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Abstract

Allergy and asthma to cat (Felis domesticus) affects about 10% of the population in affluent countries. Immediate allergic
symptoms are primarily mediated via IgE antibodies binding to B cell epitopes, whereas late phase inflammatory reactions
are mediated via activated T cell recognition of allergen-specific T cell epitopes. Allergen-specific immunotherapy relieves
symptoms and is the only treatment inducing a long-lasting protection by induction of protective immune responses. The
aim of this study was to produce an allergy vaccine designed with the combined features of attenuated T cell activation,
reduced anaphylactic properties, retained molecular integrity and induction of efficient IgE blocking IgG antibodies for safer
and efficacious treatment of patients with allergy and asthma to cat. The template gene coding for rFel d 1 was used to
introduce random mutations, which was subsequently expressed in large phage libraries. Despite accumulated mutations
by up to 7 rounds of iterative error-prone PCR and biopanning, surface topology and structure was essentially maintained
using IgE-antibodies from cat allergic patients for phage enrichment. Four candidates were isolated, displaying similar or
lower IgE binding, reduced anaphylactic activity as measured by their capacity to induce basophil degranulation and,
importantly, a significantly lower T cell reactivity in lymphoproliferative assays compared to the original rFel d 1. In addition,
all mutants showed ability to induce blocking antibodies in immunized mice.The approach presented here provides a
straightforward procedure to generate a novel type of allergy vaccines for safer and efficacious treatment of allergic
patients.
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Introduction

The domestic cat (Felis domesticus) is one of the most frequent pets

and approximately 10% of the general population in industrialized

countries is sensitized to cat allergens [1]. The symptoms deriving

from cat allergy manifest mainly as rhinoconjunctivitis with a

strong tendency to progress to asthma, especially in children [2].

Exposure to cat allergen is a result of the natural behavior of the

cat to lick and groom. Proteins of the saliva is left to dry and

spread as small airborne particles [3] where it can be detected in a

variety of indoor environments [4,5]. The major allergen of the

cat, formally termed Fel d 1, is a hetero-dimer member of the

secretoglobin protein family [6,7] found in skin, lachrymal glands

and in particular in the saliva. More than 95% of cat allergic

patients show elevated serum IgE levels to Fel d 1 which is,

therefore, the primary target for the development of immuno-

therapeutic vaccines for the treatment of cat allergy [8,9].

Allergen-specific IgE is the key molecule for the development of

allergic symptoms. The synthesis of IgE requires a B cell to undergo

class switch recombination in close contact with allergen-specific T

helper 2 cells (Th2) [10].

The T cell receptor on primed CD4+ T cells recognize antigen

presenting cells carrying MHC II molecules with tightly bound

enzyme-digested linear polypeptides of 12 to 25 amino acids

derived from the primary structure of the antigen [11]. B cells

expressing allergen-specific IgE as a part of the B cell receptor

(BCR) recognize the surface structures of the allergens. After

allergen binding, the receptor-antigen complex is internalized, the

antigen processed, and displayed as peptide-MHC II complex on

the B cell surface [12]. These processes link the 3D structure of the

allergen to the linear peptides presented to the T cell receptor by

the MHC class II complex.

Allergen-activated T cells are responsible for late-phase

reactions (LPR), occurring 6–8 hours after allergen challenge

eliciting symptoms ranging from oedema and itching to eczema,

and also play a prominent and pivotal role in the pathogenesis of

allergic asthma [13] as shown by the elevated numbers of CD4+ T

cells found in bronchial mucosa, BAL fluid, and sputum in these

patients.

The most common treatment of allergic diseases is either

alleviation of symptoms using drugs or advice the patient to avoid
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the allergen source [14,15]. However, allergen-specific immuno-

therapy (SIT), is the only treatment able to cure allergic diseases

[16]. Successful SIT is thought to act through tolerance mechanisms

induced by regulatory T cells and blocking IgG antibodies [17].

Induction of IgG antibodies may reduce clinical symptoms in

several ways, by competition with IgE for binding epitopes on the

allergens [18,19], by inhibition of IgE-facilitated antigen presenta-

tion to CD4+ T cells [20], but also by interference with mast cell

degranulation by down-regulation of IgE receptors signaling via

inhibitory motifs on the FccRIIb receptor [21]. Numerous studies

have shown that crude allergen extracts currently used in SIT are

clinically effective [22], a high allergen dose is more effective [23],

although the potential risk of severe acute side effects is a limiting

factor [24]. Attenuated allergenic molecules, i.e. hypoallergens or

synthetic peptide fragments have been used as high dose and safer

alternatives to conventional extract-based SIT [25,26]. However,

such treatments have also been limited by recurring side effects,

such as LPR [27,28].

T cell epitope (TCE) mappings of Fel d 1 have shown a

scattered distribution of TCE located on both chains of Fel d 1

[29]. The relevance of T cells specific for Fel d 1 in cat allergic

patients has been evaluated, where short overlapping peptides

covering the major TCE of Fel d 1 elicited adverse effects, such as

allergic rhinitis and late asthmatic reactions [28,30], despite the

fact that the peptides were unable to bind IgE, and thus elicit

immediate allergic reactions. Interestingly, immunotherapy using

selected allergen-specific Fel d 1 peptides, which induced tolerance

to the allergen in a part of the T cell population, induced also

suppression of T cells specific for epitopes which were not present

in the peptide mixture used for treatment [31]. The use of

recombinant hypoallergens containing the full spectrum of TCE

has been reported in one multicenter clinical study [32]. The study

included hypoallergens with an approximately 1000 fold reduced

IgE bindning capacity, allowing a maintenance dose of 80 ug of

allergen per injection. The large majority of the local and systemic

reactions occurred several hours after injection [27].

Due to the close interactions between allergen, T, B and

basophil or mast cell effector cells, the optimal allergy vaccine

should be depleted of IgE-binding epitopes to evade cross-linking

of high affinity receptors on effector cells and IgE-facilitated

allergen presentation, and show a moderate T cell activation

profile to avoid LPR and bronchial hypersensitivity. Modern

biotechnology allows fast, easy cloning and production of

allergens, allergen isoforms and hypoallergen variants with

reduced IgE binding but conserved T cell reactivity [17,33].

In this study we used a novel strategy to engineer full sized and

folded allergy vaccine candidates with reduced number of T cell

epitopes and reduced risk of inducing anaphylaxis, while

maintaining the immunogenic properties. The design has several

advantages over previously established methods for construction of

hypoallergenic derivatives, which mainly involve disruption of

structural B-cell epitopes, while essentially preserving T-cell

reactivity. Although treatment with hypoallergens may be

efficacious, it also carry the risk of inducing LPR [27,28]. The

rational of the strategy is based on selection of IgE-binding

allergens from randomly mutated phage-displayed libraries of the

major cat allergen Fel d 1, used for proof of concept. Because the

vast majority of the solved protein-antibody complexes show

discontinuous epitopes encompassing more than one surface loop

[34], allergens selected by this technology are expected to

recognize molecules conserving the natural conformation [35].

Therefore it should be possible, by consecutive error-prone PCR

(epPCR) amplification of the primary Fel d 1 gene sequence, to

construct mutated phage display libraries containing proteins with

a maximal number of mutations, still allowing a native like fold of

the allergen. Using this novel procedure, we have selected four

candidates with reduced number of IgE binding epitopes and

reduced T cell stimulating capacity. Recombinant proteins were

produced, purified and evaluated for solubility, purity and native-

like folding. T cell activity was assessed using cultured peripheral

blood mononuclear cells (PBMC) from cat allergic patients,

IgE binding by inhibition ELISA, and allergenicity via basophil

activation test. The ability of the hypo-TCE candidate vaccines to

induce IgE-blocking IgG-antibody responses in vivo was shown by

mouse immunization experiments.

Results

Library construction and panning
Following epPCR, ligation and transformation, the generated

mutated Fel d 1 phage libraries typically contained 105 individual

clones.

After the first round of panning and sequencing, 3 abundant

clones (clones 3, 6 and 11) were identified and used as templates for

further rounds of epPCR and panning. The iterative mutational

procedure for clone 3 was stopped after 4, for clone 11 after 5, and

for clone 6 after 7 rounds of panning, when no or few additional

mutations could be detected (Fig. 1). The final clones, denoted 3.4.7,

6.7.1, 6.7.3 and 11.5.2 contained 15 (9.3%), 19 (11.7%), 24 (14.8%)

and 24 (14.8%) amino acid exchanges respectively, compared to

wild type Fel d 1, (Fig. 2a). Residues 38–49, 91–98 and 138–154

appeared to be less susceptible to mutations indicating that amino

acid exchanges in these areas were not randomly distributed

(Fig. 2b). Further analyses of the primary structure revealed a

substitution of a cysteine to a tyrosine (6.7.1, 6.7.3) or arginine

(11.5.2) at residue 73, resulting in loss of a disulfide bond with Cys

95 present in rFel d 1. In addition, a bias for substitutions to residues

with similar properties was noted. The most common substitution

was alanine to valine or vice versa occurring at position 13, 17, 50, 63,

77, 78, 82, 102, 117, 118, 122 and 137 (Fig. 2a). Interestingly,

certain positions seems to be particularly prone to mutate as

observed for residues 28, 54, 56, 60, 63, 68, 80, 105, 117, 127 and

156 (Fig. 2b).

Protein expression and purification
Following IPTG-induction, the four mutants and control rFel d 1

produced between, 3 and 20 mg protein per liter culture medium,

and showed only small individual differences in terms of folding and

aggregation. Clone 6.7.1 and 6.7.3 tended to form inclusion bodies,

Figure 1. In vitro evolution of mutations by phage display.
Number of amino acid exchanges (y-axis) in the four Fel d 1 mutants
displayed as a function of panning rounds (x-axis).
doi:10.1371/journal.pone.0024558.g001
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Figure 2. Amino acid mutation analysis. (A) Amino acid sequences of rFel d 1 in comparison to the four mutants. Deviations from the original Fel
d 1 sequence are highlighted. (B) Frequency of amino acid exchanges by the four mutants compared to the original rFel d 1. Highlighted (arrows) are
three areas less prone to mutations. (C) Calculated protein surface areas of Fel d 1. The three regions which are less prone to mutations are colored in
magenta. The right hand side picture is rotated 90 degrees clockwise on the z-axis. Pictures were generated in Pymol (www.pymol.org).
doi:10.1371/journal.pone.0024558.g002
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but were soluble after the refolding process, whereas clone 3.4.7 and

11.5.2 were produced as soluble proteins in the E. coli cytoplasm.

Final purity of the recombinant proteins was estimated to be .95%

by Coomassie-stained SDS PAGE (Fig. S1a). The LPS content of

the purified proteins varied between 15 and 40 ng/mg protein.

Protein characterization
The behavior of the purified proteins in solution was analyzed by

size exclusion chromatography. As reported previously for rFel d 1

[7], the proteins eluted as symmetrical peaks at approximately

30 kDa with only minor differences in elution volume (Fig. S1b) and

mobility in SDS PAGE (Fig. S1a). Far-UV CD spectra recorded for

rFel d 1 and the 3.4.7, 6.7.3, and 11.5.2 mutants were indicative of

folded proteins with high helical content as evidenced by a double

minima at 208 and 222 nm and a maximum at 190 nm (Fig. 3).

The spectra of the mutants were very similar indicating an overall

similar secondary structure content. Clone 6.7.1, however,

displayed a less intense minimum at 222 nm and more intense

and long wavelength shifted minimum at about 210 nm and a less

intense maximum near 190 nm.

IgE-binding capacity of the mutants
The IgE-binding in serum from 20 cat sensitized subjects to the

four mutants compared to the native-like rFel d 1 was investigated

by indirect ELISA (Fig. 4a). The median IgE-reactivity and ranges

in decreasing order were 6.7.1 (138.5%, range 41–289), 3.4.7

(63.5%, range 26–130), 11.5.2 (60.7%, range 26–109) and 6.7.3

(35.6%, range 7–191). In comparison to rFel d 1, clone 6.7.1

displayed the same IgE binding (P.0.05), whereas the other

mutants showed significantly lower reactivity (P,0.05).

IgE-binding was also analysed by antigen competition ELISA,

where a potent homologous 50% inhibition by rFel d 1 at

concentration 0.5 mg/ml was obtained (Fig. 4b). The antigen

concentrations needed to achieve the inhibition displayed by rFel

d 1 was 30, 100, 150 and 1230 times higher for clone 6.7.1, 3.4.7,

11.5.2 and 6.7.3 respectively.

Basophil activation test
As a compliment to the ELISA data, allergenic IgE-reactivity of the

mutants was tested in vitro by their capability to release mediators

upon allergen cross-linking of FceRI-bound Fel d 1-specific IgE on

basophils from cat allergic patients. Analysis of the basophils by flow

cytometry revealed variable reactivity and sensitivity to the allergen

depending on patient and mutant tested (Fig. 5). The most potent up-

regulation of CD63 was seen after stimulation with rFel d 1. The

activity of protein 3.4.7 was generally low among four of the six

patients tested (i.e. patients #1 (second lowest), #2 (lowest), #3

(lowest) and 5 (second lowest)), reaching a 10–1000-fold decrease

compared to rFel d 1 whereas a less reduced patient-dependent

degranulation activity was observed for clones 6.7.1, 6.7.3 and 11.5.2.

T cell proliferation
Cultured PBMCs from 10 cat allergic patients were stimulated

with 2.5, 10 or 25 mg/ml of the mutants, influenza antigen, or rFel

d 1 containing two different LPS concentrations (20 and 40 ng/

mg protein). Proliferative responses were comparable between the

three antigen concentrations, with the concentration 10 mg/ml

showing the lowest coefficient of variation. PBMCs stimulated

with mutants 3.4.7 and 6.7.3 exhibited significantly lower mean

proliferation indices in comparison to PBMCs with rFel d 1,

(P,0.05, Fig. 6). The mutant 6.7.1 showed a favorable trend

towards lower induction of proliferation (P,0.2), whereas 11.5.2

showed proliferation comparable to rFel d 1. LPS levels of 20 and

40 ng/mg protein in the two rFel d 1-stimulated groups did not

influence the proliferative responses. The corresponding amounts

of LPS alone elicited negligible proliferation (data not shown).

Mutants and Fel d 1-induced IgG antibody blocking
capacity

Blocking antibodies of the IgG isotype have been suggested as

an important mechanism behind successful SIT. Immunogenicity

of rFel d 1 and each of the mutants was investigated by ELISA.

Interestingly, all mutants did induce higher titers of antigen

Figure 3. Secondary structure analysis of rFel d 1 and mutants
by far-UV circular dichroism spectroscopy. The spectra are
expressed as mean residue ellipticities (h) at a given wavelength.
doi:10.1371/journal.pone.0024558.g003

Figure 4. IgE binding properties of rFel d 1 and mutants by
ELISA. (A) IgE responses in serum from 20 cat allergic patients to four
rFel d 1 mutants were compared. The binding is shown as percentage
(y-axis) of the rFel d 1 reactivity for each patient. Bars indicate medians
for each group (63.5% for 3.4.7, 138.5% for 6.7.1, 35.6% for 6.7.3 and
60.7% for 11.5.2). (B). Pooled sera from rFel d 1-sensitized individuals
(n = 20) were pre-incubated with three-fold dilutions (x-axis) of rFel d 1
or each corresponding mutant, followed by detection of IgE-responses.
Inhibition was calculated as responses in percentage (%) after addition
of antigen (y-axis).
doi:10.1371/journal.pone.0024558.g004
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specific IgG than the wild-type protein (Fig. S2a), and importantly,

all mutants except 11.5.2 induced higher titers of Fel d 1 specific

IgG than rFel d 1 (Fig. S2b). The capacity of the four mutants and

rFel d 1 to generate IgG antibodies that block serum IgE binding

to rFel d 1 from 10 cat allergic patients was investigated by ELISA.

rFel d 1 and the mutants 6.7.1 and 3.4.7 showed a similar ability to

inhibit IgE-binding, whereas the blocking capacity of 11.5.2 was

significantly lower than that of rFel d 1 (Fig. 7a). The ability to

block serum IgE binding to rFel d 1 was also compared using

basophil activation test using basophils from three cat allergic

subjects. In accordance with the ELISA results, rFel d 1 and the

mutants 6.7.1 and 3.4.7 showed comparable capacity to inhibit

IgE-responses, while 6.7.3 and 11.5.2 showed little if any blocking

effect compared to mice immunized with PBS only (Fig. 7b).

A possible explanation for the strong blocking capacity by the

sera from mice immunized with 3.4.7 and 6.7.1 was revealed by

ranking of all mouse sera with respect to their binding to rFel d 1.

Measurement of dissociation rates showed that mice immunized

with rFel d 1, 3.4.7 or 6.7.1 bound in a similar manner to rFel d 1

(kd = 7.1E25, 9.1E25 and 7.1E25 1/s respectively), whereas 6.7.3

Figure 5. Allergenic activity analyzed by allergen stimulated basophils. Basophil activation induced by serial dilutions of rFel d 1 and
mutants (x-axis) in blood from six cat allergic patients by analysis of CD63 and CD203c double positive cells (y-axis) using flow cytometry.
doi:10.1371/journal.pone.0024558.g005
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and 11.5.2 showed a higher off-rate (kd = 2.6E24 and 2.7E24 1/s

respectively), (Fig. 7c).

The ability of the mutants 3.4.7 and 6.7.1 to induce an IgE

blocking IgG response upon vaccination were investigated in a

mouse model for cat allergy [36]. Mice were sensitized with 1 mg

rFel d 1 to obtain high levels of anaphylactic antibodies, and then

vaccinated s.c. with 10 mg of either 3.4.7, 6.7.1, rFel d 1 or PBS.

The treatment did not increase the IgE-responses in any of the

four groups and antibody responses in the non-sensitized negative

control remained undetectable (not shown).. Vaccination with rFel

d 1, 3.4.7 and 6.7.1 on the other hand, induced significantly higher

titers of IgG1 and IgG2a than the non-vaccinated mice (Fig. 8a).

Finally, the ability of pooled sera from the vaccinated groups to

successfully block IgE-binding in the PBS treated group of mice

(n = 5) was tested in a competitive inhibition sandwich ELISA.

Unlike sera from the PBS group, the actively vaccinated groups

potently blocked (rFel d 1 and 6.7.1, p-values,0.05) or showed a

favourable trend (3.4.7, P-value,0.2) of blocking IgE-binding in

sera from the PBS treated mice (Fig. 8b).

Discussion

Treatments utilizing high dose hypoallergens, such as attenu-

ated derivatives of wild type proteins or short peptides, covering

the T cell repertoires of allergens have been tested in clinical trials.

However, such strategies have induced LPRs, where symptoms

evolve several hours after administration.

The aim of this study was to develop a technology for the in vitro

evolution of allergens with a native-like structure for a maintained

immunogenicity and treatment efficacy, but with reduced IgE-

binding and T cell activation for reduction of immediate and late

phase side effects during allergen-specific immunotherapy. Numer-

ous studies have demonstrated sensitization to allergens as a risk

factor for the development of allergy and asthma. In more severe

cases, asthma is a chronic condition without curative therapeutic

options. An alternative rarely considered for this group of patients is

alleviation of allergic and asthmatic symptoms by SIT. One of the

reasons for the restricted use of SIT in the treatment of extrinsic

allergic asthma is the risk of adverse reactions which even may have

a fatal outcome [37].

Novel candidate vaccines would be expected to have a high

safety profile including reduced immediate side effects due to a

decrease in IgE-mediated degranulation of effector cells and a

reduced capability of the TCE to activate T cells, which could

result in mild or absent LPR. We hypothesized that the

conservation of a native like tertiary structure with concomitant

reduction of the IgE-binding capacity would keep the ability to

induce strong protective allergen-specific IgG immune responses,

which in turn would be able to compete with IgE for epitope

binding on the native allergen. The use of freshly prepared serum

pools were used to reduce the risk of epitope biased selection.

We used Fel d 1, the major and most dominant cat allergen, as a

prototype allergen to test the feasibility of our approach. In a first

step the sequence coding for rFel d 1 [7] was submitted to epPCR

amplification to construct a complex phage surface displayed

library of mutated clones. Phagemids were isolated by an iterative

epPCR and biopanning procedure over solid-phase immobilized

IgE from selected patients.

Four candidate sequences derived from three different panning

experiments showing the highest numbers of mutations compared

to the rFel d 1 sequence (Fig. 2) were chosen for detailed

investigation. All mutant proteins were well expressed by E. coli

either as inclusion body (clones 6.7.1 and 6.7.3) or as soluble

cytoplasmic proteins (clone 3.4.7 and 11.5.2), folded well using

established methods [7] and eluted as symmetrical peaks around

30 kDa by size exclusion chromatography as observed for Fel d 1.

Circular dichroism analysis of the mutants showed spectra

comparable to those of rFel d 1 except for clone 6.7.1 which

displayed a less intensive maximum at 190 nm (Fig. 3). The

similarity of rFel d 1 and mutant spectra, with the possible

exception of clone 6.7.1 is evidence, albeit low resolution, that the

mutants are indeed folded similarily as rFel d 1 allowing structural

inferences to be made from sequence data.

The IgE-binding capacity of the mutants 3.4.7, 6.7.3 and 11.5.2

was significantly reduced compared to rFel d 1, while the IgE-

reactivity of 6.7.1 was not changed (Fig. 4a), as evaluated by

ELISA. Similar results were also observed when analyzing the

capacity of the mutants to inhibit IgE from a pool to complex with

solid phase bound rFel d 1 by ELISA (Fig. 4b). However here we

received supporting in vitro data from the basophil activation assay.

The mutant 6.7.1 generally displayed the highest IgE-binding

and degranulating capacity, while the other mutants showed a

weaker binding to IgE, with 3.4.7 generally showing the lowest

degranulating capacity. We assume that the high number of

mutations introduced has reduced the number or conformation of

IgE epitopes of Fel d 1 by substitution of amino acids essential for

interaction with IgE. We are, however, not able to confirm this

hypothesis because no convincing information about conforma-

tional IgE epitopes on Fel d 1 is available. Certainly, due to the

selection procedure based on serum IgE from cat allergic patients,

at least one IgE-binding epitope has to be retained by all mutants.

A reduction of the number of IgE-binding epitopes can explain the

reduced IgE-binding activity of the mutants and in agreement, all

mutants showed a reduction in the capacity to stimulate activation

of basophil from cat allergic patients demonstrating the hypoal-

lergenic potential of these mutants (Fig. 5). Mutants 3.4.7 and

6.7.3 generally showed the highest reduction of activation

regarding the amount of allergen needed to induce degranulation

(sensitivity) and the percentage of basophils degranulating

(reactivity). Interestingly, this pattern was more clearly noted in

patients with lower basophil reactivity. All mutants showed a

hypoallergen pattern by basophil activation but showed a varied

Figure 6. Analysis of allergen induced proliferation. Normalized
proliferation (%, y-axis) measured by [3H] thymidine incorporation in
cultured PBMC from 10 cat allergic patients after stimulation with
mutants (LPS range 15–30 ng/mg protein) and two positive rFel d 1
controls containing 20 and 40 ng LPS/mg protein. Horizontal bars
indicate standard error of the mean (SEM) values. * P,0.05 (Repeated
measurements ANOVA with Newman-Keuls multiple comparisons test).
Please note the different y-axis scale for each patient.
doi:10.1371/journal.pone.0024558.g006
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Figure 7. Analysis of IgG blocking antibodies induced by the four mutants and rFel d 1. (A) Pooled antiserum from mice (n = 7)
immunized with respective allergen was pre-incubated in rFel d 1-coated wells, followed by addition of serum from 7 individual cat allergic patients
and IgE responses recorded. The percentage of IgE inhibition is displayed on the y-axis. Boxes and horizontal bars denote 50% of values and 1
standard deviation respectively. Median values are indicated in the boxes. * P,0.05 and ***P,0.001 (Kruskal-Wallis with Dunn’s multiple comparisons
test). (B) Evaluation of the capacity of mutant produced IgG antibodies to inhibit rFel d 1 activation of basophils from three cat allergic patients. Serial
dilutions of rFel d 1 (x-axis) were pre-incubated with titer-normalized mouse anti-mutant antisera and added to whole blood cells. Basophil activation
was analyzed as percent (%) CD63 and CD 203c double positive cells (y-axis). (C) Off-rate analysis of each respective mouse antiserum pools (rFel d 1,
3.4.7, 6.7.1, 6.7.3, 11.5.2) to immobilized rFel d 1 was analysed by real-time molecular interaction using Attana. Non-specific binding of naive sera is
subtracted.
doi:10.1371/journal.pone.0024558.g007
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pattern between patients, which may call for caution when

choosing the most optimal mutant if used for treatment. In further

experiments we tested if the mutational procedure is able to

generate proteins with reduced activation of allergen-specific T

cells. Therefore, we measured the T cell proliferation of the

vaccine candidates in PBMC cultures from cat allergic patients.

Again, clones 3.4.7 and 6.7.3 showed significantly reduced T cell

activation profiles whereas clones 6.7.1 and 11.5.2 showed a T cell

activation capacity comparable to those of rFel d 1, despite up to

15% mutated amino acids (Fig. 6).

Notably, successful immunotherapy is paralleled by an

increased production of allergen-specific IgG antibody titers and,

therefore, we tested the ability of the mutants to induce potent

IgE-blocking antibodies in mouse immunization experiments. As

clearly shown, all mutants were able to induce IgG-anti Fel d 1 IgE

blocking antibodies in immunized mice, confirming a widely

conserved immunogenicity and antigenicity of the variants 3.4.7

and 6.7.1, thus indicating their potential as vaccine candidates

(Fig. 7, Fig. S2). The mutants’ capacity to induce blocking IgG

antibodies is illustrated by the real-time binding data (Fig. 7c).

Using comparable titers, the total shift (Hz) differed between the

wild type and each of the mutants, with rFel d 1 showing the

highest binding, followed by 6.7.1, 3.4.7, 6.7.3 and 11.5.2. Thus, a

greater number of IgG-antibodies induced by the wild type protein

also bind to the wild type protein compared to antibodies induced

by the mutants. Does the reduced epitope recognition translate

into reduced effectiveness of the mutagenic proteins in terms of

blocking capacity? Importantly, both the IgG blocking of human

IgE by ELISA (Fig. 7a) the basophil degranulation test (Fig. 7b)

and the mouse IgE-blocking sandwich ELISA after vaccination

(Fig. 8b) show mutants 3.4.7 and 6.7.1 to be as effective as rFel d 1

in terms of blocking capacity. In addition, the mouse anti cat

allergy model displayed a similar antibody profile of IgE, IgG1 and

IgG2a antibodies after vaccination with 3.4.7 and 6.7.1, in a

similar manner as that of the wt rFel d 1 (Fig. 8a). The results

suggest that the total amount of specific antibodies bound to an

antigen does not necessarily relate to a beneficial biologic

response. The off-rates are similar between rFel d 1, 3.4.7 and

6.7.1, while 6.7.3 and 11.5.2 dissociate more rapidly from rFel d 1

(Fig. 7c). This indicates a strong cross-reactivity, similar to that of

rFel d 1, by antibodies from 3.4.7 and 6.7.1.

Interestingly, in comparison to the wild type molecule, the real-

time Attana data suggests that the epitope repertoire produced by

the mutants 3.4.7 and 6.7.1 the still cover all the major IgE-

binding epitopes Moreover, with the exception of 11.5.2., the

mutants were highly immunogenic. in that they induced higher

titres of rFel d 1-specific IgG-antibodies than the wild type

molecule (Fig. S2b) which would be a desirable a feature by SIT.

The advantage of combining random mutations and phage

display is that unbiased selection of desirable molecular properties.

Detailed knowledge as structure, stability, productivity and of the

complex interactions between individual amino acids in a given

protein and of the structure-function relationships of the target

molecules is of less importance.

In summary, by consecutive rounds of error prone PCR

followed by selection from phage displayed libraries we have

isolated folded Fel d 1 mutants with reduced IgE-binding and T

cell activation capacity, as safer alternatives for use in SIT. These

allergens retained the ability to induce strong IgG-mediated

protective responses by mouse immunization experiments as

shown in particular for mutants 3.4.7.and 6.7.1. We conclude T

and B cell epitope hypoallergens thus evolved resemble many

desirable features of promising vaccine candidates for safer and

efficacious treatment of cat associated allergy and asthma.

Materials and Methods

Patients and control subjects
Randomly chosen sera from 20 patients with positive serum

IgE-responses to cat dander by ImmunoCAP (Phadia, Uppsala,

Sweden), were used to analyze IgE-binding to the Fel d 1 mutants

and to rFel d 1 used as positive control. A pool from these sera was

prepared for use in allergen competition ELISA.

New serum pool from 3–4 cat-sensitized subjects were mixed for

each round of biopanning. The inclusion criterion was a cat

dander specific IgE content exceeding 10% of the total IgE as

measured by ImmunoCAP (Phadia). Serum pools from healthy

individuals without serum IgE to cat dander were used as negative

controls. Sera mentioned above were collected at the routine

allergy diagnostic lab at Karolinska University hospital. Ten

consecutively selected well-characterized cat allergic and asthmatic

patients were recruited at the Karolinska University Hospital,

Lung Allergy clinic, and PBMC were isolated [38] for determi-

nation of allergen-specific proliferation. Venous blood was

collected from six cat allergic patients for basophil activation test,

and blood from another three cat allergic patients was obtained to

analyse the inhibitory effect on degranulation of mouse IgG anti-

mutant antibodies on rFel d 1 activated basophils.

The study was approved by the local ethics committee and all

patients gave an informed written consent.

Figure 8. Evaluation of rFel d 1 and mutants in a mouse model for cat allergy. (A) Vaccination of rFel d 1 sensitized mice with rFel d 1
(n = 10) , 3.4.7 (n = 7), 6.7.1 (n = 8) and PBS (n = 10) in an animal model for cat allergy. IgE, IgG1 and IgG2a-antibodies measured post treatment by rFel
d 1 ELISA are presented as OD values, or for IgG1 in units/ml (U/ml). (B) IgE-blocking activity of pooled sera from sensitized mice vaccinated with
either rFel d 1, 3.4.7 or 6.7.1 or PBS mice on sera from PBS treated mice by IgE-blocking sandwich ELISA. IgE responses are presented as OD values.
Boxes with median values and horizontal bars denote 50% of values and 1 standard deviation respectively. * P,0.05, ** P,0.01 and *** P,0.001
(Kruskal-Wallis with Dunn’s multiple comparisons test).
doi:10.1371/journal.pone.0024558.g008
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ELISA and inhibition ELISA
Solid-phase ELISA measurements were carried out essentially

as described [7]. Briefly, antigen or antibodies was coated to

microtiter wells (Nunc, Roskilde, Denmark). Sera from patients,

IgE-myeloma containing 2000 kU/L IgE serving as negative

control and phages were incubated in serial dilution followed by

detection of bound IgE-antibodies [39]. A reference curve was

included in each run for quantification of IgE [40].

Allergen inhibition ELISA was performed as described above,

but with a prior over night incubation at +4uC of serum from a

pool of cat sensitized patients (n = 20) mixed with 3-fold serial

dilutions (range 170 pg/ml–270 mg/ml) of mutants or rFel d 1 as

competing antigen.

Phage display libraries
Libraries containing random mutations were created by epPCR

using dNTP-Mutagenesis Kit (Jena Bioscience, Jena, Germany).

The rFel d 1 [7] template used in the first round was amplified

with the rFel d 1-specific primers 59 caccggaatt cgttaaaatg

gctgaaacct gc and 59 cgcgccgctc gaggcacagc gggg, with overhangs

designed for the Eco RI/Xho I cloning sites of phagemid pJuFo

[41]. The purified PCR amplicons were inserted into the rescue

vector pT7-Blue (Novagen Inc., Madison, WI, USA), using pT7

Blue Perfectly Blunt Cloning Kit (Novagen), transformed into

Nova Blue Singles cells (Novagen), vectors isolated (Plasmid

Miniprep Spin Kit, Genomed, Löhne, Germany) and fragments

excised using Eco RI and Xho I restriction sites, subsequently

ligated into pJuFo using T4 ligase (New England Biolabs, Ipswich,

MA, USA).

Phagemids carrying the mutated Fel d 1 coding sequences were

transformed into XL1-Blue MRF’ Electroporation-Competent

Cells (Stratagene, La Jolla, CA, USA) by electroporation (Bio-Rad,

Herts, United Kingdom), immediately added to 3 ml SOC

medium for 1 h at 37uC followed by titration. Transformed cells

were added to 12 ml 26YT medium containing ampicillin

(100 mg/L) and tetracycline (10 mg/L) and incubated for 2 h

(250 rpm, at 37uC) before addition of helper phage (VCSM13,

Stratagene) at a multiplicity of infection (moi) of 10. The medium

was supplemented with kanamycin (25 mg/L) after an additional

2 h and the culture incubated over night. The steps described

above were repeated 4–7 times depending on the clone.

Selection of clones
Phage-infected XL1-Blue cell were centrifuged (J2-21 Beckman

Coulter, Palo Alto, CA) at 50006 g, 15 min, 4uC. The

supernatant was collected and phagemids precipitated with 5%

PEG-8000, 4% NaCl final concentration, incubated on ice for 2 h

followed by centrifugation (186006 g, 15 min, 4uC). Phages were

resuspended in ice cold Tris-buffered saline (TBS) centrifuged

(161006g, 10 min, 4uC) to eliminate cell debris and supernatants

stored at 4uC.

100 ml, 2 mg/ml of monoclonal anti-human IgE (a kind gift from

Phadia, Uppsala, Sweden) was coated to 96-well microtiter plates

(Nunc). 100 ml of a patient serum pool (n = 3) containing Fel d 1-

specific IgE, Fel d 1 negative serum, or TBS as negative control was

added with shaking at 100 rpm for 2 h at 37uC. After washing,

phage library (100 ml, around 105 cfu) was added and incubated

with shaking at 100 rpm for 2 h at 37uC. The supernatant

containing unbound phages was discarded and the wells washed

using TBS with 0,1% Tween with increasing stringency (5, 10 and

15 times), to isolate clones with the highest IgE- binding capacity.

Bound phages were eluted with 0.1 M glycin buffer, pH 2.2,

neutralized with 0.5 M Tris-HCl pH 10.9, and added to 5 ml of

exponentially growing XL1-Blue, optical density (OD) 1.0 at

600 nm. Number of phages before (input) and after biopanning

(output) were calculated by titrations counting single colony forming

units on agar plates. To prepare phage for the next round of

panning ampicillin (100 mg/L) and tetracycline (10 mg/L) were

added to the infected XL1-Blue cells. Helper phage (moi of 10) and

kanamycin (25 mg/L) were added after 2 h and the cultures

incubated over night at 37uC with shaking at 250 rpm.

Sequencing
The inserts of twelve randomly picked colonies from the input

and output of each panning round were amplified by colony PCR

with pJuFo sequencing primers 59 ccgaaatcgc gaacctgc and 59

aacgacggcc agtgaattg. The PCR products were purified (PCR

Product Purification Spin Kit/250, Genomed) and used as

templates for sequencing (BigDye Terminator v1.1 Cycle

Sequencing Kit and ABI PRISM 310 Genetic Analyzer, Applied

Biosystems, CA, USA). The repetitive biopanning process was

terminated when no new dominant clones could be amplified, as

confirmed by sequencing of 12 randomly picked clones.

Expression of recombinant allergens
Finally selected clones were PCR-amplified using rFel d 1

primers, cleaved by XhoI and NdeI restriction endonucleases and

ligated into the expression vector pET20b (Novagen). The

constructs were transformed into BL21(DE3)pLysS (Novagen),

plated on LB plates containing 100 mg/L ampicillin and 35 mg/L

chloramphenicol and incubated overnight at 37uC. Single colonies

were picked, cultured in 15 ml LB medium containing ampicillin

(100 mg/L) and chloramphenicol (35 mg/L) overnight at 37uC
and 250 rpm and used to inoculate two liters of LB medium

containing ampicillin (100 mg/L) and chloramphenicol (35 mg/L)

for protein production. Cells at log phase were induced using

isopropyl thiogalactoside at a final concentration of 0.4 mM, with

simultaneous addition of ampicillin to 100 mg/l final concentra-

tion. After 3 h incubation at 37uC, the cells were collected by

centrifugation (186006g, 10 min), resuspended in 30 ml PBS and

frozen at 220uC.

Protein purification
Thawed pellets were adjusted to 6 M guanidine-HCl, sonicated

(Soniprep 150 ultrasonic disintegrator, Sanyo Gallenkamp, Ux-

bridge, UK) by 5 bursts610 sec (10 ma) on ice and centrifuged at

186006 g for 10 min. Buffer was exchanged on Sephadex G-25

equilibrated in 5 mM Tris-HCl containing 0.5 M NaCl, 20 mM

imidazol and 6 M guanidine-HCl, loaded on a 5-ml Ni2+-HiTrap

IMAC column (GE Healthcare, Uppsala, Sweden) followed by

elution with 5 mM Tris-HCl containing 0.5 M NaCl, 0.5 M

imidazol and 6 M guanidine-HCl. The guanidine was removed by

dialysis in 20 mM Tris-HCl, pH 7.4. Proteins were concentrated to

3 ml in a 10 ml Amicon cell (Millipore, Billerica, MA, USA) prior to

size exclusion chromatography on a 16/60 Superdex 200 pg column

equilibrated in PBS pH 7.4 using FPLC system (GE Healthcare).

The peaks corresponding to monomeric proteins (30 kDa) were

diluted 1:1 in 20 mM Tris-HCl pH 8.7, and loaded on 10 ml anion

exchange Q-Sepharose HP columns (GE Healthcare) equilibrated in

20 mM Tris-HCl pH 8.7. Proteins were fractioned with a 15 column

volumes linear gradient using 20 mM Tris-HCl, 1 M NaCl, pH 7.4,

aliquoted and stored at 280uC. Protein concentration was

determined using the BCA protein assay (Thermo scientific, Chicago,

USA) using bovine serum albumin as standard. The purity was

estimated by SDS-PAGE under reducing and non-reducing

conditions, and by analytical SEC using a Superdex 200 32/300

column (GE Healthcare) equilibrated in PBS at a flow rate of 40 ml/

min using ÄKTA Purifier (GE Healthcare).
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For control of allergen-specific T cell proliferation, two samples of

purified rFel d 1 containing 20 and 40 ng lipopolysaccharide (LPS)/

mg protein, respectively, were used. The LPS content was determined

with the limulus amebocyte lysate endochrome assay according to the

instructions (Charles River Endosafe, Charleston, USA).

Protein characterization
SDS-PAGE was performed under reducing conditions as

described [7]. Analytical SEC was performed using ÄKTA Purifier

(GE Healthcare) and a Superdex 200 PC 3.2/30 column,

equilibrated in PBS pH 7.4. The secondary structure of the purified

mutants and rFel d 1 was analyzed by far-UV circular dichroism

(CD) spectra measured at 25uC in phosphate buffer (10 mM

NaHPO4, pH 7.4). Data were collected at 1 nm intervals with time

averaging for 16 seconds using a bandwidth of 1.5 nm in a 0.01 cm

quartz cuvette (Hellma, Müllheim, Germany) using an Aviv 202 DS

spectropolarimeter (Aviv Biomedical, Lakewood NJ, USA).

Basophil activation test (BAT)
Allergen-specific basophil degranulation was analyzed by

monitoring the basophil activation markers CD203c and CD63

using flow cytometry [42]. Briefly, 10-fold serial dilutions of

antigen (1000 ng/ml to 0.01 ng/ml), medium (negative control)

and anti-IgE (positive control) was added to venous blood samples

from three cat allergic patients and incubated with anti-CD63

and anti-CD203c (Immunotech, Marseille, France). From each

patient, allergen-activated basophils were identified by gating for

CD203c+ cells using FACS Calibur (BD Biosciences, San Jose,

CA, USA). The magnitude of reactivity (y-axis, Fig. 5) was

reported as percentage of CD63+ cells among the gated basophils.

Sensitivity was analyzed at the right hand side of the bell-shaped

BAT curve, where positive reactivity was measured post

stimulation with the wild type protein. Comparison of the rFel d

1 mutants with the wild type protein was analyzed at 50% of

reactivity with rFel d 1 within the sensitive range.

T cell proliferation
Allergen-specific proliferation of cultured PBMC from 10 cat

allergic patients was analyzed in triplicates with 26105 cells/well

using 96-well plates [38]. Cells were stimulated with either 2.5, 10

or 25 mg/ml of the Fel d 1 mutants and rFel d 1 containing 20 or

40 ng LPS/mg protein and influenza antigen, (VaxigripH vaccine,

Aventis Pasteur, Lyon, France) 30 ng/ml LPS in cRPMI and

cRPMI alone as controls. Cells were incubated in 5% CO2 for five

days at 37uC when 1 mCi/well [3H] thymidine was added followed

by 18 h of incubation. Counts per minute (cpm) obtained from the

cell cultures were divided by cpm values from unstimulated wells

and expressed as a stimulation index (SI). SI values $2.0 were

considered to be positive. The proliferation varied between

patients (SI range, 5–80) and was normalized for purposes of

comparison. For each patient, a mean proliferation value (MPV,

cpm for tested antigens/number of wells) was calculated. This

value was set to 100%. The stimulation for single antigens is

presented as percentages in relation to the MPV.

Assessment of IgE-blocking mutant induced IgG
antibodies

Six to eight week old female BALB/c mice were obtained from

Charles River (Sulzfeld, Germany) and housed with food and

water ad libitum. Animal experiments were approved by the

Swedish local ethics committee for animal welfare.

The ability of the four mutants to generate IgE-blocking IgG

antibodies was tested. Groups of mice (n = 4) were immunized

subcutaneously in the neck with 10 mg of the mutant proteins and

as positive control rFel d 1, each protein adsorbed to 1 mg

aluminium hydroxide (Sigma-Aldrich, Steinheim, Germany).

Injections were given on day 0, 14, 28 and 42. On day 47, mice

were sacrificed and blood collected. Sera from mice immunized

with a distinct protein were pooled and a serum pool from naı̈ve

mice was used as a negative control.

In a first set of experiments titers were normalized between the

five different mouse immune serum pools by 5-fold serial dilutions

from 1/50 to 1/781250 using the respective antigen by ELISA as

described (Fig. S2a) [7].

The ability of mouse IgG-antibodies to block binding of

patient’s serum IgE to allergen was determined by ELISA. Plates

were coated with rFel d 1 and blocked with BSA. The normalized

mouse serum pools were added and incubated over night at 4uC.

The following day, patient serum containing IgE to rFel d 1

diluted to 0.85 kUA/L, and serum from an IgE-myeloma of

2000 kU/L as negative control was added, followed by IgE

detection as described.

To assess the biological relevance of anti- mutant IgG, the

ability to inhibit Fel d 1-mediated degranulation of basophils was

investigated. Briefly, 10-fold serial dilutions of rFel d 1 (1000 ng/

ml to 0.01 ng/ml) or medium was pre-incubated over night with

the four normalized mouse anti-mutant IgG serum pools and the

rFel d 1 pool as control. The mixes of antigen and serum pool

were then added to fresh venous blood from three cat allergic

patients as described above.

For real-time analysis of the different mouse antisera with

respect to binding properties to rFel d 1 an Attana A200 system

(Attana AB, Sweden) was used. rFel d 1 (5 mg/mL in 10 mM

sodium actetate pH 4.5) was immobilized on a LNB sensor chip

by amine coupling according to the manufacturer’s instructions.

All experiments were performed in running buffer, HBS-T

(10 mM HEPES buffered saline with 0.005% Tween 20), at

37uC. Dissociation rate constants for the 5 different antisera were

determined at 25 mL/min using the Attester Evaluation off-rate

screening tool, between time points 150 and 450 seconds. All sera

were normalized as determined by ELISA, and diluted 1:100 in

HBS-T. The surface was regenerated using a 41 s pulse of 10 mM

glycine pH 1.5. Non-specific binding to the activated and

deactivated LNB carboxyl surface was recorded using sera from

mice immunized with PBS.

Vaccination using mutants in a mouse model for cat
allergy

Animals were obtained and housed as described above. Mice

were sensitized s.c. with 1 mg, rFel d 1 adsorbed to 1 mg alum in

200 ml PBS or PBS only (non-sensitized negative control) on day 0,

14 and 28 to obtain high titers of anaphylactic antibodies. Groups

of mice (n = 7–10) were then vaccinated s.c. with 10 mg of rFel d 1,

3.4.7) or 6.7.1 respectively in 200 ml PBS or 200 ml PBS alone

(control) on day 30, 32 and 34. The mice were sacrificed on day 42

and peripheral blood was collected and stored at 280uC
Levels of Fel d 1-specific IgE, IgG1 and IgG2a was analyzed by

ELISA. For analysis of IgE, 96-well plates (Nunc) were coated with

0.2 mg/100 ml rat anti-mouse IgE (BD Biosciences), and IgG1 and

IgG2a plates were coated with 0.5 mg rFel d 1. Sera were diluted

1:20 for IgE measurement, 1:25000, 1:100000 or 1:1000000 for

IgG1 and 1:1000 for IgG2a. Levels of IgG 1 anti rFel d 1 was

analysed using an in-house reference curve and presented in units/

ml, U/ml. Bound IgE levels was measured using 0.2 mg/100 ml

and well of biotinylated rFel d 1 followed by alkaline phosphatase

(AP)-conjugated streptavidine (diluted 1:3000, Sigma-Aldrich).

IgG1 and IgG2a levels were detected using goat anti-mouse AP-
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conjugated IgG1 (1:5000) and IgG2a (1:1000) respectively

(Southern Biotech, Birmingham, AL, USA), followed by OD

measurements at 405 nm.

The IgE blocking capability of the antibodies obtained after

treatment was investigated using a competitive inhibition sandwich

ELISA as described above. Pooled sera from the group of mice

treated with PBS only were selected and added to wells coated

with rat anti-mouse IgE. Fresh serum pools from the respective

groups were prepared, diluted 1:10 and pre-incubated over night

with biotinylated rFel d 1 protein to a final concentration of 2 mg/

ml. The pre-incubated protein mixes were then added to wells and

detection of bound biotinylated rFel d 1 was carried out.

Statistical analysis
Proliferation data was analysed by ANOVA with Newman-

Keuls multiple comparisons test for pair wise analysis and the

ELISA and mouse study analysed by Kruskal-Wallis with Dunn’s

multiple comparisons test. All statistics were performed using

Graphpad Prism 5.02 software (Graphpad Software Inc., San

Diego, CA, USA). P-values,0.05 were considered significant.
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djurförsöksetiska nämnd’’, with the approval ID [DNR: N245/

08]. All human research has been approved by the local ethics

committee at Karolinska Institutet, ‘‘Regionala etikprövnings-
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Supporting Information

Figure S1 Size and purity of rFel d 1 and mutants. (A)

SDS-PAGE of purified rFel d 1 mutants under reducing conditions

with comassie blue staining. Molecular weight markers (lane 1,7),

rFel d 1 (lane 2), 3.4.7 (lane 3), 6.7.1 (lane 4), 6.7.3 (lane 5), 11.5.2

(lane 6). (B) Analytical size exclusion chromatography of rFel d 1

and mutants. The dots denote bovine serum albumin (67 kDa),

ovalbumin (43 kDa), and chymotrypsinogen A (25 kDa) used as

molecular weight markers.

(TIF)

Figure S2 Comparison of immunogenicity of rFel d 1
and mutants. Serial dilutions (x-axis) of pooled mouse sera from

mice immunized with either rFel d 1 or each respective mutant.

Pre-diluted sera were added to 96-well microtiter plates coated

with either (a) respective allergen or rFel d 1 only (b), and IgG

responses (y-axis) measured by ELISA.

(TIF)
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