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Abstract

The recent development of the Sleeping Beauty (SB) system has led to the development of novel mouse models of cancer.
Unlike spontaneous models, SB causes cancer through the action of mutagenic transposons that are mobilized in the
genomes of somatic cells to induce mutations in cancer genes. While previous methods have successfully identified many
transposon-tagged mutations in SB-induced tumors, limitations in DNA sequencing technology have prevented a
comprehensive analysis of large tumor cohorts. Here we describe a novel method for producing genetic profiles of SB-
induced tumors using Illumina sequencing. This method has dramatically increased the number of transposon-induced
mutations identified in each tumor sample to reveal a level of genetic complexity much greater than previously appreciated.
In addition, Illumina sequencing has allowed us to more precisely determine the depth of sequencing required to obtain a
reproducible signature of transposon-induced mutations within tumor samples. The use of Illumina sequencing to
characterize SB-induced tumors should significantly reduce sampling error that undoubtedly occurs using previous
sequencing methods. As a consequence, the improved accuracy and precision provided by this method will allow candidate
cancer genes to be identified with greater confidence. Overall, this method will facilitate ongoing efforts to decipher the
genetic complexity of the human cancer genome by providing more accurate comparative information from Sleeping
Beauty models of cancer.
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Introduction

Recent work has indicated that the human cancer genome is

complex, consisting of many somatically acquired genetic and

epigenetic changes [1]. A key challenge faced by the cancer

genetics community is deciphering the role that this complexity

plays in the etiology of human cancer. Unfortunately, we still have

a limited ability to specifically identify those mutations that drive

cancer initiation and progression among the larger number of

passenger mutations found in an individual tumor. A subsequent

goal would then be to determine how individual driver mutations

cooperate to generate and maintain a tumor. Armed with this

knowledge, it is thought that more effective cancer therapies can

be generated to specifically target tumors.

Mouse models of cancer have become a useful tool in modeling

the genetics of human cancer, allowing the investigator to test the

role of mutant forms of specific candidate genes in vivo. Moreover,

insertional mutagenesis models of cancer have shown great promise

not only in the identification of novel candidate cancer genes, but

also in providing insight into how specific combinations of gene

mutations produce cancer [2]. Retroviral, and more recently,

transposon mutagenesis models have been described that model a

wide variety of tumor types in the mouse [2,3]. The great advantage

of these models is that the driver mutations are tagged by proviral or

transposon sequences that facilitate their rapid identification.

Advances in DNA sequencing technology have greatly facilitated the

characterization of mouse tumors induced by insertional mutagenesis.

Several independent methods have been produced that utilize a

ligation-mediated PCR approach to amplify proviral or transposon

junction fragments from the tumor genome [4,5]. Incorporation of

barcodes in the PCR allows the products from independent samples to

be mixed and directly sequenced [6,7,8]. This approach has

dramatically increased the amount of data generated from insertional

mutagenesis screens in mouse cancer models.

However, the bioinformatic analysis of data derived from

tumors induced by insertional mutagenesis has also been
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complicated by the increased scale of DNA sequencing. For

example, tumors that develop in existing mouse models continue

to acquire retroviral or transposon integration events. Although

ongoing insertional mutagenesis increases likely drives tumor

progression in these models, the resulting genetic complexity also

makes it difficult to accurately identify the collection of insertional

mutations that were acquired during the early steps of transfor-

mation. Past analysis has assumed that early integration events

present in the tumor-initiating cell will be present in all tumor cells.

As a consequence, these early events will be clonally expanded to a

greater extent compared to integration events acquired in tumor

subclones. By extension, initiating integration events should be

recurrently PCR-amplified and sequenced. While this is a

reasonable assumption, it is also likely that PCR bias contributes

to the frequency at which specific integration events are amplified

and sequenced. Finally, recent work has shown that many

hundreds of independent insertion events can be identified in an

individual tumor sample [7,8]. Given this complexity, suboptimal

sequence depth is also likely to introduce sampling error and

confound efforts to identify the clonally expanded integration

events associated with early stages of tumor formation.

We have previously developed a variety of mouse models of

cancer in which tumors are induced by Sleeping Beauty

transposon mutagenesis [6,7,8,9,10,11]. Currently, the identifica-

tion of transposon-induced mutations in the tumors from these

models uses pyrosequencing (Roche/454) [6,7,8,9]. This method

generally produces thousands of sequence reads for each sample

analyzed — a significant improvement over standard Sanger

sequencing [10,11]. However, analysis of pyrosequencing data

obtained from repeated sequence runs of the same tumor samples

only identifies a portion of the insertion sites present in each tumor

sample [12]. This suggests that deeper sequencing is required to

capture the complexity of transposon integration sites found in SB-

induced tumors.

Here we describe a new method to identify and analyze

insertional mutations in tumors using Illumina sequencing. Using

two independent sets of transposon-induced tumors, we have

validated this method to determine the sequence depth required to

generate a reproducible integration pattern from each sample to

consistently identify common insertion sites (CISs) in SB-induced

tumors. Our findings suggest that current methods used to

perform this analysis likely lead to the identification of significant

false-positive candidate cancer genes that could largely be

addressed using the approach described here.

Results

Amplification and direct sequencing of transposon
junction sequences

The initial method for identification of transposon insertions

sites made use of the GS FLX sequencing platform (Roche). This

platform was chosen because the longer read length (,100 bp)

was necessary to obtain sufficient sequence information to allow

sample barcoding, verification of transposon structure, and

mapping of the genomic junction sequence. However, the Illumina

sequencing method has recently been improved to achieve longer

sequence reads of 75 bases or greater. We set out to develop a

method to prepare transposon junction amplicons for direct

sequencing on the Illumina platform to take advantage of the

significant increase in sequence depth provided by this approach

(Methods S1).

The initial steps of the ligation-PCR method are similar to those

previously published (Figure S1) [6]. However, the transposon-

specific primer used in the nested PCR step was significantly

redesigned. First, the primer is designed to bind to the sequences at

the ends of the transposon inverted repeats (Figure S1). In

addition, a six-base barcode was used in place of the original ten-

base barcode used previously [6]. These changes reduce the

amount of sequence needed for sample tracking and validation (32

bases), thus increasing the potential read length of the genomic

junction sequence (40–45 bases). Along with these changes, the

59ends of the transposon-specific and adaptor primers are tagged

with the sequences needed to allow each PCR product to bind to

the oligos that coat the surface of the Illumina flow cell. This

modification allows the final PCR products to be directly

sequenced on the Illumina platform, eliminating the need for

additional library preparation steps. Another advantage of this

approach is that it provides the ability for directional sequencing as

a binding site for the standard Illumina genome sequencing primer

is also incorporated into the transposon primer used in the nested

PCR step.

We initially tested this approach using 62 SB-induced tumor

samples using Illumina-based LM-PCR. These samples came from

two previously described models of T-cell lymphoma — Vav-SB

and CD4-SB, with 30 and 32 tumors respectively (Figure S2). All

samples had previously been sequenced on the GS FLX

sequencing platform, thus allowing direct comparison of the two

approaches across many samples. The preparation was done using

two technical replicates where both AluI and NlaIII were used to

generate LM-PCR products from the left inverted repeat (IRL)

and the right inverted repeat (IRR) (Figure S1). Each enzyme and

sample combination was assigned a unique 6-base barcode during

the final nested PCR step. An aliquot of the final LM-PCR

products were analyzed by agarose gel electrophoresis to verify the

quality of the sample (Figure S3). The remaining samples were

then purified to remove unincorporated primers and nucleotides,

and the sample concentration was determined using a Nanodrop

spectrophotometer. Equal amounts of each sample (,250 ng per

sample) were then combined to generate a pooled sample. This

sample was then sequenced in a single lane of a flow cell on a

Illumina Genome Analyzer IIe.

Mapping the reads from the Illumina run posed several

challenges. We have previously described a mapping and

annotation pipeline that was developed to analyze sequence data

produced by pyrosequencing [6]. The sequence reads are mapped

using the BLAT algorithm in the existing pipeline. While this

approach is robust, BLAT cannot map millions of short sequence

reads in a reasonable timeframe. Therefore, we developed a new

analysis pipeline that is optimized for the mapping and annotation

of Illumina sequence data (Figure S4). This pipeline uses the

Bowtie algorithm that was developed to map sequence data from

short read platforms such as Illumina [13].

Our prior work has shown that SB-induced tumors harbor

clonal transposon insertions that drive transformation. These

insertion sites are present in nearly all tumor cells since they are

responsible for initiating transformation. Thus they are clonally

expanded along with the tumor cells. However, it is possible that

each cell within the tumor mass contains a small number of

transposon insertions that are unique to that cell since transpo-

sition is ongoing in all tumor cells. Due to the specificity and

sensitivity of the LM-PCR process, we are able to amplify these

rare transposon insertion events present in only a few cells. Thus

the potential exists to identify hundreds of such background

transposon insertion events in each tumor sample. Consistent with

this expectation, analysis of the Vav-SB and CD4-SB Illumina

sequence data showed that roughly ,95% of mapped integration

sites were represented by 25 or fewer sequence reads. By contrast,

the remaining 5% of transposon integration sites contributed

Illumina-Based Analysis of SB-Induced Tumors
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,70% of the mapped sequences — an indication that clonal

expansion of specific transposon integration sites is occurring

within the tumor.

Our ultimate goal is to identify candidate cancer genes that are

frequently mutated by transposon insertions within SB-induced

tumors. The current computational methods used to identify these

candidate cancer genes generally work by identifying non-random

clusters of insertion events called CISs. The identification of CISs

uses statistical methods that calculate the expected frequency of

insertion events within a defined genetic interval based on the total

number of insertion events found throughout the genome.

Therefore the inclusion of large numbers of background insertion

events will dilute the insertion profile from tumor cells, thus

decreasing the sensitivity and accuracy of CIS analysis. Therefore,

we investigated methods to identify and remove background

insertion events prior to CIS analysis.

Initially, we examined the distribution of reads across the

integration sites identified in each sample and found that the

distribution of reads differed between individual samples. In

addition, the distribution of reads varied between the results

obtained using different restriction enzymes (i.e. AluI or NlaIII) for

a single sample. Nevertheless, Illumina sequencing identified

significantly more insertion events when compared directly to 454

sequencing results obtained from identical samples (Figure S5).

Because of the varied read distributions, we developed three

different methods to identify and remove background insertion

events. Recently published ChIP-Seq algorithms use a negative

binomial distribution to identify background sequences that do

show enrichment [14]. Since SB data sets have a similar

distribution to ChIP-Seq experiments, a negative binomial

distribution (NB) was fit to all integration sites found in each

barcoded sample represented by three or fewer reads. This process

is then used to identify the set of integrations that are more

prevalent than expected based upon the NB-estimated background

(Fig. 1). These sites are defined as clonally expanded events, and all

other sites are discarded.

While the NB procedure provides a reliable method to identify

clonal sites, the read distribution in many samples does not

adequately fit a negative binomial distribution. This is particularly

true at higher read depths (Fig. 1). In these situations, the NB

method fails to exclude many background insertion events.

Therefore, two alternative approaches can be applied. The first

method requires all clonal insertion events have a read count that

is at least 1% of the most abundant insertion site. The final method

requires that all clonal insertion sites be represented by a

minimum of 0.1% of the total reads for the sample. As shown in

Figure 1, the stringencies of these three methods vary depending

on the read distribution and depth. Therefore, the analysis

pipeline uses a more dynamic filtering process by calculating the

read cutoff for each sample using all three methods and then

applying the highest cutoff value. This dynamic cutoff method

eliminates the greatest number of background insertion events,

thus providing the most stringent definition of clonal transposon

insertion events (Table S2).

Determining the accuracy of Illumina-based LM-PCR
The lack of consistency seen in the 454-based LM-PCR method

could be caused by variations in sample preparation or sampling

error due to insufficient read depth. To test the former, we

compared the results obtained in the technical replicates (Fig. 2).

Figure 1. Dynamic filtering to remove background transposon insertion events. (A) Read distributions from two independent tumor
samples are shown along with the calculated cutoff points using three independent methods: negative binomial (NB), 1% of the top (i.e. most
abundant) site and 0.1% of total reads (B) An experiment to simulate a variety of sequence read depths shows that the cutoff method used by the
analysis pipeline is influenced by read depth.
doi:10.1371/journal.pone.0024668.g001

Illumina-Based Analysis of SB-Induced Tumors
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First, clonal transposon insertion events were identified for all

samples as described previously. Next, the clonal transposon

insertion sites were rank ordered based on the frequency at which

each site was sequenced. The ranks from each technical replicate

across all samples were compared, and a significant positive

correlation (r2 = 0.87) was observed (Fig. 2B). Next, we calculated

the percentage of total reads found for each clonal insertion site

and compared these values for each site between the two

replicates. Again, a strong positive correlation (r2 = 0.9) was

observed between the technical replicates (Fig. 2C). These results

suggest that variation in sample preparation does not contribute

significantly to the read distribution.

Determining optimal sequence depth
We next examined how varying read depth affects the

identification of clonal transposon insertion sites to determine

the minimum sequence depth required to obtain a consistent

result. This was accomplished by random sampling of mapped

reads to simulated a variety of read depths ranging from 1,000 to

150,000 reads per sample. The average number of clonal sites

found in all tumors for both the Vav-SB and CD4-SB models was

determined based on the results from 20 independent simulations

across 19 different read depths (Fig. 3). The clonal insertion sites

were identified for each sample in all iterations as described above.

Not surprisingly, the average number of clonal insertion sites

increases significantly with greater read depths. The results

indicate that simulated read depths that approximate 454

sequencing (Fig. 3, gray boxes) identify only ,65–75% of clonal

sites identified at greater read depths. Interestingly, the simulation

results for both tumor models suggest that modest increases in read

depth initially introduce background insertion sites that are

eliminated with the addition of more sequence data (Fig. 3A).

While the average number of clonal sites stabilizes beyond a

read depth of 100,000, the composition of the data sets may

fluctuate significantly. We next calculated the percentage of sites

that were seen in 80, 90, or 100% of the iterations (Fig. 3B). Again,

at read depths that approximate 454 sequencing, roughly 40–50%

of the clonal sites were found in 90% of the iterations. The

consistency improves steadily as sequence depth increases, as

expected. Taken together, the simulation experiments indicate

that an average of 100,000 mapped reads per sample are required

to reproducibly discover clonal insertion events.

Determining the impact of PCR-bias on LM-PCR results
It has been well established that PCR can introduce significant

bias in the amplification of genomic DNA fragments. A number of

parameters have been shown to influence the extent to which any

fragment will be amplified including fragment length, GC content

and secondary structure [15,16]. Because of this concern, our

Illumina-based LM-PCR approach identifies transposon insertion

events using four distinct approaches using two different restriction

enzymes in an effort to combat the effects of PCR bias. As the goal

Figure 2. Illumina-based LM-PCR analysis consistently identifies transposon insertions in SB-induced tumors. A total of 62 T-cell
lymphomas induced by SB mutagenesis using a ligation-mediated PCR approach were analyzed. Two technical replicates were performed to assess
the consistency of the results (A). The results of the technical replicates were compared to assess the reproducibility of the approach. Both the rank
(B) and abundance (C) of insertion sites showed a strong positive correlation between the replicate runs.
doi:10.1371/journal.pone.0024668.g002

Illumina-Based Analysis of SB-Induced Tumors
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of our LM-PCR method is to amplify many fragments from

complex samples, we examined how extensively PCR bias affects

the identification of transposon insertion sites in SB-induced

tumors using the Illumina-based LM-PCR method.

Over 6,000 clonal transposon insertion sites were identified in

62 samples, as previously described (Table S1). These sites were

identified, in part, by assuming that the read number for each

individual junction fragment is correlated to the abundance of the

specific insertion event that produced it. However, the read

number could also be influenced by PCR bias, the most likely

source being fragment length. Therefore, we calculated the size of

the AluI and NlaIII restriction fragments that each clonal insertion

site produced based on the mouse reference genome sequence.

Next, we determined the percentage of clonal junction fragments

that were identified at each length ranging from 20 to 500 bases.

These values were chosen because they represent the technical

limits to our analysis pipeline.

As shown in Figure S6, there is some preference for

amplification of smaller junction fragments, although the effects

of PCR bias do not appear to be dramatic. Nevertheless, there is

preference for amplification of PCR fragments that are less than

250 bases in length (Figure S6). We then determined the

percentage of genomic TA sites (i.e. SB target sites) in which all

four approaches fail to produce a junction fragment less than 250

bases in length. This analysis indicates that ,3% of TA sites would

not compete well for amplification using our Illumina-based LM-

PCR approach — a relatively modest number of sites. Finally, we

sought to determine the extent to which the identification of clonal

transposon insertion events is affected by PCR bias. This revealed

that ,70% of clonal insertion events were identified as clonal in at

least 3 of the 4 libraries generated for each sample (Figure S6).

This result suggests that while PCR bias does influence the read

number for each insertion site, PCR bias does not greatly impact

the identification of clonal insertion sites in tumor samples.

However, additional experiments are required to determine if this

method provides quantitative information beyond the identifica-

tion of clonal insertion sites.

Identification of driver mutations
We have shown that the Illumina-based LM-PCR method

significantly outperforms previous methods in its ability to

reproducibly identify clonal transposon insertion events within

SB-induced tumors. Next, we sought to determine how the

Illumina-based LM-PCR method affects the identification of CISs,

the functional equivalent of driver mutations in SB-induced tumor

models. Previous studies have used one of two methods to identify

CISs, Gaussian Kernel Convolution (GKC) or a Monte Carlo

(MC) simulation [6,7,8,17]. Both methods assume that back-

ground mutations will happen at random throughout the genome

and that causative mutations will cluster in regions near or within

cancer genes. These regions are statistically defined as those that

have a higher mutation rate than expected by chance. A strength

of the GKC and MC approaches is that they are relatively

unbiased in the identification of CISs. Neither method considers

annotated functional elements within the genome, and thus they

are well suited to identify novel or poorly characterized genes.

However, GKC and MC can also identify CISs that are too small

or large to be biologically meaningful, and thus the gene target of

some CIS regions is difficult to identify.

Given the limitations of the GKC and MC methods, we

developed a novel computational method to identify CIS regions

in SB-induced tumors. In contrast to the previous methods, this

Figure 3. Determining optimal read depth in SB-induced tumors. (A) An experiment was performed to simulate various read depths in 30
Vav-SB (left) and 32 CD4-SB (right) tumors. The average number of clonal transposon insertion sites was determined from 20 independent iterations
of each read depth simulation. (B) The consistency of transposon insertion site identification varied with sequence depth. For example, only 10% of
transposon insertion sites were identified in 100% simulations at a simulated read depth of 1,000.
doi:10.1371/journal.pone.0024668.g003

Illumina-Based Analysis of SB-Induced Tumors

PLoS ONE | www.plosone.org 5 September 2011 | Volume 6 | Issue 9 | e24668



novel method specifically examines transcribed regions of the

genome to identify genes that are mutated at a rate higher than

expected by chance. We refer to this method as gene-centric

common insertion site (gCIS) analysis. The gCIS method

calculates the observed and expected number of insertion events

within each RefSeq gene. The expected number of insertion

events is based on the number of tumors analyzed, the number of

insertion events within each tumor and the number of SB target

sites within each RefSeq transcription unit, including 10 kilobases

of promoter sequence. These values are used to perform a Chi-

square test, yielding a p-value for each RefSeq gene. A Bonferroni

correction is applied to correct for multiple hypothesis testing. Any

remaining RefSeq genes that were not mutated in at least three

independent tumors are also eliminated.

We next determined how each of the three methods performed

in analyzing sequence data generated using the Illumina-based

LM-PCR method (Fig. 4). This analysis identified a total 32 and

97 CISs in Vav-SB and CD4-SB tumors, respectively. GKC and

MC identified similar gene sets in both models. This outcome was

expected given the similarity in these computational methods. By

contrast, the gCIS method not only identified ,90% CISs found

by GKC and MC, but 1.5 to 2-fold more CISs unique to this

approach. The unique CIS genes found by the gCIS approach

show a similar degree of overlap with known human cancer genes

found in the COSMIC [18] and Cancer Gene Census [19]

databases (Fig. 4). This suggests that the gCIS method performs

well and is capable of identifying novel CISs that are missed by

prior methods (Figure S7). While the GKC and MC methods do

not identify many unique CIS regions, the CIS regions called by

these methods often contain more insertion events than the

corresponding region identified by gCIS analysis. For example, of

the 59 genes identified by both MC and gCIS (Fig. 4), MC

identified more insertion events within the CIS region than did

gCIS in over 30% of cases. While this difference did not affect the

identification of these genes, the relative mutation frequencies as

determined by each method frequently varied. Thus, there is

benefit from analyzing data sets with multiple methods (e.g. MC

and gCIS).

Finally, we compared the results of CIS analysis that were

obtained using either 454 or Illumina sequencing of the same

tumor cohort (Fig. 4C,D). The results show that Illumina

sequencing identifies ,2-fold more driver mutations in both

lymphoma models. Not surprisingly, 454 sequencing identified a

population of CIS genes that were not identified by Illumina

sequencing. However, the majority of these genes (21/22) were

identified by Illumina sequencing but not identified as a driver

mutation using MC or gCIS methods (Table S3).

Accuracy of CIS identification
Here we have shown that the reproducible identification of

transposon insertion sites requires ,20-fold more sequence data

than is currently used to characterize SB-induced tumors (Fig. 3).

Figure 4. Comparison of three independent methods to identify CISs within SB-induced tumors. We compared the performance of
Monte Carlo simulation (MC), Gaussian Kernel Convolution (GKC) and gene-centric common insertion site analysis (gCIS) in identifying candidate
cancer genes in both Vav-SB (A) and CD4-SB (B) tumors. In addition, the number in parentheses indicates the number of total genes in each region
that have evidence as human cancer genes in either the COSMIC or CGC databases. In addition, we compared the results of MC and gCIS analysis
using data generated by 454 or Illumina sequencing of the same tumor samples in both Vav-SB (C) and CD4-SB (D) lymphoma models.
doi:10.1371/journal.pone.0024668.g004

Illumina-Based Analysis of SB-Induced Tumors
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We predicted that the insufficient sequence coverage would reduce

the accuracy of CIS identification. To test this hypothesis, we

again performed simulations in which random sequences were

selected to mimic various read depths. Twenty iterations were

performed for each sequence depth, and gCIS analysis was

performed on the data set generated for each iteration. Next, we

calculated the total and average number of genes that were called

at each sequence depth (Fig. 5A). Consistent with the results of the

previous simulation experiment, the gCIS results varied widely at

intermediate sequence depths. However, as sequence depth

increased, the gCIS results became more consistent.

This result suggested that the accuracy of the gCIS method at low

to intermediate sequence depths is likely lower than anticipated. We

next calculated the accuracy of gCIS identification using the

simulation results. The prior simulation results indicated that

sequence depths .100,000 reads per sample provide consistent

gCIS results (Fig. 5A). Therefore, we defined the gCIS gene set

identified using all sequence data as the reference data set. The

average sensitivity and accuracy of gCIS analysis was then

determined by comparing the results obtained for each iteration

and sequence depth to the reference data set (Fig. 5B). As predicted,

the sensitivity of gCIS detection is relatively poor at low sequence

depths. This was confirmed by comparing the results of the

simulation to the actual data obtained using 454 sequencing (Fig. 5).

For the most part, the 454 results were similar to the predicted

outcome based on the sequence depth simulations, although the

actual 454 data consistently performed worse than predicted.

In general, the gCIS analysis performed much better across a

range of sequence depths in Vav-SB tumors. We have previously

shown that the CD4-SB tumors show greater genetic complexity

than Vav-SB tumors, harboring more mutations per sample that

affect a larger number of genes [20]. As a consequence, the

accuracy and sensitivity of gCIS identification in CD4-SB tumors

are more significantly affected by inadequate sequence coverage.

The distinction between the Vav-SB and CD4-SB tumor models is

clearer when the genomic distributions of driver mutations are

compared (Fig. 6). Not surprisingly, the majority of CIS genes in

the Vav-SB model can be identified at low to moderate sequence

depths. By contrast, the identification of many CIS genes in the

CD4-SB model requires additional sequence data. This result

indicates that tumor complexity in SB-induced models of cancer

will determine the needed sequence depth to consistently identify

CIS genes. It is also important to note that increased sequence

depths are required to identify and eliminate false-positive CIS

genes regardless of tumor complexity. For example, the majority of

CIS regions identified at a read depth of 5,000 reads per sample

are eliminated with the addition of more sequence data (Fig. 6,

white bars). In this regard, the Illumina-based LM-PCR method

would likely reduce the false-discovery rate of CIS identification,

assuming sufficient sequence coverage is obtained for each sample.

Discussion

As with the identification of somatic mutation in human tumors,

the analysis of transposon-induced mutations in SB models of

cancer relies on the sensitivity to detect mutations within

heterogeneous tumor cell populations. The Illumina-based LM-

PCR method we describe here shows a marked improvement in

Figure 5. Determining the affect of sequence depth on the accuracy of CIS identification. Read depth simulations were performed as
previously described. However, gCIS analysis was performed on each of 20 iterations at all simulated read depths. In addition, the values generated
from analysis of the actual 454 data obtained for the same tumor samples are shown. (A) The total number of gCIS genes identified in at least one of
the 20 iterations is indicated along with the average number of gCIS genes at each simulated sequence depth. (B) The gCIS results obtained by
analyzing all sequence data in both tumor models were used as reference data sets. The accuracy (% of genes found in reference set) and sensitivity
(% of genes in reference set that were detected) were determined. For example, only 41% of the reference gCIS genes in the Vav-SB model were
found at a depth of 1,000 reads per sample (i.e. 41% sensitivity). However, 90% of gCIS genes identified at this read depth were found in the reference
data set (i.e. 90% accuracy).
doi:10.1371/journal.pone.0024668.g005

Illumina-Based Analysis of SB-Induced Tumors
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sensitivity — increasing the average sample read depth by ,50-

fold (Table S1). This increase in sequence coverage led to a 15-fold

increase in the average number of mapped transposon insertion

sites per sample.

The sheer number of insertion sites identified per sample

(.15,000) provides clear evidence that the Illumina-based LM-

PCR is capable of identifying rare transposon insertion events

likely present in a small percentage of cells. These rare insertion

events significantly outnumber the clonally expanded insertion

events that are also present in each tumor sample (Fig. 1). Their

inclusion in the data set confounds efforts to identify CIS genes in

these tumors cohorts. Therefore, we devised three independent

methods to identify and remove such background sites prior to

CIS analysis. Our analysis shows that not only that these

background insertion sites must be removed, but that multiple

methods are required for this process (Fig. 1B). For example, the

CIS genes identified using the dynamic cutoff method showed the

greatest overlap with genes implicated in human cancer (Table

S2).

The need for such a dynamic cutoff method is likely caused by

heterogeneity within SB-induced tumors. Transposon copy

number has been shown to affect tumor latency and the

complexity of transposon insertion sites [6,9]. The Vav-SB and

CD4-SB tumors were generated using high copy transposon donor

strains [11]. Therefore, these tumors typically harbor a greater

number of clonal transposon insertion events when compared to

similar tumors generated using low copy transposon donor strains.

With this knowledge, our goal was to develop an analysis pipeline

that is more dynamic, allowing it to process data derived from a

variety of transposon strains without further optimization. Thus

the dynamic cutoff method was employed.

Another benefit of increased sequence depth is that it provided

the opportunity to simulate the effects of varying sequence

coverage on all aspects of insertion site analysis. Prior publications

have relied on 454 sequencing to identify transposon-induced

mutations in SB models of cancer. We have shown that ,20-fold

increase in sequence depth over what is achieved with 454 is

required to eliminate sampling error and consistently identify

clonal transposon insertion events. Increased sequence coverage

also provided more consistent results in the identification of CIS

genes.

The Illumina-based LM-PCR approach we describe here is

clearly superior to the prior 454-based method that we and others

have used to characterize SB-induced tumors. However, we have

also shown that the results of this approach are influenced by PCR

bias. However, the effects of PCR bias are mostly offset by

employing four different approaches to identify insertion sites. It

should be noted that it is not possible to infer any additional

quantitative information from the Illumina-based sequencing

method, aside from the identification of clonal transposon

insertion sites, given the persistent PCR bias observed. Likely this

bias is caused by the continued use of restriction enzymes to

Figure 6. The affect of varying read depth on the genomic distribution of CIS genes. The genomic position of each CIS gene is indicated as
a vertical bar. The color of the bar indicates the minimum number of reads per sample required to consistently identify the CIS gene at the indicated
position. The height of the bar indicates the mutation frequency within the each tumor model as determined by analysis of all sequence data. A large
number of false-positive CISs were identified in one or more iterations of the simulation to approximate a read depth of 5,000 (white bars).
doi:10.1371/journal.pone.0024668.g006
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fragment the genomic DNA. Alternative approaches such as non-

restrictive LAM-PCR [21] or the use of physical shearing to

fragment the genome could eliminate the PCR bias we observed.

Regardless, additional work is required to establish a truly

quantitative approach to identify transposon insertion sites in

SB-induced tumor samples. This type of quantitative method will

likely be needed to more specifically identify transposon insertion

sites that have been clonally expanded in tumor cell populations.

In addition to the Illumina-based LM-PCR method, we also

describe a novel computational method to identify CIS genes in

SB-induced tumors. We show that the gene-centric CIS (gCIS)

method is capable of identifying a novel set of genes that are

missed by established methods (e.g. MC, GKC). A subset of the

gCIS-specific genes are also mutated in human cancer, suggesting

that this approach will be useful in extracting additional genetic

information from SB-induced tumors. Another advantage of the

gCIS method is that it provides an individual assessment of all

RefSeq genes in the mouse genome, while the MC and GKC

methods are less specific in the identification of driver mutations.

As a consequence, the gCIS method provides an output that will

facilitate comparative oncogenomic approaches using genetic data

derived from human tumors. Thus the gCIS method complements

the exiting computation approaches currently in use.

Rapid improvements in DNA sequencing technology have now

made tumor genome sequencing a reality. However, early efforts

in this area suggest that while sequencing the human cancer

genome is achievable, our ability to understand the biological

significance of each somatically acquired mutation within an

individual’s tumor is somewhat limited. Largely this is due to our

inability to accurately identify driver mutations within the larger

field of passenger mutations that coexist within each tumor. Thus,

additional experimental evidence will be needed to assess the

potential of each candidate driver mutation that is identified by the

tumor genome sequencing.

Genetically engineered mouse models have been used to study a

variety of cancer-relevant phenotypes. In addition, mouse models

of cancer have been exploited to identify common genetic

mechanisms that drive both mouse and human cellular transfor-

mation. More recently, in vivo insertional mutagenesis has been

used to generate mouse models of cancer in which the

identification of candidate cancer genes is dramatically accelerated

[6,7,12,22,23]. Recent work has demonstrated the advantage of

using insertional mutagenesis to study a variety of cancer-relevant

phenotypes such as metastasis and acquired drug resistance in

mouse models of cancer [7,24]. The method we describe here will

improve the quality of data and provide greater confidence in the

identification of candidate cancer genes in these SB models of

cancer. Ultimately, our work will improve the ability to use SB

models to perform comparative oncogenomics to assist in

deciphering the human cancer genome.

Methods

Tumor cohort
The Vav-SB and CD4-SB mouse models are described

previously [20]. All tumors used in this study were collected from

mice using procedures approved and monitored by the Institu-

tional Animal Care and Use Committee at the University of Iowa.

Read Analysis
Reads were analyzed using the Integration Analysis System

(IAS). This pipeline was run independently on each lane. The

inputs to the pipeline were a FASTA file containing all the

sequencing reads and a barcode file that per barcode contains: the

barcode sequence, the name for the tumor, IRL or IRR (to

indicate which from which inverted repeat the sequence is

derived), and the expected flanking sequences. Using the barcode,

each sequence was placed into a tumor specific file. Crossmatch (P.

Green, unpublished) identifies the presence and location of the

flanking sequences. This information is used to trim the flanking

sequences from the genomic segment. All sequences were then

verified to begin with a ‘‘TA’’ dinucleotide. The genomic

sequences were then aligned to the mouse genome reference

assembly (NCBI37/mm9) using Bowtie [13]. The parameters used

were ‘‘–best -f -k2 –p7 –v3’’ which gives the top two hits and only

allows 3 mismatches in the sequence. The Bowtie output was then

filtered using the following criteria: the best match had to be at

least 90% identical, including a perfect match to the ‘‘TA’’ at the

start of the alignment, be at least 5% better than the second best

match, and have 2 or less mismatches. Using the refFLat table

from the UCSC genome databases [25], we retrieved the gene-

centric data with which to annotate the integrations. The

annotation file included the following information: [tumor ID],

[gene name], [gene region hit (i.e. intron, exon)], [predicted affect

of transposon insertion on gene expression], [distance from gene],

[chromosome], [address], [percent of reads derived from the

insertion site], and [transposon orientation relative the gene].

After each annotation file is generated, all transposon insertion

events that map to the same chromosome as the transposon donor

transgene were removed. This was done to eliminate any bias

caused by local hopping of SB transposons. Next, the clonality

cutoff was calculated for each annotation file. The clonal insertion

sites identified in each of the four LM-PCR libraries generated for

each sample (Figure S1) were then combined to generate a non-

redundant list of insertion sites identified in each sample. In cases

where an insertion site was identified in multiple libraries, the

largest value representing the percent of reads derived from the

insertion site is used.

Identifying clonal insertion sites
Three methods were used to identify clonal insertion events

within each tumor sample. All three methods are preformed

independently on the reads obtained for each barcode, and the

maximum cutoff value is applied. The negative binomial models

the background distribution. The background is estimated by

fitting a negative binomial distribution to the distribution of sites

with 1–3 reads. These sites were selected to model the background

because we are confident that these sites are not clonally

expanded. The number of reads was zero shifted to better

approximate the negative binomial. The dnbinom module in R

was then used to generate the negative binomial distribution. The

best fit to the negative binomial distribution was determined by

minimizing the least squared error across all iterations of the size

and probability parameters in steps of 0.01 and 0.001, respectively.

The NB threshold was calculated as the read depth at which 95%

of the integration sites are under the curve. Thus only 5% of the

background distribution is expected to contribute to the set of

clonal sites. A second cutoff value was calculated by taking 1% of

the read number observed for the most abundant site. The third

cutoff value was defined as the value representing 0.1% of the total

reads for the barcode.

Identifying Causative Genes
The Monte Carlo simulation and Gaussian Kernel Convolution

were performed essentially as previously published [6,17]. Gene-

centric CISs (gCIS) were defined based upon the number of TA

dinucleotides within the transcribed region for each gene in the

RefSeq collection. The gene-associated region was defined as the
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union of all RefSeq transcripts including a 10 kb promoter region.

A chi-squared test statistic was calculated based upon the number

of TAs within each gene-associated region and the number of

integrations within the gene. This test statistic was used to

determine the p-value, with a single degree of freedom. A tab-

delimited file was generated detailing the results for each RefSeq

gene including the gCIS p-value, number of tumors in which

integrations were found, and a list of the tumor IDs in which

integrations were observed. Using the Bonferroni method, a

statistical threshold of p = 2.6361026 was used to correct for

multiple hypothesis testing. A final condition applied to all

methods was a requirement for each CIS to harbor a minimum

of three independent tumors with insertions in the gene.

Simulation of read depth
To simulate read depth, we randomly sampled with replace-

ment mapped reads from a pooled set. This set contained the map

location of the read and corresponding tumor ID from which it

was identified. Twenty iterations of each read depth were

generated, and the average number of clonal insertion sites was

calculated for each tumor model. The consistency of insertion site

identification was calculated by calculating the percentage of

insertion sites that were identified in 80, 90 or 100% of the

iterations for each read depth. In addition, gCIS analysis was

performed on each of the twenty iterations at each read depth.

These results were then compared the reference gCIS data set (i.e.

true positives) obtained by analyzing all sequence data. Thus for

each simulated read depth, gCIS accuracy is the percentage of

gCIS genes found at each read depth that are also present in the

reference data set. The gCIS sensitivity is the percentage of gCIS

genes in the reference data set that is found at each simulated read

depth.

Comparison to human cancer genes
A comparative oncogenomics approach was used to assess the

extent to which CIS analysis identifies genes implicated in human

cancer. This was done by comparing individual CIS genes are

mutated in the COSMIC and Cancer Gene Census databases

[18,19]. While the Cancer Gene Census contains only validated

cancer genes, the COSMIC database contains data on more than

19,000 genes. Somatic mutations have been identified in only a

subset of these genes. We generated a list of COSMIC genes that

have a mutation frequency of at least 5% with a minimum of 5

independent somatic mutations. Ultimately, we identified 807

genes that have supporting evidence of somatic mutation in

human tumors and clear mouse orthologs.

Supporting Information

Figure S1 Overview of ligation-mediated PCR strategy
to amplify transposon-genomic junctions from SB-
induced tumors. Each tumor DNA is digested with either AluI

or NlaIII restriction enzyme. These enzymes create junction

fragments on both ends of each integrated transposon. Double-

stranded adaptors are then ligated to the ends of all genomic DNA

fragments. The adaptor is modified to such that the adaptor

primer used in the primary PCR reaction cannot hybridize until

the transposon-specific primer first generates the complementary

strand. Nested PCR is then performed using a primers modified to

include the sequence tags required for direct sequencing on the

Illumina platform.

(PDF)

Figure S2 (A) Overview of Sleeping Beauty (SB) models
of cancer. (B) We used a Cre-inducible SB transposon

mutagenesis system to generate two distinct models of T-cell

lymphoma in which mutagenesis was initiated in either hemato-

poietic stem cells (Vav-SB) or in nearly differentiated thymocytes

(CD4-SB). (C) Tumors within Vav-SB and CD4-SB mice develop

with different latencies and are driven by distinct mutations. The

major findings of this work are described elsewhere [20].

(PDF)

Figure S3 An aliquot of the secondary LM-PCR product
(25 ml of a 100 ml reaction) is analyzed by agarose gel
electrophoresis to verify the quality of the sample. The
above example is a typical result for the LM-PCR
process. Products typically appear as a low molecular weight

smear, although some samples have more abundant junction

products that appear as bands. Failed reactions may have only a

primer dimer band of ,100 bp. The LM-PCR process is repeated

on these samples until a similar result is obtained. [DNA marker is

the 1 kb+ ladder (Invitrogen). Indicated bands are base pair

values.]

(PDF)

Figure S4 Overview of sequence analysis pipeline. The

raw Illumina sequence file (FASTQ formatted) and the barcode

file containing the metadata for each tumor sample are the inputs

for the analysis pipeline. The order and a brief description for each

stepwise process is shown.

(PDF)

Figure S5 The read distribution is shown for two
different samples that were analyzed by both Illumina
(A) and 454 (B) LM-PCR. The increased sequence depth in the

Illumina method apparently improves the signal to noise ratio and

identifies more clonal insertion sites than 454 sequencing.

(PDF)

Figure S6 Effects of PCR bias on the results of Illumina-
based LM-PCR. The average restriction fragment sizes

generated by clonal transposon insertions in CD4-SB (A) or

Vav-SB tumors (B) is shown. This clearly shows preferential

amplification of smaller junction fragments as they are more

abundant than expected given the size distribution in the genome

(shown in red). However, this trend appears to be similar in

junction fragments that were identified as clonal (white circles) or

subclonal (gray circles) transposon insertion sites. (C) Based on the

range of product sizes that are preferentially amplified (A–B, gray

box), we determined the percentage of genomic TA sites that

would be subject to negative PCR bias in all four libraries. While

PCR bias is evident, it does not appear to dramatically affect the

identification of clonal transposon insertion sites. (D) The majority

of clonal sites were identified as clonal in at least three of the four

junction libraries generated for each tumor.

(PDF)

Figure S7 The gene-centric common insertion site
(gCIS) approach was designed to identify genes that
suffer transposon-induced mutations at a rate higher
than expected given the number of tumors, number of
insertion sites per tumor and the number SB target sites
in each gene. This method is capable of identifying driver

mutations that are not identified by existing methods (MC, GKC)

that rely on transposon clustering to identify common insertion

sites. As a consequence, diffuse clusters of insertion events in some

genes are missed by these methods. By contrast, the gCIS method

can identify these genes as significant driver mutations. Shown

here are three such examples. In each case, MC failed to identify

the gene as a driver mutations while gCIS identified it as a

candidate cancer gene. The general structure is shown for each

Illumina-Based Analysis of SB-Induced Tumors

PLoS ONE | www.plosone.org 10 September 2011 | Volume 6 | Issue 9 | e24668



gene (vertical lines = exons, angled lines = spliced introns) includ-

ing arrows indicating the position of transposon insertions (green

arrow = forward transposon orientation, red arrow = reverse

transposon orientation).

(PDF)

Table S1 Summary analysis using 454 and Illumina-
based LM-PCR.
(PDF)

Table S2 Comparison of cutoff methods in the identi-
fication of CIS and gCIS genes.
(PDF)

Table S3 Comparison of CIS genes identified by 454
and Illumina sequencing in SB-induced lymphomas.

(PDF)

Methods S1 Detailed Illumina-based LM-PCR protocol.

(PDF)
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