
AMD, an Automated Motif Discovery Tool Using
Stepwise Refinement of Gapped Consensuses
Jiantao Shi1,3, Wentao Yang2, Mingjie Chen2, Yanzhi Du1, Ji Zhang1,2*, Kankan Wang2

1 Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China, 2 Shanghai

Institute of Hematology and Sino-French Center for Life Science and Genomics, Rui-Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai,

China, 3 Graduate School of the Chinese Academy of Sciences, Shanghai, China

Abstract

Motif discovery is essential for deciphering regulatory codes from high throughput genomic data, such as those from ChIP-
chip/seq experiments. However, there remains a lack of effective and efficient methods for the identification of long and
gapped motifs in many relevant tools reported to date. We describe here an automated tool that allows for de novo
discovery of transcription factor binding sites, regardless of whether the motifs are long or short, gapped or contiguous.
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Introduction

The regulation of gene expression is of critical importance for

cellular activity and is controlled largely by transcription factors

(TFs) [1]. TFs recognize short and complex DNA binding sites

that are primarily located upstream of the transcription start site

(TSS). Although experimental techniques play a definitive role in

determining the functional binding sites, computational tools are

becoming increasingly important for the prediction of transcrip-

tion factor binding sites (TFBSs), particularly with respect to those

present in the data obtained from global approaches such as

expression microarrays, chromatin immunoprecipitation (ChIP)

combined with DNA microarrays (ChIP-chip) or ChIP coupled

with next generation sequencing (ChIP-seq).

However, the complexity and diversity of TFBSs necessitate

continuing research in the area of computational prediction [2].

One of the major challenges in site prediction is the identification

of short sequence patterns or motifs with statistical significance (or

over-representation) in a given set of DNA sequences. These DNA

sequences can be promoters of co-expressed genes or genomic

regions targeted by a specific TF. The process of recognizing such

motifs is defined as de novo motif discovery and is often performed

without prior knowledge of the potential motifs to be discovered.

Numerous de novo motif discovery tools have been recently

developed and quickly adapted by investigators in the community,

including AlignACE [3], REDUCE [4], MEME [5], YMF [6],

MDscan [7], Weeder [8], DME [9] and Trawler [10]. Despite

these available tools, the effective and efficient identification of

motifs within datasets of interest remains a challenging problem,

particularly when studying datasets derived from mammals, such

as those from mice and humans. Tompa et al. [11] have recently

evaluated 13 different motif discovery tools and showed that many

of the tools are inefficient when used on datasets derived from

organisms higher than yeast. For example, YMF was reported to

be a more accurate tool than MEME or AlignACE for yeast data

analysis, but its efficiency was significantly reduced when analyzing

data from higher organisms, such as metazoans [12]. A recently

developed tool, Amadeus [12], appears to outperform five other

popular tools (AlignACE, YMF, MEME, Weeder and Trawler) on

metazoan datasets, with a success rate of 62%. As indicated by the

authors of Amadeus, the drawbacks associated with most of the

other tools can probably be attributed to their selected background

models because they are primarily based on pre-computed k-mer

counts. In contrast, the reference background used in Amadeus

includes the entire set of promoters in the genome of interest. This

improvement appears to be especially important for the analysis of

the genomes of organisms higher than yeast because their

regulatory sequences are far more complex and versatile than

the regulatory sequences in the yeast genome [12]. Other motif

discovery tools improve performance by using discriminative

algorithms, which take into account negative sets in the analysis.

Members of this type of motif discovery tools include DME [13],

DEME [14] and MoAn [15].

In addition, the algorithms used in most of the motif discovery

tools are mainly designed to discover un-gapped motifs, which are

usually less than 12 nt long. This restriction is largely due to the fact

that motif discovery becomes more challenging when gaps are

allowed [16] or when the motif length exceeds 12 nt [17]. However,

the presence of gapped or long motifs is common in the genome of

eukaryotes. According to the research by Xie et al. [18], up to 30%

of the human motifs in promoter regions contain gaps. In their

follow up research, hundreds of long motifs have been identified to

be conserved across human, mouse and rat genomes. For example,

the GAL4 motif is represented by the consensus sequence

CGGnnnnnnnnnnnCCG. This type of motif is not easily identified

by most motif discovery tools [10,12]. Several specialized tools, such
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as SPACER [19], BIPAD [20] and SPACE [21], have been

developed to search for such motifs. In addition, because long motifs

are widely present in the eukaryotic genome and are often

biologically indispensable, motif length is adjustable in several tools

including MEME [5] and MDscan [7], which enables the use of

these tools to identify long motifs. Unfortunately, low-effectiveness

often accompanies these tools when searching for long motifs. Thus,

there is a need to develop an automated approach for de novo motif

discovery, regardless of whether the motifs to be discovered are

gapped or un-gapped, or whether they are long or short.

Running time represents another important factor that impacts

the process of motif discovery, particularly when dealing with

ChIP-chip or ChIP-seq datasets, which usually contain thousands

of binding regions for a single TF. For instance, MEME is one of

the most popular tools used for these types of analysis but is

computationally intensive when used on large target sets [10,12].

For some other tools, running time appears to be determined by

the motif length. The longer the motif to be discovered, the more

running time required. This behavior is particularly true for

enumeration-based tools such as Weeder [10]. Thus, the maximal

length of motifs that can be efficiently identified by most tools is

restricted to 12 nt [8,10,12]. However, many biologically

significant motifs exceed this length [22].

In an attempt to address these challenges, we have considered

multiple factors simultaneously, including the recognition of long

or gapped motifs, accuracy of motif discovery and running time,

and developed an automated motif discovery (AMD) approach. By

comparing the performance of AMD with that of several of the

most popular tools for de novo motif discovery, we found that AMD

shared several of the advanced benefits of Amadeus, one of the

most advanced motif discovery tools [12]. In addition, we found

that AMD substantially overcame the drawbacks associated with

Amadeus and all of the other tested algorithms in identifying

gapped motifs and long motifs.

Methods

We propose a de novo motif discovery method that identifies

over-represented motifs in a group of foreground sequences

compared to background sequences. The method is divided into

five sequential steps: core motif filtering, degeneration, extension,

refinement and redundancy removal. The selected potential motifs

in each step are subjected to the next step for further processing.

The foreground and background sequences are the only input files

to the software. The main workflow is illustrated in Figure 1.

Algorithm
Core motifs are represented by IUPAC consensuses that consist

of two triplets of specified bases interrupted by a fixed number

(from 0 to 14) of unspecified bases. For a given core motif, two

scores are calculated by comparing the number of instances of the

motif in the foreground and in the background:

a) Fold enrichment: SNR~
C

E
and

b) Z{score~
C{E

sqrt(E)
, quantifying the significance of enrich-

ment [22].

Here, C and E represent the observed and expected number of

instances in foreground regions assuming uniform distribution,

respectively.

E is calculated as E~
N � SF

SB

, where N is the number of

instances in the background, and SF and SB are the total length of

the DNA sequences in the foreground and background, respec-

tively.

Fold enrichments and Z-scores are used extensively in the first

three steps.

Initial core motif filtering. An initial core motif is defined

as UVW-gap-XYZ, where U, V, W, X, Y and Z can be any

nucleotide. The gap length ranges from 0 to 14. This results in

61,440 (46*15) potential core motifs. Thus, each initial core motif

has a maximum length of 20 with 6 informative positions. The fold

enrichment and Z-score for each of these core motifs are

calculated. These core motifs are filtered by a minimal fold

enrichment of 1.2, and ranked in descending order according to

their Z-scores. The top 50 consensus sequences are selected as the

primary core motifs. In case there are less than 50 consensuses left

after fold enrichment filtering, all motifs are selected.

Figure 1. Overview of the AMD algorithm. AMD applies a step-wise motif discovery method, which includes core motif filtering, degeneration,
extension, refinement and redundancy removal. The selected potential motifs in each step are subjected to the next step for further processing. For
more details, see Methods.
doi:10.1371/journal.pone.0024576.g001
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Core motif degeneration. In the second step, selected

primary core motifs in the first step are updated to more

degenerate ones. For each core motif, all possible motifs that are

different from the original motif in at most 4 of the 6 positions are

enumerated and all characters consistent with the initial character

at that position in the core are tested, resulting in 983,040 (C4
6 � 48)

candidate core motifs. The motifs with fold enrichments and Z-

score values greater than those of the primary core motif are

selected as candidate degenerate core motifs. The most significant

degenerate core motif (by Z-score) is chosen for each of the 50

consensus sequences selected in the first step. If no degenerate core

motif is available, the original primary core motif is used for the

extension step.

Core motif extension. In the third phase, the core motifs

are extended. Equal numbers of non-informative N characters

are added to each side of a core motif selected in the second step

to obtain a core motif of 20 (for an even number of gaps between

two three-mers in the original core motif) or 19 nucleotides (for

an odd number of gaps between two three-mers in the original

core motif). Then all possible motifs that are different from the

original motif in at most 3 of the non-informative positions are

enumerated. The resulting extended core motifs are evaluated

and the motif with the largest Z-score is selected as the extended

core motif if it has a higher Z-score than that of the un-extended

form. For larger datasets (the genomic size of the foreground is

larger than 100 kbps), this step is repeated one additional time.

The 50 extended core motifs are retained for subsequent

refinement.

Core motif refinement. Finally, we use the maximum a

posteriori probability (MAP) to refine the 50 extended core motifs

[7]. We scan all the instances of a given motif in the foreground

with one mismatch allowed and use a modified MAP score to filter

the candidate instances. The original MAP score used by MDscan

[7] for a given motif is defined as the following:

log (xm)

w

Xw

i~1

XT

j~A

pij log(pij){
1

xm

X
allsegments

log(p0(s))

" #
;

where w is the motif length, xm is the number of instances of the

given motif in the foreground sequences, pij is the frequency of

nucleotide j at position i, and p0(s) is the probability of generating

the sequence s from the background based on the third-order

Markov model. The third Markov model is calculated based on

the background sequences. For example, the probability of

generating TCATG (assuming the three bases preceding this

segment is AGG) from the background model is:

Po(TCATG)~

P(T jprevious 3 bases AGG)|P(Cjprevious 3 bases GGT)|

P(Ajprevious 3 bases GTC)|P(T jprevious 3 bases TCA)|

P(Gjprevious 3 bases CAT)

To account for the varied lengths of different motifs, log(w) is

multiplied by the original MAP score.

The refinement procedure is similar with that in MDscan [7]

and described below in brief. For a given extended motif, we scan

all its instances in the foreground with one mismatch allowed. We

firstly calculate the MAP score with all the motif instances

identified using the equation defined above and donate it as So. To

test whether each of the identified instance is informative to the

target motif, we then calculate the MAP score again by removing

the tested instance and donate it as Sn. A instance is preserved if

and only if So is greater than Sn. Finally all the preserved instances

are merged to obtain a final motif that can be represented by

position-specific weight matrix (PWM).

Redundancy removal. After the refinement step, the

resulting 50 motifs are highly redundant, since similar motifs

could be derived from different gapped consensus sequences. If the

CompareACE score between two motifs is greater than a user-

defined cutoff value, we only keep the motif with a higher MAP

score, by a procedure as described below. We firstly sort the motifs

by their MAP scores in a descending order. Then any motif that is

similar (CompareACE score greater than 0.6, by default) with the

highest ranking motif are removed from the list as redundant. The

highest ranking motif is preserved and removed from the list, and

then the second round of removal and selection is applied. Finally

all the preserved motifs are reported.

Measures of prediction accuracy
We adopted a set of performance measures based on the motif-

level to evaluate motif discovery algorithms. For a given target set,

we first assess the matrix similarity between the expected and the

identified motifs using CompareACE [23]. When a cut-off is

specified for CompareACE score, the success rate of a motif tool

on a dataset can be calculated as the percentage of motifs correctly

identified by a tool.

To take the motif length into consideration, two scores were

developed to represent the motif-level sensitivity and specificity, as

described below (Figure 2). The motif-level accuracy is evaluated

mainly by CompareACE score and adjusted by a factor

determined by the expected and identified motif length. Firstly

the identified motif and expected motif were aligned using

CompareACE. Then for each expected motif with identified

motifs aligned, we then define the following values for calculating

motif-level accuracy metrics: TP (true positive), the number of

positions that common to the expected motif and identified motif;

FP (false positive), the number of positions in the identified motif

but not included in the expected motif; and FN (false negative), the

number of positions in the expected motif but not in the identified

motif.

The motif-level sensitivity of prediction accuracy (mSN) is

defined as

mSN~
m � TP

TPzFN
;

and the motif-level specificity (mSP) is defined as

mSP~
m � TP

TPzFP
;

In both equations, m is CompareACE score between the expected

motif and identified motif.

For each tool on each target set, the three top-scoring motifs

were compared to the expected motif by CompareACE and the

motif with the highest score was selected as the identified motif.

The motif-level prediction accuracy scores for the target sets of the

same group are averaged.

AMD, an Automated Motif Discovery Tool
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Results

In this article, we present a de novo motif discovery tool, AMD,

for the automatic identification of transcription factor binding

sites. AMD has several crucial features. First, core motifs are

represented by IUPAC consensuses [18] that consist of two triplets

of specified bases interrupted by a fixed number (from 0 to 14) of

unspecified bases (detailed descriptions are in Methods). This

definition of core motifs should enable AMD to identify gapped

motifs. Second, AMD can identify long motifs (both gapped and

contiguous) because core motifs have a length of 20 nt with six

informative positions and the potential to obtain more informative

positions after the extension and refinement steps. Third, core

motifs are updated in a stepwise procedure with a small number of

candidate motifs evaluated at each step. This approach may

significantly reduce the computational time needed for motif

discovery. Finally, the background references are specifically

designed according to the foreground sequences to be analyzed,

increasing the efficiency and efficacy of motif discovery [12].

AMD achieves a high success rate on both yeast and
metazoan benchmark data

We first evaluated the motif discovery performance of AMD

using two sets of well-characterized benchmark data from yeast

and mammals. These sets were chosen because they have been

widely adapted to evaluate the performance of de novo motif

discovery tools [10,12]. The yeast benchmark data were

constructed from a large scale ChIP-chip analysis of yeast TFs

across different biological conditions [24], and contains 230 target

sets of 119 unique TFs. Sequences for all probes on the 6k

microarray were used as the background. The PWMs of the

expected motifs were retrieved from combined results from both

computational analysis and literature which have been proved by

the authors [24,25]. The metazoan dataset included 32 mouse,

human, worm or fly TF target collections derived from diverse

high-throughput experiments [12], and the associated motifs were

retrieved from TRNSFAC [26]. The promoter sequences of all

genes in the genome were used as the background.

We evaluated the seven most popular tools (AlignACE,

MDscan, YMF, Weeder, DME, MoAn and Amadeus) and a

gapped motif finder (SPACER) in parallel. To eliminate the

potential bias introduced by the arbitrary cut-off, three Compar-

eACE scores are used to summarize the success rate of each tool

(Figure 3a). As it is shown, AMD performed the best on the yeast

benchmark, although all tested methods performed similarly, with

success rates ranging from 20% to 45%. As reported previously

[11], each of the tested tools identified some unique motifs (Table

S1). The performance of AMD was similar to that of Amadeus (a

recently developed tool that is particularly suitable for motif

discovery in metazoan datasets) and DME (a discriminative

motif discovery tool that is known to typically outperform non-

discriminative tools) on the metazoan benchmark tested (Figure 3a,

Figure S1). In addition, we assessed the motif-level prediction

accuracy of the various tools tested on the two datasets (details are

in Methods) in a similar manner to a previously reported method

[11]. As illustrated in Figure 3b, AMD, DME and Amadeus

performed well on both the yeast and the metazoan datasets in

terms of the motif-level sensitivity and specificity. AMD achieves

the best performance on both two groups of target sets in terms of

motif-level sensitivity (up to 0.6 for yeast and 0.5 for metazoan).

AMD is effective at identifying both gapped and un-
gapped motifs

We next selected an unbiased large dataset containing promoter

collections of over 170 pre-defined motifs (57 gapped motifs and

116 un-gapped motifs) from the human genome [18]. These motifs

were defined using an enumeration and conservation based

approach, in which gapped consensuses were enumerated and

filtered using a motif conservation score (MCS), followed by a

clustering step [18]. These predefined motifs were used as the

expected motifs in the evaluation. The promoter sequences (1 kb

upstream to 200 bp downstream of the TSS) of the target genes of

each motif were retrieved as target sets. The promoter sequences

of all human genes were used as the background.

We evaluated each of the tools mentioned above except

AlignACE, since AlignACE was extremely computationally

intensive and time-consuming when applied to the mammalian

datasets (Table S2). As a classical motif discovery, MEME is also

applied on this dataset for comparison. The success rate of each

motif tool at three different CompareACE score cut-off is sum-

marized in Figure 4a, which clearly indicates that AMD achieves

the highest success rate regardless of cut-off used. For example at

CompareACE score cut-off of 0.75, AMD achieved the highest

success rate (79%) in terms of all the motifs tested, followed by

Amadeus (69%), DME (68%), SPACER (62%), MoAn (49%),

Weeder (43%), MEME (7%), YMF (3%) and MDscan (0%). When

gapped and un-gapped motifs were counted separately, we found

that AMD performed well on both motif types with success rates

higher than 75%, whereas Amadeus and DME performed well

only on un-gapped motifs and SPACER only on gapped motifs

(Figure 4b). For example, in comparing the unique motifs

identified by AMD with those identified by three other generic

tools ranked second, third and fifth on the success rate list (i.e.,

Amadeus, DME and MoAn), AMD characteristically identified

Figure 2. Motif-level measurements of prediction accuracy. The motif-level accuracy is evaluated by CompareACE scores and adjusted by
factors determined based on the expected and identified motif lengths.
doi:10.1371/journal.pone.0024576.g002
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more gapped motifs (Figure 4c). Similarly, when AMD was

compared to SPACER (a specifically designed gapped motif finder

ranked fourth on the list), AMD identified significantly more un-

gapped motifs than SPACER (Figure 4d). In addition, assessment

of the motif-level sensitivity of each of the tested tools revealed

similar results to those presented above (Figure 4e). Accordingly,

we conclude that AMD represents a unified tool for the simul-

taneous recognition of both gapped and un-gapped motifs in data

from real-life scenarios.

AMD is highly sensitive to long motifs
A significant portion of biologically meaningful motifs exceed

12 nt in length and are defined as long motifs [22]. However, the

maximum length of motifs discovered by many algorithms is

restricted to a smaller number (usually less than 12) since the motif

discovery process becomes very difficult due to the explosive

growth in the number of possible variations as the motif length

increases. To overcome this restriction, we updated the core motif

in a stepwise manner, resulting in benefits in both time and

memory efficiency for AMD. Furthermore, the core motif

contained additional informative positions after the updating and

refinement steps (see Methods), suggesting that AMD should be

suitable for the identification of long contiguous motifs as well.

To test the performance of AMD in identifying long motifs, we

constructed a long motif dataset containing target collections of

213 contiguous long motifs with lengths from 12 to 20 nt [22]

(Figure 5a). These motifs were originally identified by enumeration

of un-gapped k-mers (12 to 22 nt long) that were conserved in the

human genome, followed by motif filtering and clustering [22].

The 1,000 bp sequences centered at the binding sites were used as

a target set for each long motif. The background was selected from

the sequences which were 500 bp flanking the binding sites of

these long motifs.

To obtain the optimal results, the motif lengths were adjusted

accordingly in several tools. The motif length for Amadeus and

Weeder was set to 12 because this is the maximal motif length

allowed. The motif length for MDscan was set to 12 and 20,

respectively. To control the total running time with limited

computational resources, the motif length for YMF, MoAn and

DME were set to 12. For MEME, the minimal and maximal motif

lengths are set to 12 and 20, respectively. AMD and SPACER both

automatically selected significant motifs of the appropriate lengths.

As illustrated in Figure 5b, both AMD and MEME achieved

high level of prediction accuracy in both the motif-level specificity

(mSP $ 0.8) and motif-level sensitivity (mSN $0.8), indicating

that they correctly captured most, if not all, of the informative

Figure 3. Evaluation of motif discovery tools on yeast and metazoan benchmarks. (a) Summary of the success rates of the tested
algorithms on yeast and metazoan target sets. AMD and eight other tools were applied to the yeast and metazoan target sets. For each tool on each
target set, the three top-scoring motifs were compared to the expected motif by CompareACE and the motif with the highest score was selected as
the identified motif. Using a CompareACE score cutoff of 0.65, 0.75 or 0.85, the success rates of each tool on the yeast and metazoan target-set
benchmarks were calculated. The number and percentage of motifs correctly identified by each tool are indicated. (b) Measurements of motif-level
prediction accuracy of different tools on yeast and metazoan target sets.
doi:10.1371/journal.pone.0024576.g003
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Figure 4. Assessment of the tested motif discovery algorithms on target sets of gapped and un-gapped motifs. (a) Summary of the
success rates of the tested algorithms using different similarity cutoff. Using a CompareACE score cutoff of 0.65, 0.75 or 0.85, the success rates of each
tool on the total target sets are shown. (b) Summary of the success rates of the tested algorithms on target sets of gapped and un-gapped motifs. All
motifs were divided into two groups, gapped motifs or un-gapped motifs, based on the criteria of whether two or more continuous N characters
were contained within the consensus sequence. Using a CompareACE score cutoff of 0.75, the success rates of each tool on the gapped and un-
gapped motif target sets, were summarized. (c) Motifs successfully recovered only by Amadeus, AMD, MoAn or DME. Each successfully recovered
motif is marked by a black-shaded box according to its CompareACE score ($0.75). (d) Summary of the motifs specifically identified by AMD and
SPACER. The numbers of gapped and un-gapped motifs specifically identified by AMD and SPACER are indicated. (e) Motif-level sensitivity and
specificity of the nine tested tools on the target sets of gapped and un-gapped motifs.
doi:10.1371/journal.pone.0024576.g004
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positions of the long contiguous motifs in this dataset. MEME is a

well-known tool that has good performance on discovery of long

motifs and can be used as a positive control. It’s noted that AMD,

MEME and SPACER can find motif length automatically. All

these tools achieved success rates, assessed by CompareACE at

cut-off of 0.75, larger than 80%. However, SPACER achieves low

motif-level sensitivity when motif length grows (0.2 for motif length

20). Although most of the other tested tools, including Amadeus

and DME, achieved high motif-level specificity, none of them

achieved motif-level sensitivity equivalent to that achieved by

AMD, implicating that these tools captured fewer informative

positions of the long motifs than AMD.

AMD efficiently identifies long motifs in large datasets
Running time represents an important factor that affects the

computational capacity of motif discovery tools, particularly when

Gibbs sampling methods or enumeration-based tools are em-

ployed [10]. Although AMD is an enumeration-based method, we

have integrated a procedure that updates core-motifs in a stepwise

manner, resulting in a small number of candidates evaluated in

each step. To validate whether this stepwise selection improved the

computational capacity of our approach, we tested the running

time of AMD and the six other tools on a defined panel of CTCF

target collections with proportionally increasing numbers of target

regions as described below. The significantly enriched regions of a

large CTCF dataset [27] were ranked in descending order by their

enrichment scores and the top scoring regions were selected to

obtain 10 target sets with increasing numbers of sequences,

ranging from 500 to 5,000 sequences. The background sequences

were randomly selected from the genome using Cisgenome [28].

MoAn is not included in this part since it takes more than 3 days

on each of these target sets (data not shown). As illustrated in

Figure 6a, the typical enumeration based tool, Weeder, was the

most time-consuming method. Further, as the length of the

defined motif increased, the time required by DME and Weeder

increased significantly (i.e., W = 8 vs. W = 12). The running times

required by the improved enumeration based tools MDscan,

AMD and Amadeus as well as the non-enumeration based

SPACER, fell into a time window spanning only a few minutes. Of

these tools, MDscan was the fastest tool. However, as shown in

Figure 6b, AMD automatically identified 15 of 19 informative

positions of the expected motif [22], Amadeus identified 12 of

the positions at its maximal motif length setting (W = 12) and

SPACER only identified a core motif with a few informative

positions. Of note, it is common practice that multiple runs of data

processing are needed for a given motif discovery tool to obtain

more reliable results, as highlighted by the results obtained with

Amadeus and DME (i.e., W = 8 vs. W = 12) in this setting, since

the motifs to be discovered were usually unknown. However,

AMD can automatically adapt its motif-length setting to obtain

maximally matched informative positions in a single run. In this

regard, the total running time of AMD would be much shorter

than the time required performing multiple runs with other tools.

This performance benefit is in addition to AMD’s better ability to

capture informative positions.

Modeling TF binding using ChIP-chip/seq data
Recently, genome-wide ChIP-chip/seq analysis is increasingly

used to identify in vivo binding regions of TFs [29,30]. However,

accurate modeling of actual TFBS on such high-throughput data

remains a challenge. Accordingly, we tested AMD (in addition

with Amadeus, DME, SPACER, Weeder and Trawler (web

server) [10]) on an experimentally derived ChIP-chip/seq dataset

containing target collections for seven TFs. Weeder is one of the

most widely used tools for motif discovery in ChIP-chip/seq data.

Amadeus and SPACER were included because they were effective

tools for finding un-gapped motifs and gapped motifs, respectively,

as described above. Trawler was included because it is claimed to

be the fastest computational pipeline to date. As a discriminative

motif discovery tool, DME was also included for comparison.

The seven ChIP-chip/seq target sets used to model the TFBS

were constructed from publicly available datasets, which included

Figure 5. Performance of different motif tools on target sets of long motifs. (a) Summary of the numbers of target sets with different motif
lengths. The 213 target sets of long motifs were divided into 9 groups according to the corresponding motif lengths. The number of target sets in
each group is listed. (b) Performance of the nine motif tools on the target sets of long motifs at different lengths. Nine motif tools were applied to 9
groups of long motif target sets (as described in a). For each tool, prediction accuracy scores were averaged for target sets of the same group.
doi:10.1371/journal.pone.0024576.g005
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SP1 (Affymetrix promoter array sample data) [31], PU.1 [32],

FoxA1 [33,34], Gli [35], ER [29], NRSF [30] and OCT4 [36].

Whenever possible, the most significantly enriched 1,000 regions

from each dataset were selected for evaluation. The background for

each target set was randomly retrieved from genomic sequences

using packages in Cisgenome [28], which randomly select a

matched control with similar statistics for each target set. The

expected motifs were either retrieve from TRANSAFC database

[26] (for SP1, PU.1 and Gli target sets) or publications (for FoxA1,

ER, NRSF and OCT4 target sets).

By comparing the findings from this analysis with the expected

motifs (Figure 7a) using motif-level accuracy, we found that AMD

performed similarly to Amadeus and DME on some motifs (SP1,

PU.1, FoxA1, Gli, and OCT4), but significantly better on others

(ER and NRSF). For example, AMD achieved motif-level

sensitivity of 1.00 on ER dataset, while this value for Amadeus is

0.78 (Figure 7b). The better performance of AMD over Amadeus

and DME on ChIP-seq data largely attribute to its ability to

identify long motifs with the best length. Interestingly, although

the PU.1 motifs identified by both AMD and Amadeus were

highly similar to the expected PU.1 consensus, a more prominent

string of adenosines at the 59 of the GA core was recognized by

AMD, which better supports experimental data regarding PU.1

binding [37].

Discussion

The AMD software is an open source software and available

from the google code [38] or Software S1. We have presented

AMD as an automated discovery tool that allows for effective and

efficient recognition of motifs in various datasets, regardless of

whether these motifs are long or short, gapped or contiguous. The

Figure 6. Running times of the tested tools in terms of the number of sequences in a dataset. (a) Running times for the CTCF target-sets
with increasing dataset sizes on a logarithmic scale. Seven tools, including AMD, Amadeus (motif length W = 8, 12), MDscan (W = 8, 12 and 20),
SPACER, YMF (W = 8, 12), DME (W = 8, 12) and Weeder (W = 8, 10, 12) were applied to the target sets with increasing numbers of sequences. The
running times are plotted against the target set sizes on a logarithmic scale. (b) The logo of the representative motif identified by the tested tools.
The motifs identified by each tool (with the different motif length settings) were compared to the expected CTCF motif, and the most similar motif
was selected. Motif logos were generated with a local program that is a reimplementation of WebLogo (weblogo.berkeley.edu) in processing (www.
processing.org). The setting of the motif length for each tool is indicated.
doi:10.1371/journal.pone.0024576.g006
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framework applied to AMD can likely be extended to other types

of motif discovery pipelines as long as a proper objective function

is defined, as described in detail below.

Sequence comparisons across different species may also

represent an instrument to identify cis-regulatory elements [39].

In this regard, several de novo motif discovery tools have been

developed and adapted to identify conserved motifs in yeast [40],

fly [41] and human [18] genomes. Accordingly, we believe that the

framework of AMD can be extended to identify this type of

conserved motifs as well because these core motifs can be filtered,

degenerated and extended using statistics such as MCS [18]. In

the current implementation, AMD can effectively find motifs up to

20 nt in length, a size that appears to be sufficient for most

currently known motifs [22]. It is therefore logical to expect that

AMD could be applied to aligned sequences to identify conserved

motifs, regardless of whether the motifs are long or short.

Like most other motif-finding tools, AMD identifies overrepre-

sented motifs in a given foreground sequence set compared with a

background sequence set. However, there are situations where

multiple foreground sets should be considered simultaneously

to identify biologically significant motifs. For example, in expres-

sion profiling analysis, genes can be assigned to different clusters by

their expression patterns across different biological conditions [42].

Motif discovery in these clustered genes requires the consideration

of multiple clusters simultaneously. The results from FIRE (finding

informative regulatory elements) suggest that a motif can be

informative not only due to its overrepresentation in a particular

cluster but also to its under-representation in other clusters [43].

Under such circumstances, the integration of the strategy used in

AMD may expand the scope of FIRE to accurately recognize

complex motifs, such as long or gapped motifs.

Supporting Information

Figure S1 Evaluation of motif search tools on metazoan
target sets. Motifs identified by each tool were compared to the

reference motifs using CompareACE. The results were shown in

shadowed boxes as indicated.

(TIF)

Table S1 The motifs specifically identified by each tool
on the yeast data sets. When the CompareACE score cut-off is

set to 0.75, the motifs specifically identified by one tool are shown

with a flag YES.

(DOC)

Table S2 Running time of tested motif tools on
mammalian target sets.
(DOC)

Software S1 The AMD software for Windows and Linux.
The compiled AMD software for Windows and Linux platforms

are compressed in the RAR format. The demo dataset as well as

the instruction document are also included.

(RAR)
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Figure 7. Modeling TFBSs using ChIP-chip/seq data. (a) A total of six selected motif tools were applied to seven ChIP-chip/seq datasets from
humans and mice. The programs were either executed locally (AMD, Amadeus, DME, SPACER and Weeder) or via the Web server (Trawler). The
expected motifs were retrieved from the TRANSFAC database or the literature (indicated in the reference row). The three top-scoring motifs were
compared to the expected motifs by CompareACE and the most similar match is shown. An empty space indicates that no result was returned from
the Trawler Web server or from Weeder. The generation of motif logos is illustrated in Figure 5. (b) Motif-level sensitivity (mSN) and specificity (mSP)
of motif tools tested on ChIP-chip/seq datasets.
doi:10.1371/journal.pone.0024576.g007
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