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Abstract

Background: Gastric cancer continues to be one of the deadliest cancers in the world and therefore identification of new
drugs targeting this type of cancer is thus of significant importance. The purpose of this study was to identify and validate a
therapeutic agent which might improve the outcomes for gastric cancer patients in the future.

Methodology/Principal Findings: Using microarray technology, we generated a gene expression profile of human gastric
cancer–specific genes from human gastric cancer tissue samples. We used this profile in the Broad Institute’s Connectivity
Map analysis to identify candidate therapeutic compounds for gastric cancer. We found the histone deacetylase inhibitor
vorinostat as the lead compound and thus a potential therapeutic drug for gastric cancer. Vorinostat induced both
apoptosis and autophagy in gastric cancer cell lines. Pharmacological and genetic inhibition of autophagy however,
increased the therapeutic efficacy of vorinostat, indicating that a combination of vorinostat with autophagy inhibitors may
therapeutically be more beneficial. Moreover, gene expression analysis of gastric cancer identified a collection of genes
(ITGB5, TYMS, MYB, APOC1, CBX5, PLA2G2A, and KIF20A) whose expression was elevated in gastric tumor tissue and
downregulated more than 2-fold by vorinostat treatment in gastric cancer cell lines. In contrast, SCGB2A1, TCN1, CFD, APLP1,
and NQO1 manifested a reversed pattern.

Conclusions/Significance: We showed that analysis of gene expression signature may represent an emerging approach to
discover therapeutic agents for gastric cancer, such as vorinostat. The observation of altered gene expression after
vorinostat treatment may provide the clue to identify the molecular mechanism of vorinostat and those patients likely to
benefit from vorinostat treatment.

Citation: Claerhout S, Lim JY, Choi W, Park Y-Y, Kim K, et al. (2011) Gene Expression Signature Analysis Identifies Vorinostat as a Candidate Therapy for Gastric
Cancer. PLoS ONE 6(9): e24662. doi:10.1371/journal.pone.0024662

Editor: David L. McCormick, IIT Research Institute, United States of America

Received March 29, 2011; Accepted August 16, 2011; Published September 9, 2011

Copyright: � 2011 Claerhout et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: Funding to SC as an Odyssey Fellow was supported by the Odyssey Program and the Theodore N. Law Endowment for Scientific Achievement at the
University of Texas MD Anderson Cancer Center. This work was also supported by funds from the 2009 Internal Medicine Academic Research Fund and Basic
Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (No. 2010-0024248).
The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: chojy@yuhs.ac

. These authors contributed equally to this work.

Introduction

Gastric cancer is the fourth most common cancer and the

second leading cause of cancer death in the world [1], with an

overall survival of about 10 months [2–4]. Treatment for gastric

cancer may include chemotherapy, surgery and radiation therapy.

Unfortunately, current chemotherapy-based treatments for ad-

vanced gastric cancer demonstrate disappointing results [2–4].

Indeed, complete remissions are rare or only last very shortly.

Several targeted agents that confer survival advantages in other

cancer types have been under investigation in gastric cancer.

While some early clinical studies using vascular endothelial growth

factor receptor (VEGFR) and epithelial growth factor receptor

(EGFR) -1 inhibitors, such as cetuximab and bevacizumab, have

shown somewhat activity, there is rarely an actual survival benefit

for the patients [5,6]. One of the reasons may be that these studies

did not select patients according to the presence of biomarkers.

Recently, the Trastuzumab for Gastric Cancer (ToGA) trial noted

that the addition of trastuzumab to chemotherapy led to a

statistically significant improvement in progression-free survival

(PFS) and overall survival (OS) of the approximately 20% of

patients with disseminated gastric and gastroesophageal (GE)

junction tumors overexpressing HER2 [7]. This emphasizes the

need for targeted biological therapy and the search for biomarkers

to select patients for clinical trials which may benefit survival.

Despite some evidence of potential targets, including HER2 [8,9],

the efficacy of these biologically targeted therapies is not known

and there is a lack of a standard targeted therapy for gastric

cancer. Owing to the biological heterogeneity of gastric cancers, it

is unlikely that there is a single ‘magic bullet’ cure. Molecular
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markers will be thus important in the future to predict patients’

outcomes and tailoring treatments according to individual biology.

In the search for biomarkers, gene expression signature analysis

has been used in diverse applications, such as for elucidating the

mechanisms of biological pathways [10], classifying subtypes of a

disease [11], predicting cancer prognosis [12] and profiling gene

expression in response to specific drugs [13,14]. Gene expression

signature analysis can be done by using The Broad Institute’s

Connectivity Map (http://www.broadinstitute.org/cmap). The

Connectivity Map aims to generate a map that links gene

expression patterns associated with disease to corresponding

patterns produced by drug candidates and genetic manipulations

[15,16]. This systems approach allows compounds to be screened

against genome-wide disease signatures, rather than a preselected

set of target genes. Drugs are paired with diseases using

sophisticated pattern-matching methods with a high level of

resolution and specificity. Although it leaves many open questions,

the Connectivity Map has shown that genomic signature analysis

can be used to recognize drugs with common mechanisms of

actions, discover unknown mechanisms of action and identify

potential new therapeutics [15,16].

The purpose of this study was to identify potential new

therapeutics for the treatment of gastric cancer. To do this, we

first analyzed the genomic signature of human gastric cancer. The

resultant gastric cancer gene signature was then used in silico by

employing Connectivity Map analysis to identify therapeutic

agents that could potentially be effective against this type of

cancer. We further validated the top targeting drug for its efficacy

in gastric cancer cell lines. We found that vorinostat, as a potential

new drug, induced both apoptosis and autophagy in gastric cancer

cells. Together, this study demonstrates that the Connectivity Map

analysis can be used for the identification of therapeutic agents

that may be successful in the treatment of a subset of gastric

cancers.

Methods

Analysis of microarray data
For the Connectivity Map analysis, we used the microarray data

of 65 gastric cancer patients, including 65 cancers and 19 normal

gastric tissues, which were obtained from our previous work,

Yonsei data [17]. Tumor specimens were collected from gastric

cancer patients undergoing gastrectomy as a primary treatment.

Tissue samples were examined by pathologists at the time of

collection and stored in 280uC at the tissue bank until the start of

the experiment. Total RNA was extracted from the fresh-frozen

tissues by using a mirVana RNA isolation labeling kit (Ambion,

Inc.). Primary microarray data is available in NCBI’s Gene

Expression Omnibus public database (microarray platform,

GPL6884; microarray data, GSE 13861). Another gene expression

profile was obtained from 69 gastric tissue samples, including 38

cancer and 31 non cancer stroma, of the Stanford Microarray

Database (http://smd.stanford.edu, GSE13911), Stanford data.

Gastric cancer-specific genes were selected by BRB-ArrayTools

version 3.6.1 (Biometric Research Branch, National Cancer

Institute, Bethesda, MD). Class comparison using two sample t-

test (significance ,0.001, 10,000 random permutation) identified

gastric cancer specific genes and genes whose mean expression

intensities were altered by at least two-fold compared to mean

normal tissue gene expression were selected.

Connectivity Map analysis
To identify potential drugs targeting gastric cancer, the gene

lists of top 500 up regulated and the top 500 down regulated genes

from the gastric cancer-specific genes were used (Table S1). The

Connectivity Map analysis was conducted through the Web

interface (http://www.broadinstitute.org/cmap) using version,

build 02, which contains more than 7,000 expression profiles

representing effects of 1,309 compounds on several cultured

human cells [15,16]. The Connectivity map shows functional

connections between drugs, genes and disease. Drugs that produce

disease-mimicking gene signatures can help identify pathways that

represent potential therapeutic targets for that disease. Conversely,

drugs that induce a ‘reverse’ signature, i.e. changes in gene

expression in a direction opposite to that observed in the disease

state, could represent new therapeutic agents. Candidate agents

against a specific disease can be recognized by applying disease

specific gene expression profile to the Connectivity Map analysis.

We selected candidate drugs for validation in vitro on the basis of

the connectivity score, correlation, and P-value.

Chemicals and cell culture
Vorinostat was obtained from Merck and prepared as a stock

solution in dimethylsulfoxide (DMSO). Chloroquine and bafilo-

mycin A1 (Sigma) were dissolved in respectively water and

DMSO. Human gastric cancer cell lines AGS, NCI-N87, and

KATO-III were obtained from the American Type Culture

Collection and were maintained according to their recommenda-

tions. Cells were cultured in RPMI 1640 supplemented with 10%

fetal bovine serum, 100 U penicillin, and 100 mg/ml streptomycin

at 37uC in 5% CO2.

Cell growth, viability and cell cycle assays
For the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium

bromide (MTT) assay, MTT was dissolved in PBS at 5 mg/ml.

About 56103 cells were seeded in 96-well plates and allowed to

attach overnight. The culture medium was then replaced with

fresh medium containing the indicated concentrations of vorino-

stat or DMSO. After 72 h, 20 ml of MTT solution was added, and

the plates were incubated at 37uC for 4 h. After incubation, 100 ml

of DMSO was added to dissolve the formazan, and absorbance

was read at 570 nm using a spectrophotometric microplate reader

(Vmax kinetic microplate reader, Molecular Devices). The

experiments were done in triplicate.

For crystal violet staining, cells were treated for 12 h, the

medium was removed, and the cells were washed with PBS and

then incubated for 30 min with 0.5% crystal violet (in 20%

methanol and 80% double-distilled water). The cells were then

washed three times with PBS. The remaining crystal violet was

extracted in acetic acid for 5 min, and absorbance was measured

at 595 nm using a spectrophotometric microplate reader.

To determine cell viability, cells were incubated with vorinostat

for 72 h. Adherent cells were then detached from culture plates by

trypsinization and combined with floating cells, centrifuged and

suspended in 500 ml of propidium iodide (PI)-exclusive solution

(not cell membrane penetrating) for 15 min at 4uC. Stained cells

were monitored by flow cytometry (Beckman Coulter Cytomics

FC 500).

For cell cycle analysis, cells were incubated with vorinostat for

24 h, collected and suspended in 500 ml of hypotonic solution

(0.1% sodium citrate, 0.1% Triton X-100, 100 mg/ml RNase and

50 mg/ml PI) for 15 min at 4uC. PI-stained cells were monitored

by flow cytometry. Cell cycle was analyzed by MultiCycle AV

software.

RNA isolation and microarray experiments
RNA isolation and microarray experiments were performed

according to the protocol as previously described [17]. Total RNA

Vorinostat for Gastric Cancer Treatment
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was extracted from gastric cancer cell lines with or without

vorinostat treatment using a mirVana RNA isolation kit (Ambion,

TX, USA). The integrity of the large RNA fraction was

determined with an Experion Bioanalyzer (Bio-Rad, CA, USA)

as a surrogate for mRNA quality control. Total RNA was labeled

and hybridized with human HT12 v.3 expression BeadChips

according to the manufacturer’s protocols (Illumina, CA, USA).

After the BeadChips were scanned with an Illumina BeadArray

Reader, the microarray data were normalized using the quantile

normalization method in the Linear Models for Microarray Data

package in the R language environment [18]. The expression level

of each gene was transformed into a log2 base before further

analysis. Cluster analysis was done with Cluster and Treeview

[19].

Western blot analysis
Cells were scraped in medium and spun down, and proteins

were isolated using lysis buffer (50 mM HEPES, 150 mM NaCl,

1 mM EGTA and 10 mM sodium pyrophosphate (pH 7.4))

containing 100 mM NaF, 10% glycerol, 1.5 mM MgCl2, 1%

Triton X-100 and protease inhibitor (Roche). Extracts were

incubated on ice for 20 min and spun down at 20800 g for

20 min. Protein concentration was determined using BCA

protein assay reagent (Pierce). Equal amounts of protein from

each sample were separated by electrophoresis through SDS-

PAGE and transferred to Hybond-C Super membrane (Amer-

sham Pharmacia Biotech). Membranes were blocked for 1 h at

room temperature in Tris-buffered saline containing 0.1%

Tween-20 and 5% nonfat dry milk. Membranes were incubated

overnight at 4uC with primary antibody diluted in 5% nonfat

dry milk or 5% BSA in 16 Tris-buffered saline plus 0.1%

Tween-20. Antibodies to LC3 (Novus Biologicals), active

caspase-3 (Epitomics) and p62 (BD Biosciences) were used.

Antibodies to a-tubulin and beclin-1 were from Cell Signaling

Technology; antibody to b-actin was from Sigma. Membranes

were then washed and incubated for 1 h at room temperature

with peroxidase-conjugated secondary antibody (Cell Signaling

Technology). Protein bands were visualized using enhanced

chemiluminescence as described by the manufacturer (GE

Healthcare).

siRNA transfection
The siRNA target sequence for beclin-1, nontargeting

siRNA (Risc Free) and Dharmafect 1 were purchased from

Dharmacon. Cells were seeded in 10-cm dishes and transfected

with siRNA 24 h later according to the manufacturer’s

protocol. The next day, cells were trypsinized and seeded in

6-cm or 96-well plates to obtain the same transfection

efficiency. Protein expression levels were determined by

western blot analysis.

Transmission electron microscopy
Samples were fixed with a solution containing 3% gluter-

aldehyde plus 2% paraformaldehyde in 0.1 M cacodylate buffer,

pH 7.3, for 1 hour. After fixation, the samples were washed and

treated with 0.1% Millipore-filtered cacodylate buffered tannic

acid, postfixed with 1% buffered osmium tetroxide for 30 min,

and stained en bloc with 1% Millipore-filtered uranyl acetate.

The samples were dehydrated in increasing concentrations of

ethanol, infiltrated, and embedded in LX-112 medium. The

samples were polymerized in a 70uC oven for 2 days. Ultrathin

sections were cut in a Leica Ultracut microtome (Leica,

Deerfield, IL), stained with uranyl acetate and lead citrate in a

Leica EM stainer, and examined in a JEM 1010 transmission

electron microscope (JEOL, USA, Inc., Peabody, MA) at an

accelerating voltage of 80 kV. Digital images were obtained

using AMT Imaging System (Advanced Microscopy Techniques

Corp, Danvers, MA).

Table 1. Baseline characteristics of the gastric cancer patients
(Yonsei data).

Characteristics N = 65

Age (yr)

Median (range) 63 (32–83)

Sex (%)

Male: Female 46 (71): 19 (29)

Subsite of tumor (%)

Cardia 5 (8)

Body 24 (37)

Antrum 32 (49)

Diffuse 4 (6)

Histologic type of tumor (%)

Intestinal 23 (35)

Diffuse 32 (49)

Mixed 10 (16)

Cancer stage, TNM class (%)

I 12 (18)

II 11 (17)

III 26 (40)

IV 16 (25)

Adjuvant chemotherapy (%)

No: Yes 16 (25): 49 (75)

doi:10.1371/journal.pone.0024662.t001

Table 2. Top 5 candidate drugs of gastric cancer from Connectivity Map analysis.

Rank
Yonsei Data
(GSE31861)

Mean
correlation (r) p-value

Stanford Data
(GSE13911)

Mean
correlation (r) p-value

1 vorinostat 20.716 ,0.00001 vorinostat 20.714 ,0.00001

2 trichostatin A 20.643 ,0.00001 trichostatin A 20.653 ,0.00001

3 tanespimycin 20.539 ,0.00001 tanespimycin 20.527 ,0.00001

4 trifluoperazine 20.538 ,0.00001 LY-294002 20.52 0.00002

5 LY-294002 20.45 ,0.00001 0297417-0002B 20.815 0.00052

doi:10.1371/journal.pone.0024662.t002
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Figure 1. In vitro therapeutic efficacy of vorinostat in gastric cancer cell lines. (A) MTT assays were performed after incubation of AGS,
KATO-III, and NCI-N87 with the indicated concentrations of vorinostat for 72 hrs. (B) Change of cell cycle by vorinostat was assessed by fluorescence-
activated cell sorting (FACS) analysis of PI stained cells treated with 5 mM vorinostat for 24 hrs. (C) Viability test using PI exclusive solution. AGS and
KATO-III cells were treated with 5 mM vorinostat for 72 hrs and assessed by FACS. In representative plot, dead cells were manifested as dots with low
forward scatter and high side scatter. (D) Western blot analysis of active caspase-3 from AGS and KATO-III gastric cancer cells without or with 5 mM
vorinostat treatment. Cell lysates were analyzed at the indicated time points. Actin was used as a loading control. *, P,0.05. In the bar graph, data
represent mean+SD (standard deviation).
doi:10.1371/journal.pone.0024662.g001
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Results

Gene expression signature of gastric cancer
Table 1 represents the characteristics of the patients from

Yonsei data [17]. Gastric cancers were mostly located in distal

stomach and stage III/IV. Using the gene expression microarray

data of those patients, we found 3,360 tumor-specific genes whose

mean expression intensities were altered by at least two-fold

compared to mean normal tissue gene expression (P,0.001,

Figure S1). This set of 3,360 genes (i.e. gastric cancer-specific

signature) was used for further in silico screening for potential

therapeutic drugs for gastric cancer.

Connectivity Map analysis identifies potential drugs
targeting gastric cancer

To identify potential drugs targeting gastric cancer, the gastric

cancer specific signature was used as input query into Connectivity

Map as described in the ‘Method’ section. We specifically looked

for compounds that had a signature inversely correlated with the

gastric cancer-specific signature and identified multiple drugs

which are summarized in Table 2. The ranking of candidate

agents was established based on inverse correlation value and p-

value. Table 2 (columns 2–4) shows the highest ranked compounds

from Yonsei data. Connectivity Map analysis revealed that histone

deacetylase (HDAC) inhibitors, including vorinostat and trichos-

tatin A represent potential candidates for targeting gastric cancer.

The phosphatidylinositol-3-kinase inhibitor LY294002, the phe-

nothiazine trifluoperazine and the heat shock protein inhibitor

tanespimycin were also identified as candidate target agents for

gastric cancer. Next, we validated our findings by using an

independent set of gene expression profile data from Stanford

Microarray Database (Table 2; Stanford Data; columns 5–7).

Connectivity Map analysis of this data set confirmed vorinostat as

the top ranked candidate. In conclusion, Connectivity Map

analysis identified vorinostat as a potential therapeutic agent for

gastric cancer.

Vorinostat shows therapeutic efficacy in vitro in gastric
cancer cell lines

To evaluate the therapeutic efficacy of vorinostat, we assessed

the growth of established gastric cancer cell lines (AGS, KATO-

III, and NCI-N87) after 72 h vorinostat treatment using MTT

assay. Compared with untreated cells, vorinostat significantly

inhibited cell viability in a dose-dependent manner in all gastric

cancer cell lines (Figure 1A). We confirmed the reduction in cell

viability by cell cycle analysis of AGS and KATO-III cancer cells.

We showed that treatment with vorinostat (5 mM) for 24 h

induced a marked increase in the sub-G1 proportion of AGS cells

compared with control (2.360.07% vs 39.260.99%, respectively;

P,0.01), indicating the induction of cell death (Figure 1B). In

contrast, the sub-G1 proportion of vorinostat treated KATO-III

cells was not affected (Figure 1B), whereas the proportion of G2/

M cells increased significantly (21.461.91% vs. 29.360.35%;

P = 0.044), indicative for cell cycle arrest. We further tested cell

viability using PI-exclusion. We treated AGS and KATO-III cells

with 5 mM vorinostat for 72 h and assessed them by flow

cytometry (Figure 1C). The amount of dead cells, which have

low forward scatter and high side scatter, was significantly

Figure 2. Hierarchical Clustering Gene expression analysis of
gastric cancer cell lines after vorinostat treatment. (A) Unsuper-
vised hierarchical clustering of gene expression data from AGS and
KATO III before and after 5 mM vorinostat treatment for 48 hours. Genes
with an expression level that has at least 2-fold difference relative to
median value across cell lines in at least 2 arrays were selected for
hierarchical clustering analysis (3,646 gene features). (B) Supervised
hierarchical clustering with autophagy related genes (149 probes) of
AGS and KATO III after vorinostat treatment.
doi:10.1371/journal.pone.0024662.g002

Figure 3. Autophagy induction by vorinostat treatment in gastric cancer cells. (A) AGS and KATO-III were treated with 5 mM vorinostat for
the indicated time points. Protein levels of LC3 and p62 were analyzed by immunoblot analysis. Actin was used as a loading control. p62 levels were
measured by densitometric analysis of the western blots and compared to actin levels. p62 levels of untreated AGS and KATOIII cells were considered
as 1. (B) AGS cells were treated for 12 h with 5 mM vorinostat with or without 50 nM bafilomycin A1 (BafA1). Cell lysates were analyzed by
immunoblot analysis for LC3 and actin.
doi:10.1371/journal.pone.0024662.g003
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increased in AGS cells (12.464.3% vs. 79.465.7%), and also in

KATO-III cells, compared to control cells (8.760.6% vs.

46.862.1%). We finally analyzed the induction of apoptosis after

vorinostat treatment in AGS and KATO-III gastric cancer cell

lines using immunoblot. Vorinostat increased apoptosis, as

assessed by caspase-3 cleavage, in AGS cells and to a lesser extent

in KATO-III cells (Figure 1D).

In summary, these data indicate that vorinostat has antiprolif-

erative effect on gastric cancer cell lines by inducing apoptosis in

AGS cells and G2/M cell cycle arrest in KATO-III cells.

Global gene expression analysis of gastric cancer cell
lines AGS and KATO-III after vorinostat treatment

To analyze the effect of vorinostat on global gene expression,

AGS and KATO-III gastric cancer cells were treated with 5 mM

vorinostat for 48 hours and microarray analysis was performed.

Unsupervised cluster analysis of microarray data after vorinostat

treatment showed that AGS and KATO-III cells clustered with

the same cell line regardless to vorinostat treatment (Figure 2A).

Because autophagy has been reported to have a role in vorinostat-

induced effects in other cancers [20,21], we conducted supervised

analysis of the autophagy-related gene set (80 genes and 149

probes; Table S2). Vorinostat-treated gastric cancer cell lines were

clustered together (Figure 2B), indicating that induction of

autophagy is an important property of vorinostat in gastric cancer

lines.

Inhibition of autophagy enhances vorinostat efficacy in
gastric cancer cells

Given that autophagy may have a role in both cancer cell

survival and cancer cell death after drug treatment [22,23], we

further evaluated the contribution of this process to the effect of

vorinostat on gastric cancer cell lines. We functionally evaluated

this process by immunoblot analysis of the autophagy marker

microtubule-associated protein 1 light chain 3 (LC3). Vorinostat-

treated KATO-III cells, and to a lesser extent AGS cells, showed a

clear accumulation of the faster-migrating lipidated form of LC3

(LC3-II) (Figure 3A). Accumulation of LC3-II may result from

either upregulation of autophagosome formation or blockage of

autophagic degradation of LC3-II [24,25]. We therefore analyzed

vorinostat-treated cells for p62 degradation, a marker of

autophagic flux [24], and we observed a decrease in p62 protein

levels in vorinostat treated cells compared to the time matched

untreated cancer cells (Figure 3A). In addition, cotreatment of

vorinostat with bafilomycin A1 (BafA1), an inhibitor of autopha-

gosome-lysosome fusion, further increased LC3-II accumulation

(Figure 3B), compatible with vorinostat inducing autophagic flux

rather than blocking the degradative capacity of autophagoly-

somes. Electron microscopy (EM) is a sensitive, quantitative and

definitive method for detection of autophagy [24]. Consistent with

the western blot data, EM analysis showed that vorinostat

markedly increased autophagosome formation in AGS cells

(Figure 4B and B’) compared to control cells (Figure 4A and A’).

To investigate whether the accumulation of autophagosomes

protects cells against the cellular stress elicited by vorinostat, we

inhibited the autophagy process using the pharmacological

inhibitor chloroquine and small interfering RNA (siRNA) against

beclin-1. Addition of chloroquine to vorinostat-treated AGS and

KATO-III cells resulted in a dose-dependent decrease in viability

(Figure 5A). The reduction in viability was confirmed in KATO-

III cells treated with beclin-1 siRNA (Figure 5B). Together, the

data suggest that inhibition of vorinostat-induced autophagy may

improve the efficacy of vorinostat treatment of gastric cancer cells.

Vorinostat changes gene signature in human gastric
cancer cells

To understand the effects of vorinostat on gene expression in

gastric cancer cell lines, we conducted microarray analysis of

vorinostat treated AGS and KATO-III gastric cancer cell lines

(Fig. 2). Our analysis revealed significant genomic differences

between untreated and vorinostat-treated gastric cancer cells (AGS

and KATO-III). After vorinostat treatment, the expression of 1014

genes was increased and the expression of 760 genes was decreased

in the AGS cell line. In KATO-III cell line, 164 genes were up and

191 genes were down regulated (two-fold difference; P,0.001).

Vorinostat altered significantly the expression of 140 genes in both

AGS and KATO-III cell lines (vorinostat specific gene signature).

The genes which were most altered after vorinostat treatment were

identified as SPANXA1, SPANXA2, VGF, DHRS2, ENTPD8,

PNPLA7, STX1A, ARRDC4, KRT13, PRPH, NEU1, TXNIP, CCK

(.4-fold up-regulation) and MUC1, IFITM1, ANKRD37 (.4-fold

down-regulation).

Next, we intended to identify biomarker candidates which can

predict vorinostat sensitivity of human gastric cancer patients.

Therefore, we combined the set of altered genes in vorinostat treated

gastric cancer cell lines (vorinostat specific gene signature) and the two

human gastric cancer signatures generated from the Yosei and

Stanford data using Venn diagram analysis. We found that the relative

expression levels of 12 genes were reversed by vorinostat treatment

(Figure 6). Of these 12 genes, 7 genes highly expressed in gastric cancer

tissues were down-regulated (ITGB5, TYMS, MYB, APOC1, CBX5,

PLA2G2A, KIF20A) and 5 low-expressed genes were up-regulated after

vorinostat treatment (SCGB2A1, TCN1, CFD, APLP1, NQO1 (Table 3).

Figure 4. Electron microscopy analysis of autophagy in AGS
cells. After 12 h treatment DMSO (A, A’) or with 5 mM vorinostat (B, B’)
(left panels, low magnification, scale bar: 2 mm), EM analysis was
performed. High magnification images of boxed areas with Av
depicting autophagic vacuoles (left panels, scale bar: 500 nm; N:
nucleus, M: mitochondria).
doi:10.1371/journal.pone.0024662.g004
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Discussion

Our results indicate that a global human gastric cancer gene

signature might be useful to find therapeutic agents that rather

target the genomic signature of gastric cancer instead of targeting

one or two specific genes. Using the Connectivity Map, we found

that HDAC inhibitors, such as vorinostat and trichostatin A, had

an inversely correlated gene signature compared to the gastric

cancer specific gene signature and therefore may be lead

therapeutic candidates for gastric cancer. In vitro evaluation of

the therapeutic efficacy of vorinostat revealed that this therapeutic

drug suppressed growth of different gastric cancer cell lines. Next

to its antiproliferative effects, vorinostat also upregulated autoph-

agy-specific genes. Inhibition of vorinostat-induced autophagy

resulted in a further reduction of viability. Moreover, combined

analysis of gastric cancer cell lines treated with vorinostat and

samples of gastric cancer patients showed that vorinostat altered

the expression levels of a set of twelve gastric cancer specific genes.

Figure 5. Effect of vorinostat-induced autophagy inhibition. (A) AGS and KATO-III cells were treated with 5 mM vorinostat and different
concentrations of chloroquine (CQ). Cell viability was assessed after 12 hours using crystal violet staining and control (Ctr) was set as 100%. (B)
KATO-III cells were transfected with siRNA against Beclin 1 (siBeclin1) or with non-targeting Risc Free siRNA or treated with Dharmafect I alone
(mock). siRNA efficiency was confirmed by western blot analysis of Beclin 1 and Risc Free as a control. a-tubulin was used to show equal loading
of proteins. Viability was measured after 12 hours vorinostat treatment using crystal violet staining. Viability of untreated control (Ctr) cells was
set as 100%. *, P,0.05.
doi:10.1371/journal.pone.0024662.g005

Figure 6. Change of gene expression signature after vorinostat treatment. Venn Diagram of genes selected by univariate test (two-sample
t-test). Genes were selected for p,0.001 between compared groups. The red circle (gene list A) represents gastric cancer specific genes from Yonsei
data. The blue circle (gene list B) represents gastric cancer specific genes from Stanford data. The yellow circle (gene list C) represents vorinostat
specific gene signature from both AGS and KATO-III cell lines (P,0.001, 2 fold change).
doi:10.1371/journal.pone.0024662.g006
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Our findings showed that HDAC inhibitors, vorinostat and

trichostatin A, were the top therapeutic candidates for gastric

cancer, which agrees with the concept that HDAC is overex-

pressed in gastric cancer tissues [26]. HDAC inhibitors have been

shown to increase acetylation of histones, therefore affecting gene

expression. These inhibitors manifest anticancer effects by

inducing the intrinsic and extrinsic apoptosis pathway [27,28],

blocking tumor angiogenesis [29], and inhibiting intracellular

stress response pathways [30]. Because HDAC inhibitors have

global effects on gene expression, they may affect as yet unrevealed

cellular processes [31,32]. In clinical settings, HDAC inhibitors

have been mostly applied to hematologic malignancies, but clinical

trials in solid tumors are ongoing. A recent study, supporting our in

vitro findings showed therapeutic efficacy of HDAC inhibitors on

human gastric cancer samples using the histoculture drug response

assay [33]. However, it remains to be unrevealed whether specific

molecular-defined subgroups can predict response or resistance to

HDAC inhibitors. In addition, the application of potentially useful

biomarkers still has several limitations [34].

The Connectivity Map remains difficult to evaluate until we

can assess the extent to which genomic signatures obtained from

in vitro experiments recapitulate the complexities of human

disease. Although the Connectivity Map contains more than

7000 expression profiles representing 1,309 compounds, its

approach still deals with some limitations such as the limited

amount of cell line data (MCF7, PC3, etc) and the ignorance of

microenvironmental influences from the human body [16]. In

addition, gene expression profiles derived from the treatment of

cultured human cells might not be correlated with in vivo

anticancer effect, due to the complex nature of cancer.

Moreover, the input of only a limited amount of genes is

allowed, which may bias the obtained results. Future studies

need to be addressed whether our results obtained through cmap

analysis can be confirmed in an in vivo gastric cancer model.

Despite these limitations, Connectivity Map analysis is a

potentially useful method for new functions for drugs, including

vorinostat, already in use in clinic for other purposes.

In vitro evaluation of therapeutic efficacy of vorinostat on gastric

cancer cell lines revealed that this therapeutic drug showed an

antiproliferative effect at physiological relevant doses (5 mM)

compatible with other publications: IC50 for AGS and KATO-

III has been shown to be respectively 2.9 mM and 5.9 mM [35].

Analysis of cell cycle (Figure 1B), cell viability and (Figure 1C)

apoptotic responses (Figure 1D) indicated that the effects of

vorinostat show a discrepancy in different gastric cancer cell lines,

inducing apoptosis in AGS cells and G2/M arrest in KATO-III

cells, respectively. The difference in genetic/mutational back-

ground of the cell lines may account for the discrepancy.

Microarray gene expression analysis comparing vorinostat-

treated and untreated gastric cancer cell lines indicated that this

drug induced autophagy, which is in agreement with previous

reports in other cancer cell lines [20,21]. As both induction and

inhibition of autophagy may have therapeutic benefits [22,23], we

further evaluated the role of autophagy in gastric cancer cells after

vorinostat treatment. Inhibiting autophagy using a well-known

antimalarial drug, chloroquine [21] and using siRNA against

beclin-1 resulted in a reduction in viability of gastric cancer cell

lines in the presence of vorinostat, suggesting autophagy is

activated as a protective survival response after vorinostat

treatment (Figure 5). Thus combining anticancer agents such as

vorinostat and inhibitors of autophagy could provide a therapeutic

advantage in the fight against gastric cancer.

To identify a vorinostat induced gene signature, we evaluated

the gene expression profiles of AGS and KATO-III cell lines after

vorinostat treatment. The expression of 1774 and 355 genes was

reversed (.2-fold, p,0.001) in AGS and KATO-III cell lines,

respectively. This suggests that the AGS cell line was more

vulnerable than KATO-III to vorinostat treatment in regard to

gene expression. This manifestation may explain the sensitivity of

AGS cells to vorinostat. We discovered that vorinostat significantly

changed the expression of a set of 140 genes in both AGS and

KATO-III cell lines. Our results confirm earlier studies showing

that that expression of MUC1 and TXNIP is reversed after

HDAC inhibitor treatment [36–38]. High MUC1 expression is

related to poor prognosis and carcinogenesis in gastric cancer [39].

Additionally, re-expression of TXNIP leads to cell growth arrest

and apoptosis in cancer [37].

To determine a vorinostat induced gene signature for human

gastric cancer, we combined the vorinostat induced cell line gene

signature with the human gastric cancer gene signature We found

that vorinostat altered expression levels (.2 fold) of only twelve

human gastric cancer specific genes, which can potentially explain

the mechanism of the vorinostat effect in gastric cancer patients.

Expression of ITGB5, TYMS, MYB, APOC1, CBX5, PLA2G2A, and

KIF20A which is up-regulated in human gastric cancer tissues, was

significantly decreased by vorinostat. Some of these genes are

already known to play a role in carcinogenesis or metastasis of

gastric cancer or other cancers. First, expression levels of TYMS

regulating DNA synthesis and repair showed negative relation to

drug sensitivity in gastric cancer and is a marker for drug

resistance [40]. Second, MYB is known as a proto-oncogene for

leukemia, colon cancer, breast cancer, and esophageal cancer [41–

44], and our results show for the first time that the expression of

this gene is also increased in gastric cancer. Third, APOC1

commonly up regulated in gastric cancer compared to normal

gastric epithelium [45,46], is already considered as a possible

biomarker for gastric cancer. Last, KIF20A plays a role in

cytokinesis and inhibiting expression of this gene attenuated

growth of pancreatic cancer cells [47]. In contrast, vorinostat

treatment also increased the expression of genes which are

normally low in human gastric cancer tissue, such as SCGB2A1,

Table 3. Reversed genes* after vorinostat treatment in AGS
and KATO-III among gastric cancer specific genes**.

Gene symbol Description

5 Up regulation after vorinostat treatment

SCGB2A1 secretoglobin, family 2A, member 1

TCN1 transcobalamin I (vitamin B12 binding protein, R binder family)

CFD complement factor D

APLP1 amyloid beta (A4) precursor-like protein 1

NQO1 NAD(P)H dehydrogenase, quinone 1

7 Down regulation after vorinostat treatment

ITGB5 integrin, beta 5

TYMS thymidylate synthetase

MYB v-myb myeloblastosis viral oncogene homolog

APOC1 apolipoprotein C-I

CBX5 chromobox homolog 5 (HP1 alpha homolog, Drosophila)

PLA2G2A phospholipase A2, group IIA

KIF20A kinesin family member 20A

*More than 2 fold changed genes were selected.
**Gastric cancer specific genes were extracted from GSE13861 data (3360
genes) and GSE13911 data (3242 genes).
doi:10.1371/journal.pone.0024662.t003
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TCN1, CFD, APLP1, and NQO1. CFD, known to be important in

immune defense in tissue [48], possibly participates in inflamma-

tion of gastric epithelium [49]. APLP1, a transcriptional target of

p53, may be involved in cell death [50] and therefore vorinostat-

induced expression of APLP1 may contribute to apoptotic cell

death observed in our study. NQO1 inactivation has been

associated with increased susceptibility to a variety of carcinogens

[51], and has been related to the risk of colorectal cancer [52,53].

Further experiments are required to understand the functions of

these genes and their relation to the effects of vorinostat (i.e.

induction of autophagy and cell death) in gastric cancer. However,

they are feasible to be considered as predictive biomarkers for

vorinostat sensitivity. One of the clinical implications of this ‘12

gene signature’ is that it can be used to select gastric cancer

patients who may benefit from this treatment.

In summary, we generated a global human gastric cancer gene

signature and by using Connectivity Map we found that the

HDAC inhibitor vorinostat is a strong candidate therapeutic agent

for gastric cancer. We presented that gene signature analysis may

be useful in discovering therapeutic agents for the treatment of

gastric cancer, such as vorinostat, which may be a promising

therapeutic agent alone or in combination with autophagy

inhibitors.

Supporting Information

Figure S1 Gene expression signature (3,360 genes) of
human gastric cancer. Measured gene expression values were

log 2-transformed and median-centered across samples before

generating the heatmap. The data are presented in matrix format

in which rows represent individual gene and columns represent

each tissue. The red and green color in cells reflects relative high

and low expression levels respectively.

(TIF)

Table S1 A list of 500 up regulated and 500 down
regulated genes in gastric cancer, used as input query
into Connectivity Map.
(XLS)

Table S2 A list of 80 autophagy-related genes (149
probes), used for supervised analysis (Figure 2B).
(XLS)

Author Contributions

Conceived and designed the experiments: SC JYC. Performed the

experiments: SC JYL YYP. Analyzed the data: SC JYL SBK JSL JYC.

Contributed reagents/materials/analysis tools: WC KHK. Wrote the

paper: SC JYL GBM JYC.

References

1. Parkin DM, Bray F, Ferlay J, Pisani P (2005) Global cancer statistics, 2002. CA

Cancer J Clin 55: 74–108.

2. Ajani JA, Mansfield PF, Crane CH, Wu TT, Lunagomez S, et al. (2005)

Paclitaxel-based chemoradiotherapy in localized gastric carcinoma: degree of

pathologic response and not clinical parameters dictated patient outcome. J Clin

Oncol 23: 1237–1244.

3. Van Cutsem E, Moiseyenko VM, Tjulandin S, Majlis A, Constenla M, et al.

(2006) Phase III study of docetaxel and cisplatin plus fluorouracil compared with

cisplatin and fluorouracil as first-line therapy for advanced gastric cancer: a

report of the V325 study group. J Clin Oncol 24: 4991–4997.

4. Cunningham D, Starling N, Rao S, Iveson T, Nicolson M, et al. (2008)

Capecitabine and oxaliplatin in advanced esophagogastric cancer. N Engl J Med

358: 36–46.

5. Shah MA, Ramanathan RK, Ilson DH, Levnor A, D’Adamo D, et al. (2006)

Multicenter phase II study of irinotecan, cisplatin, and bevacizumab in patients

with metastatic gastric or gastroesophageal junction adenocarcinoma. J Clin

Oncol 24: 5201–5206.

6. Pinto C, Di Fabio F, Siena S, Cascinu S, Rojas Llimpe FL, et al. (2007) Phase II

study of cetuximab in combination with FOLFIRI in patients with untreated

advanced gastric or gastroesophageal junction adenocarcinoma (FOLCETUX

study). Ann Oncol 18: 510–517.

7. Bang YJ, Van Cutsem E, Feyereislova A, Chung HC, Shen L, et al. (2010)

Trastuzumab in combination with chemotherapy versus chemotherapy alone for

treatment of HER2-positive advanced gastric or gastro-oesophageal junction

cancer (ToGA): a phase 3, open-label, randomised controlled trial. Lancet 376:

687–697.

8. Tanner M, Hollmén M, Junttila TT, Kapanen AI, Tommola S, et al. (2005)

Amplification of HER-2 in gastric carcinoma: association with topoisomerase IIa

gene amplification, intestinal type, poor prognosis and sensitivity to trastuzumab.

Ann Oncol 16: 273–278.

9. Kanai T, Konno H, Tanaka T, Baba M, Matsumoto K, et al. (1998) Anti-tumor

and anti-metastatic effects of human vascular-endothelial-growth-factor-neutral-

izing antibody on human colon and gastric carcinoma xenotransplanted

orthotopically into nude mice. Int J Cancer 77: 933–936.

10. DeRisi JL, Iyer VR, Brown PO (1997) Exploring the metabolic and genetic

control of gene expression on a genomic scale. Science 278: 680–686.

11. Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, et al. (1999)

Molecular classification of cancer: class discovery and class prediction by gene

expression monitoring. Science 286: 531–537.

12. Pomeroy SL, Tamayo P, Gaasenbeek M, Sturla LM, Angelo M, et al. (2002)

Prediction of central nervous system embryonal tumour outcome based on gene

expression. Nature 415: 436–442.

13. Hughes TR, Marton MJ, Jones AR, Roberts CJ, Stoughton R, et al. (2000)

Functional discovery via a compendium of expression profiles. Cell 102:

109–126.

14. Ganter B, Tugendreich S, Pearson CI, Ayanoglu E, Baumhueter S, et al. (2005)

Development of a large-scale chemogenomics database to improve drug

candidate selection and to understand mechanisms of chemical toxicity and

action. J Biotechnol 119: 219–244.

15. Lamb J, Crawford ED, Peck D, Modell JW, Blat IC, et al. (2006) The

Connectivity Map: using gene-expression signatures to connect small molecules,
genes, and disease. Science 313: 1929–1935.

16. Lamb J (2007) The Connectivity Map: a new tool for biomedical research. Nat

Rev Cancer 7: 54–60.

17. Cho JY, Lim JY, Cheong JH, Park YY, Yoon SL, et al. (2011) Gene expression
signature-based prognostic risk score in gastric cancer. Clin Cancer Res 17:

1850–1857.

18. Bolstad BM, Irizarry RA, Astrand M, Speed TP (2003) A comparison of

normalization methods for high density oligonucleotide array data based on
variance and bias. Bioinformatics 19: 185–193.

19. Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and

display of genome-wide expression patterns. Proc Natl Acad Sci U S A 95:
2448–2455.

20. Shao Y, Gao Z, Marks PA, Jiang X (2004) Apoptotic and autophagic cell death

induced by histone deacetylase inhibitors. Proc Natl Acad Sci U S A 101:
18030–18035.

21. Carew JS, Nawrocki ST, Cleveland JL (2007) Modulating autophagy for

therapeutic benefit. Autophagy 3: 464–467.

22. Amaravadi RK, Thompson CB (2007) The roles of therapy-induced autophagy

and necrosis in cancer treatment. Clin Cancer Res 13: 7271–7279.

23. Kondo Y, Kanzawa T, Sawaya R, Kondo S (2005) The role of autophagy in
cancer development and response to therapy. Nat Rev Cancer 5: 726–734.

24. Klionsky DJ, Abeliovich H, Agostinis P, Agrawal DK, Aliev G, et al. (2008)

Guidelines for the use and interpretation of assays for monitoring autophagy in
higher eukaryotes. Autophagy 4: 151–175.

25. Mizushima N, Yoshimori T (2007) How to interpret LC3 immunoblotting.

Autophagy 3: 542–545.

26. Choi JH, Kwon HJ, Yoon BI, Kim JH, Han SU, et al. (2001) Expression profile
of histone deacetylase 1 in gastric cancer tissues. Jpn J Cancer Res 92:

1300–1304.

27. Zhang Y, Adachi M, Kawamura R, Imai K (2006) Bmf is a possible mediator in

histone deacetylase inhibitors FK228 and CBHA-induced apoptosis. Cell death
Differ 13: 129–140.

28. Zhao Y, Tan J, Zhuang L, Jiang X, Liu ET, et al. (2005) Inhibitors of histone

deacetylases target the Rb-E2F1 pathway for apoptosis induction through
activation of proapoptotic protein Bim. Proc Natl Acad Sci U S A 102:

16090–16095.

29. Deroanne CF, Bonjean K, Servotte S, Devy L, Colige A, et al. (2002) Histone
deacetylases inhibitors as anti-angiogenic agents altering vascular endothelial

growth factor signaling. Oncogene 21: 427–436.

30. Jeong JW, Bae MK, Ahn MY, Kim SH, Sohn TK, et al. (2002) Regulation and

destabilization of HIF-1alpha by ARD1-mediated acetylation. Cell 111:
709–720.

31. Peart MJ, Smyth GK, van Laar RK, Bowtell DD, Richon VM, et al. (2005)

Identification and functional significance of genes regulated by structurally
different histone deacetylase inhibitors. Proc Natl Acad Sci U S A 102:

3697–3702.

32. Glaser KB, Staver MJ, Waring JF, Stender J, Ulrich RG, et al. (2003) Gene
expression profiling of multiple histone deacetylase (HDAC) inhibitors: Defining

Vorinostat for Gastric Cancer Treatment

PLoS ONE | www.plosone.org 9 September 2011 | Volume 6 | Issue 9 | e24662



a common gene set produced by HDAC inhibition in T24 and MDA carcinoma

cell lines. Mol Cancer Ther 2: 151–163.
33. Yoon SN, Roh SA, Cho DH, Kim MB, Hyun YL, et al. (2010) In vitro

chemosensitivity of gastric adenocarcinomas to histone deacetylase inhibitors,

compared to established drugs. Hepatogastroenterology 57: 657–662.
34. Prince HM, Bishton MJ, Harrison SJ (2009) Clinical studies of histone

deacetylase inhibitors. Clin Cancer Res 15: 3958–3969.
35. Chang H, Rha SY, Jeung HC, Jung JJ, Kim TS, et al. (2010) Identification of

genes related to a synergistic effect of taxane and suberoylanilide hydroxamic

acid combination treatment in gastric cancer cells. J Cancer Res Clin Oncol 136:
1901–1913.

36. Chang TH, Szabo (2002) Enhanced growth inhibition by combination
differentiation therapy with ligands of peroxisome proliferator-activated

receptor-gamma and inhibitors of histone deacetylase in adenocarcinoma of
the lung. Clin Cancer Res 8: 1206–1212.

37. Butler LM, Zhou X, Xu WS, Scher HI, Rifkind RA, et al. (2002) The histone

deacetylase inhibitor SAHA arrests cancer cell growth, up-regulates thioredoxin-
binding protein-2, and down-regulates thioredoxin. Proc Natl Acad Sci U S A

99: 11700–11705.
38. Lee JH, Jeong EG, Choi MC, Kim SH, Park JH, et al. (2010) Inhibition of

histone deacetylase 10 induces thioredoxin-interacting protein and causes

accumulation of reactive oxygen species in SNU-620 human gastric cancer cells.
Mol Cells 30: 107–112.

39. Retterspitz MF, Monig SP, Schreckenberg S, Schneider PM, Holscher AH,
et al. (2010) Expression of {beta}-catenin, MUC1 and c-met in diffuse-type

gastric carcinomas: correlations with tumour progression and prognosis.
Anticancer Res 30: 4635–4641.

40. Ooyama A, Okayama Y, Takechi T, Sugimoto Y, Oka T, et al. (2007) Genome-

wide screening of loci associated with drug resistance to 5-fluorouracil-based
drugs. Cancer Sci 98: 577–583.

41. Tomita A, Watanabe T, Kosugi H, Ohashi H, Uchida T, et al. (1998)
Truncated c-Myb expression in the human leukemia cell line TK-6. Leukemia

12: 1422–1429.
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