image-based prognosticator of MCI-to-AD conversion that we will

demonstrate to achieve both better generalization accuracy and

much higher correlation with known brain region biomarkers and

with CSF-based markers than the CDR-based approach; 3)

Identification of the brain regions most critical for accurately

discriminating between our ‘‘converter’’ and ‘‘nonconverter’’

groups, via application of margin-based feature selection (MFE)

[26] to brain image classification, and demonstration of MFE’s

better performance than the well-known RFE method [27] on this

domain.

Methods

2.1 Subjects and MRI data
We used T1-weighted ADNI images (data used in the

preparation of this article were obtained from the Alzheimer’s

Disease Neuroimaging Initiative (ADNI) database (adni.loni.u-

cla.edu)) that have undergone image correction described at the

ADNI website. ADNI image correction steps include Gradwarp,

N3, and scaling for gradient drift – see www.loni.ucla.edu/ADNI/

Data/ADNI_Data.shtml. ADNI aims to recruit and follow 800

research participants in the 55–90 age range: approximately 200

elderly Controls, 400 people with MCI, and 200 people with AD.

The number of Control, MCI, and AD participants in our analy-

sis were &180, 300, and 120, respectively – experiment-specific

detailed descriptions will be provided in Sec. 3. We processed the

T1-weighted images as described in the supplemental Document

S1, producing new images from which we then obtained the

features (next discussed) used by our statistical classifiers.

MRI-Derived Definition of MCI-to-AD Conversion
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2.2 Features for classification
We chose as features the voxel intensities of a processed

RAVENS image (we describe our processing of RAVENS images

in the supplemental Document S1), a type of ‘‘volumetric density’’

image [28,29,30,31] that has been validated for voxel-based

analysis [29] and applied both to AD e.g. [4,5,13] and other

studies e.g. [32]. Of particular interest [29], supported that voxel-

based SPM statistical analysis, which we perform herein for

comparison with our methods, can be performed on RAVENS

images. For each of the three processed RAVENS tissue maps

(gray matter (GM), white matter (WM), and ventricle), to reduce

complexity for subsequent processing, we obtained a subsample by

successively skipping five voxels along each of the three

dimensions, and took as feature set the union of the three

subsampled maps. We will also report results for the case of

skipping only two voxels, rather than five.

Since high-dimensional nonlinear registration (warping) of all

individuals to a common atlas (via HAMMER [33]) is applied in

producing our features, they capture both volumetric and

morphometric brain characteristics, which is important since

individuals with AD/MCI typically exhibit brain atrophy

(affecting both volume and shape).

2.3 Classification and feature selection for high-
dimensional images

A challenge in building classifiers for medical images is the

relative paucity of available training samples, compared to the

huge dimensionality of the voxel space and, thus, to the number of

parameters in the classifier model – in general, the number of

parameters may grow at least linearly with dimensionality. In the

case of 3D images, this could imply even millions of parameter

values (e.g. one per voxel) need to be determined, based on a

training set of only a few hundred patient examples. In such cases,

classifier overfitting is likely, which can degrade generalization

(test set) accuracy. Here we will apply a linear discriminant

function (LDF) classifier with a built-in mechanism to avoid

overfitting and with design complexity that scales well with

increasing dimensionality - the support vector machine (SVM)

[34]. The choice of LDF achieving perfect separation (no

classification errors) for a given two-class training set is not

unique. The SVM, however, is the unique separating LDF that

maximizes the margin, i.e. the minimum distance to the classifier

decision boundary, over all training samples. In this sense, the

SVM maximizes separation of the two classes. For an SVM, unlike

a standard LDF, the number of model parameters is bounded by

the number of training samples, rather than being controlled by

the feature dimensionality. Since the number of samples is the

much smaller number for medical image domains, in this way the

SVM greatly mitigates overfitting. SVMs have achieved excellent

classification accuracy for numerous scientific and engineering

domains, including medical image analysis, [26,4,27].

Even though SVMs are effective at mitigating overfitting,

generalization accuracy may still be improved in some cases by

removing features that contribute little discrimination power.

Moreover, even if generalization accuracy monotonically improves

with increasing feature dimensionality, high complexity (both

computation and memory storage) of both classifier design and

class decisionmaking may outweigh small gains in accuracy

achieved by using a huge number of features. Most importantly

here, it is often useful to identify the critical subset of features

necessary for achieving accurate classification – these ‘‘markers’’

may shed light on the underlying disease mechanism. In our case,

this will help to identify prognostic brain regions, associated with

MCI conversion.

Unfortunately, there is a huge number of possible feature

subsets, with exhaustive subset evaluation practically prohibited

even for a modest number of features, M, let alone M*106.

Practical feature selection techniques are thus heuristic, with a

large range of tradeoffs between accuracy and complexity [35].

‘‘Front-end’’ (or ‘‘filtering’’) methods select features prior to

classifier training, based on evaluation of discrimination power

for individual features or small feature groups. ‘‘Wrapper’’

methods are generally more reliable, interspersing sequential

feature selection and classifier design steps, with features

sequentially selected to maximize the current subset’s joint

discrimination power. There are also embedded feature selection

methods, e.g. for SVMs, use of ‘1-regularization within the SVM

design optimization [36], in order to find ‘‘sparse’’ weight vector

solutions, which effectively eliminate many features. For wrappers,

there is greedy forward selection, with ‘‘informative’’ features

added, backward elimination, which starts from the full set and

removes features, and more complex bidirectional searches. In our

work, due to the high feature dimension, we focus on two

backward elimination wrappers that afford practical complexity: i)

the widely used recursive feature elimination algorithm (RFE)

[27], where at each step one removes the feature with least weight

magnitude in the SVM solution. RFE has been applied before to

AD [4,5,13]; ii) the recent margin-based feature elimination (MFE)

algorithm [26], which uses the same objective function (margin)

for feature elimination, one consistent with good generalization,

that the SVM uses for classifier training [34]. MFE was shown in

[26] to outperform RFE [27] and to achieve results comparable to

embedded feature selection for domains with up to 8,000 features

(gene microarray classification). Here we will also find that MFE

gives better results than RFE.

2.4 An MRI-Derived Alternative to CDR-based MCI-to-AD
Conversion

In the Introduction, we outlined our two classifier design steps

for building an automatic prognosticator for an individual with

MCI. In this section, we elaborate on these two steps and give an

illustrative example. Our AD-Control classifier, used in the first

step, is discussed in Sec. 2.4.1, and our second classifier, used to

discriminate converter-by-trajectory (CT) and nonconverter-by-

trajectory (NT) classes, is discussed in Sec. 2.4.2.

2.4.1 AD-Control classifier. For the AD training popu-

lation, we chose individual AD visit images with a CDR score of at

least 1. For the Control training population, on the other hand, we

only chose initial visits, and only those for participants who stayed

at CDR = 0 throughout all their visits. Thus, we excluded Controls

with ‘‘questionable dementia’’ (i.e., CDR = 0.5) at any visit. By

these choices, we sought to exclude outlier examples or even

possibly any mislabeled examples, recalling that CDR for the

majority of both AD and MCI participants is 0.5 throughout all

visits.

2.4.2 CT-NT classifier. Fig. 1 gives an illustrative example

of the phenotypical score trajectories for MCI subjects, as

described in the Introduction. A positive score is on the Control

side and a negative score is on the AD side – the x-axis represents

the AD-Control SVM’s decision boundary. Score vs. age is

plotted, with each line segment a trajectory obtained by linearly

fitting an individual’s phenotype scores (and linearly extrapolating

if there are missing visits). Nonconverters-by-CDR (N-CDR) and

converters-by-CDR (C-CDR) are illustrated in (a) and (b),

respectively. Green and black subjects are those whose fitted

trajectory stayed on the Control side and AD side, respectively,

whereas gray lines are subjects who crossed to the AD side. Thus,

by our conversion-by-trajectory definition, the green group is the

MRI-Derived Definition of MCI-to-AD Conversion
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nonconverters-by-trajectory, and the black and gray groups

together are the converters-by-trajectory. Subject counts for

these groups are given in the figure legends. The outlier subjects

are shown in orange – there are five, making up less than 2% of

the MCI cohort. Notice, intriguingly, from the left figure that

more than one third of all (non-orange) MCI patients (106 of 298)

are converters by trajectory and yet nonconverters according to

CDR – i.e., there is a very large percentage of patients for which

the two converter definitions disagree, with the neuroimage-based

definition indicating disease state changes that are not predicted

using the clinical, CDR-based definition. Likewise, an additional

3% of all MCI subjects (11 of 298) ‘‘defy’’ their by-CDR converter

label in that they do not reach the AD side of the decision

boundary.

Based on these trajectories, i.e. whether or not the AD side is

visited, we derive the ground-truth ‘CT’ and ‘NT’ labels for all

MCI subjects. We then build a CT-NT classifier using as input only

the image scans at initial visit. (For a small percentage of the MCI

subjects, we did not obtain the patient’s first visit. However, we did

ensure that the visit we took as the ‘‘initial visit’’ had a CDR of

0.5.)

Before continuing, we note that the reader may reasonably

wonder why, rather than our converter definition and associated

two-stage classifier design, we do not simply directly apply the

Control-AD classifier to an MCI’s baseline visit image, and declare

the patient a converter if the image is classified ‘‘AD’’ and a

nonconverter, otherwise. There are several answers to this query.

First, there is no longitudinal ground-truth for MCI subjects that

can be derived for this alternative converter definition. Thus, one

cannot evaluate this definition with respect to Desideratum 2

(generalization accuracy). Second, recall that our objective is 3-

year ahead prognosis, not diagnosis. If nearly all of the MCI

converters do actually convert at first visit, then our by-trajectory

conversion definition would in practice be equivalent to this

simpler, alternative definition. We have investigated this: from a

population of 284 MCIs, there are 159 MCI converters-by-

trajectory. Of these 159, 105 do in fact convert at first visit (an AD-

Control classifier classifies the baseline visit as ‘‘AD’’). But this

means that more than one third of MCI converters-by-trajectory

convert after the first visit, and these converters would be missed by

the simpler definition. Essentially, the difference ‘‘in practice’’

between our proposed definition, and one which simply directly

applies the Control-AD classifier to the baseline visit is quite a few

more (more than one third of the total) by-trajectory converters.

Results and Discussion

3.1 Introductory overview
In this section we will perform 1) classification experiments to

evaluate conversion-by-trajectory and conversion-by-CDR with

respect to desideratum 2; 2) additional experiments to compare the

two definitions with respect to desideratum 3; and lastly, 3)

experiments to identify prognostic brain ‘‘biomarker’’ regions.

It is important to mitigate the potential confounding effect of the

subject’s age. In our classification experiments, we mitigated in

two ways:

1) For every classifier training, each training sample in one class

was uniquely paired via ‘‘age-matching’’ with a training

sample in the other class (with age separation at most one

year).

2) For every linear-kernel SVM classifier, we separately adjusted

each feature for age prior to classification using linear fitting.

We subtracted the extrapolated line (computed only using

‘control’’ samples – for the AD-Control classifier, these are

the samples in the Control class and for the CT-NT classifier

we computed the line using only the NT samples) from the

feature’s value, for all (training and test) samples. As an aside,

we note that, given the subsequent linear SVM operation,

this linear fitting step is essentially equivalent to simply

treating age as an additional feature input to the linear SVM

classifier.

Finally, prior to building classifiers, we normalized feature

values to the [0,1] range, which is suitable for the LIBSVM

software [37] we used for training SVMs.

3.2 Experiments with voxel-based features
The test set (generalization) accuracy of the voxel-based AD-

Control classifier, built using 70 training samples per class, was

Figure 1. AD-Control SVM score trajectories for MCI subjects. (a) Nonconverters-by-CDR. (b) Converters-by-CDR.
doi:10.1371/journal.pone.0025074.g001
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0.89 (86 of 88 Controls, and 16 of 27 AD subjects, were correctly

classified.) This classifier, with high specificity for Controls, was

then applied to a population of MCI subjects to determine the CT

and NT subgroups.

3.2.1 Classification experiments for the MCI population.

Fig. 2(a) shows the sizes of the converter-by-CDR (C-CDR) and

nonconverter-by-CDR (N-CDR) groups within the ADNI MCI

cohort for a typical experiment in our work. Fig. 2(b) shows the

same population broken up as converters-by-trajectory (CT) and

nonconverters-by-trajectory (NT). Superimposing the two charts,

Fig. 2(c) illustrates their overlap, where converters by both definitions

are accordingly indicated by orange. Since converters-by-CDR are

relatively scarce, we used a large majority of them (80%, i.e. 39

individuals among the 48) for the by-CDR classifier’s training set,

with the rest (20%) put into the test set. We reiterate that a general

disadvantage of the by-CDR approach is its scarcity of converter

examples – by contrast, a more balanced number of examples is

available for by-trajectory training (at least 100, rather than 39,

training samples per class, as in Fig. 2(b)). Note also that if we were to

use a ‘‘probable AD’’, rather than a by-CDR converter definition,

where converters are required to have undergone both CDR and

MMSE changes, there would necessarily be even fewer converter

examples, which makes ‘‘probable AD’’ even less attractive than by-

CDR from the standpoint of having an adequate sample for classifier

training and testing. This also raises the possibility of an alternative

clinically-based definition, based on a logical OR-ing of CDR-based

and MMSE-based conversions, i.e. where a converter must either have

undergone CDR change or MMSE changes (or both). One difficulty

here is how to define MMSE-based conversion. In [13] MMSE

scores were averaged over all visits in order to reduce noise. One can

accordingly then define MMSE-based conversion if a subject’s

MMSE score, averaged over all visits, falls below a given threshold.

The average MMSE score over all MCI subjects is 25.85. To assess

the number of additional cognitive score-based converters one could

obtain by considering MMSE, we varied a threshold on the average

MMSE score, evaluating at cutoffs of 24, 23, and 22, and finding that

the additional number of converters declared in this way were 55, 35,

and 22, respectively. Thus, especially for an MMSE cutoff of 24, one

can obtain a significant number of extra converters using MMSE in

addition to CDR. However, it is unclear what is in fact a proper

choice for the MMSE threshold – simply choosing a threshold at 24

because this leads to more converters is somewhat arbitrary, without

a strong objective basis. Accordingly, in the sequel, for evaluating

clinically-based conversion, we will only experimentally evaluate

by-CDR conversion, as used in [4,5,13]. Specification of a princi-

pled combined CDR and MMSE-based conversion definition and

validation of such a definition is a good subject for future work.

A fair performance comparison between by-trajectory and by-

CDR classification requires: 1) using the same per-class training set

size (i.e. 39) for both by-CDR and by-trajectory training, and 2)

making the test set sizes the same for both classifiers. There are

several different ways in which the data can be partitioned into

training and test sets, consistent with these two conditions: i) we

can perform simple random selection on a class-by-class basis,

ensuring only that the two classifiers are given the same training/

test set sizes (but not the same sets) – note that this means that the

training sets for the converter and nonconverter classes of the

conversion-by-CDR classifier are randomly selected from the

yellow and white regions in Fig. 2(a), respectively, with no

consideration of trajectory-based (i.e. red/white) labeling illustrat-

ed in Fig. 2(b); ii) we can make the training sets of the two

classifiers identical rather than merely same-sized, as well as make the

test sets identical. This latter approach, though, will have some

bias because, in selecting samples for the by-trajectory classifier,

we will have to make use of knowledge of the samples’ conversion-

by-CDR status (and vice versa for the by-CDR classifier). The first

approach, on the other hand, clearly does not have this bias. As

both approaches are valid ways of dealing with by-CDR data

limitations, we will compare generalization accuracies of by-CDR

and by-trajectory classifiers under both these data selection

schemes, respectively, referring to these approaches as ‘‘random’’

and ‘‘identical’’ in the sequel.

Our training/test set selection procedure for the ‘‘identical

approach’’ is as follows. For the C-CDR-CT group (Fig. 2(c)),

randomly select 80% of the group (the yellow striped group of size

30 in Fig. 3(a)) such that a corresponding group within N-CDR

(white portion in Fig. 2(a)) can be found that is both NT and

satisfies age-matching. This corresponding group is illustrated in

Fig. 3(a) as the white striped group (of size 30), placed opposite

from the yellow striped area it is paired (matched) with. Likewise

for the C-CDR-NT group (Fig. 2(c)), randomly select 80% of the

group (the yellow striped group of size 9 in Fig. 3(a) such that a

corresponding group within N-CDR can be found that is both CT

and satisfies age-matching. This corresponding group is illustrated

in Fig. 3(a) as the white striped group (of size 9). Notice by

comparing this figure to Fig. 2(c) that the two white striped areas

are separated by the CT-NT border. We take the training set –

shared by the by-CDR and by-trajectory classifiers – to be

precisely the union of these four striped areas. (For the by-CDR

classifier, the class membership of any of these four subsets of the

training set is illustrated by the color being yellow or white in

Fig. 3(a). Likewise, for the by-trajectory classifier, class member-

ship is illustrated by red or white color in Fig. 3(b).) Subse-

quently, we take the test set – shared by the two classifiers – to be

Figure 2. A population of 298 MCI subjects in ADNI is shown here, broken up according to the two criteria discussed in Sec. 3.2.1:
(a) by-CDR criterion, (b) by-trajectory criterion; (c) overlap shown.
doi:10.1371/journal.pone.0025074.g002
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the subjects who are neither in 1) the training set (striped areas) nor

in 2) the special set of subjects shown in solid gray in Fig. 3(a) (also

shown identically in Fig. 3(b)). We exclude this ‘‘special set’’ (in

gray) from the test set so that all our experiments under the

‘‘identical approach’’ can have a shared, fixed test set (for fair

comparison with each other), including, crucially, an experiment

that will include this ‘‘special set’’ of samples in the training set. That

is, the test set is the tiled areas in Fig. 3(a) (or, identically, in

Fig. 3(b)).

Note above that some random selection is being employed in

choosing the training/test sets even in the ‘‘identical approach’’

(whereas, in the ‘‘random approach’’ the selection is completely

random). Thus, for both approaches, the accuracy of performance

comparison will benefit from averaging accuracy results over

multiple training/test split ‘‘trials’’, where the training and test sets

will vary from trial to trial based on the random selection that is

built into the data selection procedure (for both the ‘‘random’’ and

‘‘identical’’ approaches). This essentially amounts to a bootstrap

procedure, which aims to work with a finite (limited) amount of

data and, at the same time, both build accurate models and

accurately assess the model’s generalization accuracy [38]. Results

averaged across 10 trials are given in Table 1 for a linear-kernel

Figure 3. Test set accuracy comparison of by-CDR and by-trajectory classification. (a) Training/test set selection for by-CDR classification.
(b) Training/test set selection for by-trajectory classification. (c) By-trajectory. Left: nonconverters; Right: converters. (d) By-CDR. Left: nonconverters;
Right: converters.
doi:10.1371/journal.pone.0025074.g003
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SVM (for generating all classification results herein, including

those in Table 1, we used SVM classifiers that were built by

employing the common approach of bootstrap-based validation

for selecting the classifier’s (trial’s) hyperparameter values [26]);

m+s notation is used to indicate the mean m and standard

deviation s of quantities across the trials, which are shown

rounded up. Note that by-trajectory’s generalization performance

is as high as 0.83, whereas by-CDR’s generalization performance

is very poor – as poor as random guessing (see 0.5 and 0.56 table

values) – due mainly to poor performance on nonconverters-by-CDR.

Fig. 3(c) and Fig. 3(d) show by-trajectory and by-CDR results,

respectively, for one of the 10 trials (for the ‘‘random approach’’),

with each bar indicating distance to the classification boundary for

an MCI subject in a test population of size 88 and nonconverters/

converters shown in left/right figures, respectively. Positive/

negative distance means nonconverter/converter side of the

boundary, respectively. Among the 88 subjects, by-trajectory

correctly classified 79 whereas by-CDR correctly classified only

40.

Recently, similarly poor by-CDR classification performance was

also reported in [4], where it was found that the majority of (by-

CDR) nonconverters ‘‘had sharply positive SPARE-AD scores

indicating significant atrophy similar to AD patients’’. Since the

SPARE-AD score is produced by a classifier that was trained to

discriminate Control and AD patients [32,16], this comment and

associated results are consistent both with our conjecture in the

Introduction and our above histogram results, which suggest that

there may be a significant number of patients undergoing

physiological brain changes consistent with conversion, yet without

clinical manifestation.

The results above indicate that the conversion-by-CDR

definition’s two classes are not well-discriminated, and thus,

clinical usefulness of this definition for our prognostic Aim is

expected to be poor. The much greater generalization accuracy of

the by-trajectory definition (coupled with its inherent plausibility as

a conversion definition) indicates its greater utility.

Increasing the By-Trajectory Image-Based Feature Resolution: In a

separate experiment, we evaluated using one of 27 subsamples

(rather than one of 216 subsamples), i.e. a *10-fold increase in the

number of (voxel-based) features, and found that the by-trajectory

generalization accuracy rose to 0.91 in the ‘‘random’’ case. We

then tried building 27 separate by-converter classifiers, one for every

1/27th subsample (thus effectively using the whole 3D image),

with majority-based voting used to combine the 27 decisions. This

ensemble scheme again achieved 0.91 accuracy, i.e. there was no

further accuracy benefit beyond that from a *10-fold increase in

the number of voxel features.

Increasing the By-Trajectory Training Set Size: Note that the

converter-by-CDR sample scarcity and class-balancing (via age-

matching) in the experiments above had the effect of artificially

limiting the by-trajectory classifier training set size. Next we

investigated how much the generalization accuracy of by-

trajectory classification improves when this limitation is removed.

The tiled areas in Figures 3(a) and 3(b) are identical, illustrating

that in this new experiment (Fig. 4 and Table 2) we used the same

test set as previously, for fairness of comparison. However, as

indicated by differences in the total striped area between these two

charts, we now make the training set much larger than previously.

Specifically, for the ‘‘identical’’ case, we used the previous 10 trials

but simply augmented a trial’s training set with the two large,

previously-excluded gray sets, shown in Fig. 3(b), with size 60, as

these two sets do age-match each other. The results, averaged

across the 10 trials, are given in Table 2. Notice in this figure the

now larger per-class training size (on average &100 rather than

39), and that the random approach uses this size as well. The by-

trajectory results in Table 2 indicate that accuracy improved from

0:78+0:02 (Table 1) to 0:84+0:02 for the ‘‘identical approach’’,

and modestly worsened for the ‘‘random approach’’ (from

0:83+0:05 to 0:82+0:01).

A Definition Based on Both Neuroimaging and Clinical Change: We now

consider a third definition of conversion that combines the first

two definitions as follows. Let ‘‘converters’’ consist of individuals

who converted either by-trajectory or by-CDR (non-white areas

in Fig. 2(c)), with the ‘‘nonconverter’’ class consisting of the

remaining MCI individuals (white area). We give two points of

view on this new definition, ‘‘conversion-by-union’’. First, despite

the disadvantages with CDR and MMSE pointed out in sections 1

and 2 of this paper, our strictly neuroimaging-based by-trajectory

definition is not using any clinical information in defining the

phenotype, i.e. psychological effects are not being taken into

account. Second, this ‘‘union’’ definition is more inclusive in

defining an MCI subpopulation at risk, which may benefit from

early treatment or diagnostic testing. While from that perspective

the new definition is reasonable, the fact that grouping individuals

by CDR has a role in this definition may be its disadvantage,

considering that by-CDR classification was previously shown to

perform not much better than random guessing. Results, averaged

across the same 10 trials used in Fig. 3, are given in Table 3 and

indicate that conversion-by-union generalizes somewhat worse

than conversion-by-trajectory. Note that ‘‘by-union’’ is, by

definition, an instance of the ‘‘identical approach’’. To ensure

fairness of comparison with the by-trajectory definition of

conversion, our test sets, and training set sizes, in these two cases

were identical. In fact, we chose the by-union training set to be as

Table 1. Test set accuracy comparison of by-CDR and by-trajectory classification: Average test set classification accuracy using all
11,293 features.

Sample Classifier Test set

selection Converters Nonconverters Overall

Count Accuracy Count Accuracy accuracy

Random By-trajectory 46+1 0:81+0:06 45+1 0:84+0:05 0:83+0:05

approach By-CDR 9+1 0:79+0:07 82+2 0:47+0:04 0:50+0:04

Identical By-trajectory 45+1 0:78+0:04 47+2 0:78+0:04 0:78+0:02

approach By-CDR 9+1 0:74+0:11 82+2 0:54+0:04 0:56+0:04

doi:10.1371/journal.pone.0025074.t001
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similar to by-trajectory’s, in every trial, as possible. Referring to

Fig. 3(b) (which represents a trial example), the by-union training

set was chosen to include 1) the two large striped groups (red and

white); 2) the small ‘‘special’’ gray group (of size seven in this trial

example) and its age-matched counterpart within small white-

striped group, and; 3) a subset of the second small ‘‘special’’ gray

group (two of five individuals in this trial example) and its age-

matched counterpart within the small red-striped group. We do

not further evaluate ‘‘conversion-by-union’’ here. We do, however,

identify ‘‘optimal’’ definition of a multidimensional phenotype and

associated conversion, based on neuroimaging, multiple cognitive

measures ( e.g., CDR and MMSE), genetic markers, and CSF

markers (if routinely measured) as a good direction for future work.

3.2.2 Validation on Known AD Conversion Biomark-

ers. To validate the proposed conversion definitions with respect

to desideratum 3, we performed correlation tests on

the MCI population between the binary class variable

C[f0~no conversion, 1~conversiong and known AD

conversion biomarkers consisting of: 1) volume in reported AD-

affected regions (Table 2 in [11]), which we measured for each

individual’s final-visit MRI (As discussed in the supplemental

Document S1, we measured normalized region volume. Note also

that our regions are defined based on the atlas (Atlas2) we used. The

correspondence between the regions in [11] and our defined regions is

given in Table 4. Finally, note that a subject’s final visit is not always

the sixth visit.); 2) the following CSF-based markers, as considered

previously in [12]: tau, p-tau, Ab1-42; and 3) the clinical MMSE

measure. The stronger the correlation, the more accurately the

biomarker is predicted from the class variable and the greater the

separation between the biomarker histograms, conditioned on the two

classes. In particular, we would expect that a good converter definition

should have statistically significant correlation between its class

variable and region volume at final visit for known marker regions

such as the hippocampus. We note, however, that for measuring

correlation between the by-trajectory class label C and the final-visit

MRI-derived region volume biomarkers, some care is required to

avoid statistical bias. In particular, note that the by-trajectory label is

obtained by applying the Control-AD classifier to each visit’s MRI,

with conversion declared if any of the visits (including the final one) is

classified as ‘‘AD’’. Since the final visit is also used to measure the

region volume biomarkers we will use to validate the by-trajectory

labels, this ‘‘dual use’’ of the final visit would be a source of bias. There

are 22 MCI subjects that by-trajectory convert only at the final visit.

To avoid bias in validating the by-trajectory approach, we excluded

these 22 subjects from brain region-volume based statistical validation

of the by-trajectory definition. The full MCI population (including

these 22 subjects) was used in all our other validation testing.

Before presenting correlation test results, we first illustrate in

Fig. 5 the increased separation of the histograms of hippocampus

volume for the converter and nonconverter groups in the by-

trajectory case, compared with by-CDR. Next, we performed

comprehensive statistical tests for a number of suggested AD

biomarkers. The R statistical computing package was used to

perform all tests with statistical significance set at the 0.05 level. In

Table 5a, the correlation coefficients for by-trajectory and by-

CDR are shown for each biomarker, along with their associated p-

values [39]. Note that for 10 out of 14 brain regions, the

correlation with by-trajectory is greater than the correlation with

by-CDR (in bold), with by-trajectory meeting the significance

threshold in 9 of these 10 regions. Further, for only two of the

remaining four biomarkers - posterior cingulate and the clinical

MMSE measure - does the correlation with by-CDR meet the

significance threshold. Most notably, well-established markers for

AD such as the hippocampus, lateral ventricles, and inferior

parietal exhibited strong correlation with the by-trajectory

definition. To further assess statistical significance of the comparison

between by-trajectory and by-CDR correlations, we performed a

correlated correlation test [40], the appropriate test given that the same

MCI sample population (excepting 22 excluded subjects for the

by-trajectory brain region volume tests) was used in measuring

correlations for both by-CDR and by-trajectory. This test

(Table 5b) reveals that the larger correlation of by-trajectory is

statistically significant at the 0.05 level in six brain regions (in

bold), most notably the hippocampus, with a very low p-value

(2.16e-10). By contrast, conversion-by-CDR does not achieve a

statistically significant advantage for any of the brain regions, nor

with respect to MMSE.

Statistical testing results for the CSF markers are shown in

Table 6. As seen in the table, by-trajectory has larger correlation

Figure 4. Training/test set selection for by-trajectory, consid-
ering a larger training set size (98+1 per class) and 11,293
features.
doi:10.1371/journal.pone.0025074.g004

Table 2. By-trajectory average test set classification accuracy for the larger training set size (98+1 per class) and 11,293 features.

Sample Test set

selection Converters Nonconverters Overall

Count Accuracy Count Accuracy accuracy

By-trajectory Random 45+1 0:77+0:01 47+2 0:86+0:02 0:82+0:01

Identical 45+1 0:85+0:03 47+2 0:83+0:05 0:84+0:02

doi:10.1371/journal.pone.0025074.t002
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with tau and Ab1-42 than by-CDR conversion. Moreover, for by-

trajectory, these correlations are statistically significant. However,

the correlated correlation test did not indicate that the comparison of

correlations reached a statistically significant level. Correlations

with p-tau were comparable for the two conversion definitions.

To summarize, testing on both brain region and CSF-based

markers validates that by-trajectory is more consistent with

conversion to AD than the by-CDR definition.

3.2.3 Identification of prognostic brain ‘‘biomarker’’

regions. In the previous section, we validated conversion

definitions using established (diagnostic) AD biomarker brain

regions (with volumes measured at final visit). In this section, we

will identify key prognostic biomarker brain regions (from the baseline

visit image) via supervised feature selection, aiming first to identify

the ‘‘essential’’ subset of voxel features, i.e. the voxels (at initial

visit) necessary for our classifier to well-discriminate the CT and

NT classes. The brain regions (consistent with a registered brain

atlas) within which these select voxels principally reside then

identify our prognostic brain biomarker regions. Similarly, we will

identify diagnostic regions, critical for discriminating between AD

and Control subjects (using our AD-Control classifier). In both

cases, the accuracy of the selected brain region biomarkers rests

heavily on the accuracy of the supervised feature selection

algorithm we employ. In Figure 6, we compare MFE and RFE

feature elimination (i.e. feature selection via feature elimination)

for both Control-AD classification and for CT-NT classification

(for one representative, example trial). The curves show test set

accuracy as a function of the number of retained features (which is

reduced going from right to left). Note that the ‘‘MFE/MFE-

slack’’ hybrid method [26]) outperforms RFE for both brain

classification tasks, achieving lower test set error rates, and with

much fewer retained features. The circle, determined without use

of the test set based on the rule in [26], marks the point at which

we stopped eliminating features by MFE, thus determining the

(trial’s) retained voxel set. This MFE-RFE comparison (and the

previous comparison in [26]) supports our use of MFE to

determine brain biomarkers.

To relate the retained voxel set to anatomic regions in the brain,

we overlaid the retained voxel set onto a registered atlas space. For

CT-NT classification, to improve robustness, the final voxel set

was formed from the union of the retained voxel sets from each of

ten feature elimination trials (each using a different, randomly

selected training sample subset). For AD-Control classification, the

final voxel set came from a single trial (the only trial, from which

the 10 CT-NT trials stemmed). For each of these two cases,

overlaying the final voxel set onto the co-registered atlas (Atlas2,

defined in the supplemental Document S1) yielded between

70–80 anatomic regions. For data interpretation purposes, we then

identified a subset of (biomarker) regions using the following

procedure. First, for each brain region, we measured the

percentage of the region’s voxels that are retained, sorted these

percentages, and then plotted them. As shown in Fig. 7(a), the

resulting curve for the AD-Control case has a distinct knee, which

we thus used as a threshold (0.125) to select the final, retained

Table 3. Average test set accuracy of by-union classification for 39+1 per-class training samples and 11,293 features.

Sample Test set

selection Converters Nonconverters Overall

Count Accuracy Count Accuracy accuracy

By-union Identical 48+1 0:78+0:05 44+2 0:75+0:06 0:77+0:03

doi:10.1371/journal.pone.0025074.t003

Table 4. Correspondence between the regions in [11] (left)
(except ‘‘Total GM’’ and ‘‘Total WM’’) and our defined regions
(right).

Entorhinal cortex Entorhinal cortex left/right

Fusiform gyrus Lateral occipitotemporal gyrus right/left

Hippocampus Hippocampal formation right/left

Inferior parietal GM Supramarginal gyrus left/right, Angular gyrus right/left

Lateral orbitofrontal GM Lateral front-orbital gyrus right/left

Lateral ventricles Lateral ventricle left/right

Medial orbitofrontal GM Medial front-orbital gyrus right/left

Parahippocampal gyrus Parahippocampal gyrus right/left

Posterior cingulate Cingulate region left/right

Precentral GM Precentral gyrus right/left

Superior frontal GM Superior frontal gyrus left/right

Superior temporal GM Superior temporal gyrus right/left

doi:10.1371/journal.pone.0025074.t004

Figure 5. For the hippocampus, by-trajectory (red) has larger
histogram separation between converter (dashed line) and
nonconverter (solid line) groups than by-CDR (blue). To illustrate
this more clearly, also shown is the Gaussian curve for each of these
four subject groups (plotted based on group mean (m) and standard
deviation (s) indicated in the figure legend with the same 0.001 scaling
as the x-axis).
doi:10.1371/journal.pone.0025074.g005
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(diagnostic) regions for AD-Control. We used the same threshold

for the CT-NT curve, shown in Fig. 7(b). This choice of threshold

yields a reasonable number of regions – 19 for the CT-NT

(prognostic) case and 21 for the AD-Control (diagnostic) case.

The resulting sets of identified prognostic and diagnostic

biomarkers are given in Table 7, along with their intersection.

The diagnostic markers in the table include the majority of the

known brain regions in the medial temporal lobe involved in AD

pathology. For example, hippocampus atrophy and lateral

ventricle enlargement, particularly in its anterior aspects of the

temporal horn, are considered the most prominent diagnostic

markers for AD. Entorhinal cortical regions, including the

perirhinal cortex, are presumably the earliest sites of degeneration

[41]. Thus, independent identification by our AD-control classifier

of known AD diagnostic biomarkers establishes a reasonable basis

for applying the same approach to identify prognostic biomarkers.

The brain regions listed as CT-NT prognostic markers include

most known AD diagnostic markers (including 8 of the 12 regions

from [11] (marked by *), 4 of which are also diagnostic markers),

indicating that some AD-linked pathological changes in these

brain regions already occurred and remained active in a subset of

MCI subjects who likely progress to AD rapidly. Conversely, the

brain areas appearing only on the prognostic marker list are likely

the most active areas of degeneration during this stage of

progression to dementia. These structures tend to be the brain

regions further away from the entorhinal cortex onto the parietal

(Supramarginal gyrus, Precuneus) and temporal cortex (Superior

temporal gyrus and Middle temporal gyrus) regions. All the brain

structures listed in the table are known to be involved in AD

[41,42,43]. Thus, the markers in Table 7 suggest an interesting

anatomic pattern of trajectory for MCI conversion to AD which

conforms with the Brak and Brak hypothesis and previous imaging

Table 5. Correlation coefficients and associated p-values: (a) Correlation test results; (b) Correlated correlation test results for each
of the regions in (a).

(a) (b)

By-trajectory By-CDR

Correlation P-value Correlation P-value P-value

Biomarker coefficient coefficient

Entorhinal cortex 0.180 3.14E-03 0.054 0.382 0.092

Fusiform gyrus 0.262 1.45E-05 0.157 0.010 0.154

Hippocampus 0.645 2.00E-16 0.245 4.99E-05 2.16E-10

Inferior parietal GM 0.249 3.72E-05 0.097 0.112 0.042

Lateral orbitofrontal GM 0.064 0.300 0.113 0.064 0.507

Lateral ventricles 0.452 6.76E-15 0.194 0.001 2.18E-04

Medial orbitofrontal GM 0.083 0.173 0.137 0.025 0.476

Parahippocampal gyrus 0.311 2.09E-07 0.063 0.305 7.75E-04

Posterior cingulate 0.026 0.666 0.164 0.007 0.067

Precentral GM 0.055 0.372 0.089 0.145 0.647

Superior frontal GM 0.240 7.37E-05 0.116 0.057 0.096

Superior temporal GM 0.325 4.99E-08 0.170 0.005 0.003

Total GM 0.404 6.34E-12 0.260 1.60E-05 0.039

Total WM 0.102 0.094 0.066 0.282 0.628

MMSE 0.343 8.16E-09 0.438 5.84E-14 0.159

Statistically significant results are shown in bold.
doi:10.1371/journal.pone.0025074.t005

Table 6. Correlation coefficients and associated p-values: (a) Correlation test results; (b) Correlated correlation test results for each
of the CSF biomarkers in (a).

(a) (b)

By-trajectory By-CDR

Correlation P-value Correlation P-value P-value

CSF Biomarker coefficient coefficient

Tau 0.169 0.0457 0.119 0.159 0.624

Ptau-181 0.159 0.0604 0.153 0.0698 0.957

Ab42 0.255 2.25E-3 0.092 0.278 0.104

Statistically significant results are shown in bold.
doi:10.1371/journal.pone.0025074.t006
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findings [42,43]. Moreover, the CT-NT regions uniquely found by

our MFE-based procedure in Table 7 may be viewed as ‘‘putative’’

prognostic markers, and may warrant further investigation.

Finally, we note that we have used a particular criterion

(percentage of a region’s voxels that are retained) to identify

biomarker regions, starting from MFE-retained voxels. While our

identified regions are plausible, it is possible that other (equally

plausible) criteria may produce different biomarker region results.

Thus, the biomarkers we identify should be viewed as anecdotal,

identifying regions that figure prominently in our classifier’s

decisionmaking and also potentially assisting researchers in

forming hypotheses about MCI-to-AD disease progression.

However, we do not view the identified regions as definitive.

3.2.4 Comparison with an SPM-based biomarker

identification approach. In the previous section, we used

MFE to identify voxels as biomarkers for the CT and NT classes.

Here, using the same CT-NT training and test populations, we

will alternatively identify voxel-based biomarkers using statistical

testing with SPM5 (see: [44]). Subsequently we will present a

classifier generalization accuracy comparison (where accuracy is

again measured on the previous section’s CT-NT (test) population)

for these two biomarker detection methods. We determined SPM

biomarkers as follows. The CT-NT training set population, being

age-matched, is readily suitable for a paired t-test, an appropriate

statistical test for determining SPM-identified biomarkers, i.e.

voxels that discriminate between the CT and NT groups. In

contrast with MFE’s use of only one (out of 216) RAVENS

subsamples (taken jointly from the GM, WM, ventricle maps), we

performed t-tests on whole RAVENS maps (without

subsampling), which makes the SPM-MFE comparison

Figure 6. Test set misclassification rate during the course of feature elimination for: (a) the AD-Control classifier and (b) the CT-NT
classifier.
doi:10.1371/journal.pone.0025074.g006

Figure 7. Sorted retained voxel percentages for initial regions used to select final regions (Sec. 3.2.3): (a) AD-Control; b) CT-NT.
doi:10.1371/journal.pone.0025074.g007
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favorably biased towards SPM. More specifically our steps were

as follows. First, for the GM and WM maps separately, we

found using SPM that a large portion of each of these two tissues

was statistically significant at the 0.05 level when correction for

multiple comparisons was not applied. Next, we used SPM’s

FDR-based correction for multiple comparisons – based on an

SPM FDR cluster size of 5 voxels we found that the spatial

extent of the statistically significant regions, at each of the levels

0.05, 0.01, and 0.005, was approximately a subset of the above-

mentioned spatial support found in the uncorrected case. Given

that the number of significant voxels in any of these SPM

experiments is, again due to no subsampling, much larger than

the 11,293 voxels started from in the MFE case, we simply 1)

chose as our SPM result the result for 0.01 (FDR-corrected), 2)

took from among those significant voxels the most significant

11,434 voxels in order to be able to compare MFE and SPM

for&the same number of voxels (biomarkers). To obtain the

generalization accuracy for this SPM-identified biomarker voxel

set, using the same training/test set as in the MFE experiment,

we trained an SVM classifier and measured its generaliza-

tion accuracy, which was found to be 0.76. This accuracy is

somewhat lower than the 0.8 accuracy of the previous section’s

CT-NT SVM classifier. Recalling that this comparison is

actually favorably biased towards SPM, and further noticing

the fact that MFE was able to maintain the 0.8 accuracy all

the way down to 2000 features (cf. Fig. 6(b)), this experi-

mental comparison provides another validation (beyond

the comparison with RFE given earlier) for MFE-based

feature/biomarker selection, applied to brain images.

Conclusions
We have presented an automated prognosticator of MCI-to-AD

conversion based on brain morphometry derived from high

resolution ADNI MR images. The primary novel contributions of

our work are: i) casting MCI prognostication as a novel machine

learning problem lying somewhere between supervised and

unsupervised learning; ii) our proposal of a conversion definition

which, unlike previous methods, exploits both rich phenotypical

information in neuroimages and AD and control examples; iii)

correlation testing and classifier accuracy evaluations to validate

candidate conversion definitions; iv) prognostic brain region

biomarker discovery based on our conversion definition. We

demonstrated that our method achieved both better generalization

accuracy and stronger, statistically significant, correlations with

known brain region biomarkers than a predictor based on the

clinical CDR score, the approach used in several past works. Our

method also achieved higher correlation with CSF markers than

CDR-based conversion. The brain structures identified as AD-

control diagnostic markers and MCI conversion prognostic

markers well conform with known brain atrophic patterns and

progression trajectories occurring in AD-afflicted brains. While the

noisy nature of cognitive assessments, including MMSE, has been

acknowledged in past works, in future, in order to exploit all

relevant information sources, we will aim to extend our

methodology to consider multiple cognitive assessment measures,

both potentially as additional (baseline) input features and as

additional phenotypical prediction targets to our ‘‘conversion-by-

trajectory’’ labels. We may also consider alternative ways to adjust

for confounding effects of age, noting that [11] has characterized

the nonlinear dependence of age on brain region volumes. While

we have focused on the MCI subpopulation here, our system could

also potentially be used to detect, as possible misdiagnoses, subjects

diagnosed as ‘‘Control’’ who are classified as MCI converters by

our system. Finally, we may consider the important, allied problem

of Control-to-MCI prognostication.
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Table 7. Brain regions identified as biomarkers using voxel-based features and MFE.

AD-Control classifier only intersection CT-NT classifier only

Amygdala left Hippocampal formation* left Superior temporal gyrus* left

Cingulate region right Hippocampal formation* right Middle temporal gyrus left

Entorhinal cortex right Entorhinal cortex* left Precuneus right

Inferior occipital gyrus right Inferior temporal gyrus right Lateral front-orbital gyrus* right

Medial occipitotemporal gyrus left Lateral occipitotemporal gyrus* right Insula right

Parahippocampal gyrus left Parahippocampal gyrus* right Supramarginal gyrus* left

Temporal lobe WM right Perirhinal cortex left Temporal lobe WM left

Temporal pole right Perirhinal cortex right Temporal pole left

Middle temporal gyrus right Medial front-orbital gyrus* left

Uncus left

doi:10.1371/journal.pone.0025074.t007
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