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Abstract

CHD5 is frequently deleted in neuroblastoma and is a tumor suppressor gene. However, little is known about the role of
CHD5 other than it is homologous to chromatin remodeling ATPases. We found CHD5 mRNA was restricted to the brain; by
contrast, most remodeling ATPases were broadly expressed. CHD5 protein isolated from mouse brain was associated with
HDAC2, p66ß, MTA3 and RbAp46 in a megadalton complex. CHD5 protein was detected in several rat brain regions and
appeared to be enriched in neurons. CHD5 protein was predominantly nuclear in primary rat neurons and brain sections.
Microarray analysis revealed genes that were upregulated and downregulated when CHD5 was depleted from primary
neurons. CHD5 depletion altered expression of neuronal genes, transcription factors, and brain-specific subunits of the SWI/
SNF remodeling enzyme. Expression of gene sets linked to aging and Alzheimer’s disease were strongly altered by CHD5
depletion from primary neurons. Chromatin immunoprecipitation revealed CHD5 bound to these genes, suggesting the
regulation was direct. Together, these results indicate that CHD5 protein is found in a NuRD-like multi-protein complex.
CHD5 expression is restricted to the brain, unlike the closely related family members CHD3 and CHD4. CHD5 regulates
expression of neuronal genes, cell cycle genes and remodeling genes. CHD5 is linked to regulation of genes implicated in
aging and Alzheimer’s disease.
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Introduction

A role for CHD5 in cancer was first suggested by genetic

mapping studies in neuroblastomas [1,2]. Neuroblastomas fre-

quently harbor a deletion of the short arm of human chromosome

1, and the region shared by most deletions includes the CHD5

gene [1,3]. CHD5 was confirmed as the tumor suppressor in this

region, as depletion of CHD5 phenocopied the proliferative

defects found with deletions engineered in mice [2,4]. Depletion of

CHD5 reduced expression of another tumor suppressor, p19Arf,

suggesting that CHD5 mediates its tumor suppressive activity

through modulation of the p19arf/p53 pathway [4]. Subsequently,

CHD5 has been reported to be mutated, deleted or silenced in a

variety of human cancers including glioma, leukemia/lymphoma,

melanoma, breast, prostate, ovarian and gastric cancers

[5,6,7,8,9,10,11,12,13]. CHD5 expression has been suggested to

serve as a biomarker for positive outcomes in neuroblastoma

patients [14].

Chromodomain/helicase/DNA-binding domain (CHD) pro-

teins are found in eukaryotes from yeast through humans [15,16].

All CHD members contain two N-terminal chromodomains, a

helicase-like ATPase motif associated with nucleosome remodel-

ing, and a less well-defined C-terminal DNA binding domain. The

tandem chromodomains of CHD1 specifically recognize

H3K4Me3 and can facilitate the recruitment of post-transcrip-

tional initiation and splicing factors [17,18]. The human CHD

family is often divided by sequence homology: subfamily I (CHD1

and CHD2), subfamily II (CHD3 and CHD4) and subfamily III

(CHD6, CHD7, CHD8, CHD9); CHD5 has been grouped with

CHD 6–9 by some authors, and CHD 3–4 by others

[15,16,19,20]. Many remodeling ATPases are expressed ubiqui-

tously in the body plan. CHD5 is unusual in that its expression is

reported to be limited to the developing brain, adult brain and the

adrenal gland, suggesting a potential role in the development or

function of the neural system [21]. Deletion of a region of

chromosome 1 near CHD5 has been linked to intellectual
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impairment [22]. However, the role of CHD5 in brain

development and function remains to be determined.

CHD3 and CHD4, also known as Mi-2alpha and Mi-2ß, are

found in multiprotein chromatin remodeling complexes named

NuRD [23,24,25,26,27,28]. In addition to the ATPase activity of

the CHD subunit, NuRD complexes include the histone

deacetylases HDAC1 and HDAC2. NuRD complexes include a

methyl CpG binding protein (MBD2 or MBD3), adapter proteins

(RbAp46 and/or RbAp48), p66, and a metastasis associated

protein (MTA1, 2 or 3).

CHD proteins have been demonstrated to regulate gene

expression, with CHD3 and CHD4 being the best-studied examples

[24]. NuRD is often described as a transcriptional repressor, in part

because of the presence of histone deacetylase activity. However,

NuRD complex activity results in divergent outcomes for two target

genes in developing lymphocytes, mb-1 and CD4: NuRD inhibits

mb-1 transcription and activates CD4 transcription [29,30]. NuRD

is also an activator and repressor during blood development [31].

This behavior is reminiscent of the mammalian ISWI remodelers,

which are also often thought of as repressors, yet appear to possess

activation potential as well [32,33,34]. How the NuRD complex can

differentially regulate gene transcription remains an open question

but it has been suggested to be an outcome of a regulated shift in the

composition of NuRD components or through the association with

other transcriptional regulators. Genome-wide analysis of Mi2

binding in D. melanogaster revealed association with regions that

appeared to be enhancers and promoters [35]. Less is known about

the potential chromatin remodeling and gene regulatory functions

of CHD5–CHD9. Whether CHD5 exists in a multi-protein

complex and functions to regulate gene expression in the brain

has not been reported.

Remodeling of chromatin structure is an important determinant

of cell fate decisions and function in the nervous system. In

particular, ATP-dependent remodeling has been shown to be

critical for the development of invertebrate and vertebrate nervous

systems [19,36,37]. The best-characterized example is SWI/SNF,

containing the BRG1 and BRM ATPases. The SWI/SNF

ATPases are ubiquitous, though the accessory proteins in the

complex are developmentally regulated. During the transition

from neural progenitor to post-mitotic neuron, BAF45a and

BAF53a are replaced by BAF45b and BAF53b to assemble the

brain-specific nBAF form of the SWI/SNF complex [38]. nBAF is

critical in neuron-specific function as BAF53b-deficient mice have

a defect in neuron dendrite outgrowth [39]. In addition to ATP-

dependent remodeling, HDAC-inhibitor studies revealed a role for

chromatin remodeling involving histone acetylation in synaptic

plasticity and learning behaviors [40,41]. Studies on HDAC2-

deficient mice implicated this particular deacetylase as a direct

negative regulator of learning and memory [42].

Here, we examine CHD5 in rodent brain and neurons. We

found CHD5 was present in a multiprotein NuRD-like complex.

CHD5 was expressed in several brain regions, and CHD5 was

found in neurons. Depletion of CHD5 from primary neurons

revealed genes that were activated and repressed by CHD5. The

targets included genes that were previously identified as important

for aging, Alzheimer’s disease, and neuronal development.

Binding of CHD5 to some of these target genes in intact cells

suggested they were directly regulated by CHD5.

Materials and Methods

Protein extracts from rat brain
Rat brain was dissected to separate the cortex, cerebellum,

hippocampus, brain stem and striatum. Nuclear extracts were

made from each rat brain section as described for mouse brain

nuclear extracts (Methods S1). 15 ug of nuclear extract from each

brain region was analyzed by SDS-PAGE, transferred to PVDF

membrane, and detected by immunoblotting using anti-HDAC-2

(Abcam ab7029), and reprobed with anti-CHD5 (HD5A-E Day

77). Animal approval for rats was from the NIA ACUC, protocol

ASP-289-MPM, and all experiments conform to the relevant

regulatory standards.

Staining of brain sections
CHD5 staining of the rat hippocampus was done as described

[43] using anti-CHD5 antibody (HD5A-A Day 77) or pre-immune

serum at 1:2000.

Staining of primary neurons
Rat primary neurons were harvested from E18 rats as described

[44]. Cells were plated on PEI coated coverslips and were grown in

Neural Basal Medium (+B27) for nine days in vitro (DIV). Cells were

fixed in 100% cold methanol for 15 minutes at 220uC, pre-incubated

with blocking buffer (2% nonfat powdered milk, 2% normal serum in

PBS) for 1 hour. Cells were incubated with primary antibodies diluted

1:1000 in blocking buffer for 72 hours at 4uC. Primary antibodies used

were: anti-CHD5 (HD5A-A Day 77) and anti Tuj1, mouse

monoclonal anti Beta-Tubulin isotype III (Sigma #T8660). Secondary

antibodies were Alexa 568 for Tuj1 and Alexa 488 for CHD5. Cells

were counterstained with DAPI in PBS for 10 minutes.

Identification of proteins associated with CHD5
CHD5 antibody (HD5A-A Day 77) or pre-immune serum was

crosslinked to protein A beads as described [45]. Mouse brain

nuclear extract (12 mg) was diluted 1:4 in RIPA Buffer (50 mM

Tris, pH 7.5, 150 mM NaCl, 1% NP40, 0.5% sodium deoxycho-

late, 0.1% SDS), antibody/protein A beads were added and

incubated overnight at 4uC. The beads were pelleted, and washed

4 times with TX-100 Buffer [0.02 M Tris/HCl pH 8.0, 0.137 M

NaCl, 10% glyceol (v/v) and 1% Triton X-100 (v:v)] with protease

inhibitors. A final wash was performed with TE. The immuno-

precipitated proteins were eluted from the beads using 0.1 M

Glycine pH 2.5. The immunopurified proteins were analyzed by

SDS-PAGE on an 8% polyacrylamide gel. Protein bands were

visualized by silver staining (BioRad) or Colloidal Coomasie Blue

staining. Protein bands were excised from Coomasie-stained gels

and were sequenced (ProtTech Inc). Animal approval for mice was

from the NIA ACUC, protocol ASP-365-MJP-Mi, and all

experiments conform to the relevant regulatory standards.

Co-immunoprecipitation of proteins
Mouse brain nuclear extract was immunopurified as described

above except that these antibodies were crosslinked to the protein

A beads: anti-HDAC1 (Santa Cruz, sc-7872; Upstate, 06-720),

anti-HDAC2 (Abcam ab7029-50), anti-p66 Beta (Bethyl, A301-

281A). Other CHD5-interacting proteins were immunopurified

using the previously described protocol with these modifications:

the antibodies were not crosslinked to the protein A beads and the

nuclear extract was diluted into CoIP Buffer II (100 mM NaCl,

20 mM Hepes pH 7.5, 1 mM EDTA, 10% glycerol, 0.1% NP40).

Immunopurified proteins were analyzed by SDS-PAGE using 8%

Polyacrylamide gels. Immunoblot analysis was performed probing

for CHD5 using CHD5 antisera (HD5A-E Day 77).

Gel filtration analysis of CHD5
Mouse brain nuclear extract was dialyzed against PBS (MWCO

12–14,000, 6.4 mm diameter Spectrum Laboratories 132 676),
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centrifuged twice at 100,0006 g for 10 minutes at 4uC, then

0.2 mg was loaded onto a Sephadex 200 Column (Amersham) and

0.5 mL eluted fractions were collected and analyzed by SDS-

PAGE and western blot analysis. Sizing standards were run

according to the manufacturer’s instructions (Amersham High

Molecular Weight Gel Filtration Calibration Kit, 17-0441-01).

CHD5 protein depletion using lentiviral-delivered shRNA
CHD5 KD shRNA sequences (Table S5) were designed

according to the instructions for the pLKO.1 system (Addgene).

Control shRNA virus was plasmid 1864 from Addgene, as

described [46]. Virus was packaged using HEK-293T cells,

pLKO.1 vector with shRNA inserts for CHD5, psPAX2 and

pMD2.G. 48 hours after transfection of 293 cells, medium

containing virus was filtered (0.45 micron), then applied to

primary cortical neurons one day after the neurons were plated

(DIV 1) for 6 hours. Medium was removed, and replaced with

Neural Basal Medium, and the cells were cultured until RNA was

harvested at day 5, 9, or 12 (DIV 5, 9 or 12).

Validation of Microarray
RNA was harvested from primary cortical neurons infected with

the indicated lentivirus, as described above, at the indicated times.

RNA was isolated using RNAeasy Kit (Qiagen), cDNA was

synthesized using Iscript (BioRad). mRNA was quantified using

real time PCR and normalized to Actin (Actb), a housekeeping

gene; similar results were obtained normalizing to other

housekeeping genes such as Tbp [47] or Gapdh. Primer sequences

are listed in Table S5.

ChIP (chromatin immunoprecipitation)
ChIP was performed essentially as described [32,48,49,50,51],

with the following changes. Approximately 36106 primary cortical

neurons were cross-linked with 1% formaldehyde for 10 minutes,

then quenched with glycine. Cells were scraped into PBS, collected

by centrifugation, and lysed in 400 ul SDS Lysis Buffer (50 mM

Tris-HCl pH 8, 1% SDS, 10 mM EDTA). Nuclei were not

treated with MNase. Sonication was performed using a bath

sonicator (Bioruptor; Diagneode). Mouse brain ChIP was

performed as described [32,52]. CHD5 ChIP was performed

using CHD5 antisera on day 9 (HD5A-A Day 77). Rat and mouse

primer sequences are listed in Table S5.

Results and Discussion

CHD5 mRNA is preferentially found in brain
CHD5 expression was initially reported to be limited to brain,

though others have found CHD5 expression elsewhere, so there is

some controversy about sites of CHD5 expression [4,7,9,13,21].

We examined CHD5 mRNA in mouse and human organs, and

found that CHD5 mRNA was abundant in brain, approximately 7

fold lower in mouse testes, and 2–4 orders of magnitude lower in

all other tested mouse and human organs (Figure 1a,b). Little if

any CHD5 mRNA was found in the neuroblastoma cell line SH-

SY5Y; this is a negative control, as neuroblastoma cells generally

do not express the neuroblastoma tumor suppressor gene CHD5.

By contrast, for the same mouse mRNA samples, the ratio of the

highest to lowest expression for CHD4, BRG1 and SNF2H (three

other remodeling ATPases) was about 5 fold, indicating they were

broadly expressed (Figure 1b). We place CHD5 along with CHD4

in the Mi2 group of remodeling ATPases by sequence homology

(see below), thus the contrast in expression was specific to CHD5,

not a property of the Mi2 family. CHD5 mRNA was detected at

E15.5, when the brain is mostly neurons with relatively few glial

cells, and increased after birth and to adulthood (Fig. 1c). RNA

encoding other remodeling enzymes was also detected, including

CHD3 and CHD4, sequence homologs of CHD5 (Fig. 1c). Again,

the expression of CHD5 was very different than the expression of

the paralogs CHD3 and CHD4.

CHD5 is a nuclear protein found in neurons
Remodeling ATPases are grouped by homology into subfam-

ilies. Based upon sequence identity and domain structure, CHD5

is a member of the Mi2 group, along with the paralogs CHD3 and

CHD4 (Figure S1). CHD5 is most homologous to CHD4, with

70% amino acid identity and identical domain structure (Paired

PHD domains, paired chromodomains, SNF-2-like ATPase

domain). By comparison, CHD5 shares only 18% identity with

SNF2H, an ISWI ATPase, and 18% identity with BRG1, a

SWI2/SNF2 ATPase. We made antisera targeted to CHD5 N-

terminal fragments (Figure S1b) that specifically recognize CHD5,

and used these antisera to test for CHD5 in brain. We found

CHD5 protein was expressed in various regions of rodent brain

(Figure 2a). By contrast, CHD5 protein was not detected in HeLa

(epitheliod), SH-SY5Y (neuroblastoma), NT2 (embryonal carci-

noma), and EL4 (T cell) cell lines, consistent with the lack of

CHD5 mRNA in these cells (Figure 2a and data not shown).

CHD5 staining was not detected in SH-SY5Y cells, a human

neuroblastoma line; following transfection with a human CHD5

cDNA, nuclear staining was readily apparent in these cells

(Figure 2). This suggested that our antisera were specific for

CHD5; we used SH-SY5Y as a negative control because they a

cell line with a neuronal phenotype that lack the neuroblastoma

suppressor CHD5. CHD5 protein expression was examined in

rodent brain sections. CHD5 protein was readily detected at

regions rich in neuronal cell bodies, and was not detected in glial

cell rich regions, suggesting CHD5 was a neuronal protein found

in cell nuclei (Figure 3a), consistent with a recent report [14].

These signals were not detected when CHD5 primary antibody

was omitted from the staining procedure (data not shown).

Staining of primary rat neurons confirmed CHD5 was predom-

inantly a nuclear protein in neurons (Figure 3b).

Of course, it is not possible to prove a negative proposition. We

were not able to detect CHD5 mRNA or protein outside of brain

and perhaps testes at levels higher than in our neuroblastoma

negative control. It is nonetheless possible that CHD5 below our

detection limit has some important functional role in these cells. In

addition, we did not test all possible cell types at developmental

stages, so there may be other cell types that express CHD5.

Examination of published reports of CHD5 expression outside

brain, revealed that several measured mRNA and did not detect

the protein [4,7,9], another reports CHD5 is a cytoplasmic protein

[13] and another reports a CHD5-specific antibody detects CHD5

in HeLa cells [53].

CHD5 is found in a NuRD-like complex
We asked whether CHD5 was associated with other proteins.

Human CHD3 and CHD4 form NuRD-like complexes [24],

while Drosophila Mi2 proteins have also been found as free

proteins and in complexes without NuRD components [reviewed

in 54]. We considered that CHD5 could be in NuRD-like

complexes, or perhaps in non-NuRD complexes like the fly

homolog. We immunopurified CHD5 from mouse brain nuclear

extracts, isolated gel slices, and identified proteins using mass

spectrometry. Little, if any, CHD5 was found in the cytoplasmic

fraction, consistent with our staining results. Our immunopurifica-

tion appeared to be specific for CHD5, as sequencing of the band

at the expected size for CHD5 revealed the presence of peptides
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unique to CHD5, while we did not detect peptide sequences from

either CHD3 or CHD4 that were absent from CHD5 (Table S1a).

Note that CHD3 and CHD4 are identical in size to CHD5, thus

cannot be distinguished by electrophoretic mobility. We identified

MTA3, p66ß and HDAC1/2 as proteins associated with CHD5

(Figure 4a and Table S1). These components or homologs have

been found in NuRD complexes along with the ATPases CHD3

and CHD4 [25,26,27,28], suggesting CHD5 was in a NuRD-like

complex.

We used co-immunoprecipitation experiments to further define

CHD5-interacting proteins. We confirmed the interaction of

MTA3, p66ß, and HDAC2 with CHD5 (Figure 4b). We also

detected a strong interaction with RbAp46 (Figure 4b). A weak

interaction was found with MBD3; it is not clear whether the lower

signal reflects MBD3 abundance, stability of interaction with

MBD3 or antibody efficiency. We noted HDAC1 was detected at

lower levels than HDAC2 (Figure 4b and Table S1b), suggesting

that CHD5 was preferentially interacting with HDAC2. Immu-

noblotting with HDAC1 instead of CHD5 confirmed HDAC1 was

immunoprecipitated with HDAC1 antisera, but not by CHD5

antisera (Figure 4c). Immunoblotting with HDAC2 confirmed that

CHD5, p66ß and HDAC2 antisera immunoprecipitated HDAC2.

Both HDAC1 and HDAC2 were readily detected in nuclear

extracts from mouse brain and HeLa cells (Figure 4c).

Figure 1. CHD5 expression is restricted to brain. A,B) RNA from
human (A) or mouse (B) organs was used to synthesize cDNA, which
was then quantified by real-time PCR. Signal was normalized to the
expression of the housekeeping gene Actin. The bars indicate the
averages and standard deviations of three experiments. A) SH-SY5Y
indicates the human neuroblastoma cell line SH-SY5Y; neuroblastoma
cells do not express the tumor suppressor CHD5. B) expression for each
remodeling enzyme was normalized to the expression level in mouse
brain; thus, a value of 1 means the expression for that enzyme in that
tissue is the same as brain. CHD5 was not detected in mouse Th1 and
Th2 cells (primary naı̈ve CD4+ T lymphocytes differentiated in culture to
the Th1 or Th2 fate; data not shown). C) RNA obtained from dissected
mouse brain (brain at E15.5, cortex at P16, and adult cortex) as well as
commercial mouse brain RNA was used to synthesize cDNA, which was
then quantified by real-time PCR for each of the indicated remodeling
enzyme ATPases. Signal was normalized to the expression of the
housekeeping gene Actin. Mouse brain at E15.5 is essentially cortical
neurons. The bars indicate the averages and standard deviations of
three experiments.
doi:10.1371/journal.pone.0024515.g001

Figure 2. CHD5 protein is expressed in several brain regions. A)
The indicated regions were dissected from rat brain. Nuclear extracts
were made from rat brain and HeLa cells. Equal amounts of protein
were loaded in each lane. CHD5 was detected by immunoblotting with
HD5A-E day 77. The same filter was reprobed for HDAC2 as a loading
control. B–E) CHD5 antibody specificity. SH-SY5Y neuroblastoma cells
were transfected with human CHD5 cDNA (D, E) or control (B, C) using
lipofectamine2000. Cells were fixed with methanol 220uC 15 minutes,
visualized by phase contrast (B, D) or were stained for CHD5 protein
(primary is 1:1000 CHD5 antisera HD5A-A day 77, secondary is Alexa 488
anti-rabbit).
doi:10.1371/journal.pone.0024515.g002
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We hypothesized that CHD5 might bind HDAC2 with higher

affinity, or alternatively cells expressing CHD5 might contain

more HDAC2 than HDAC1. We transfected CHD5 cDNA into

HeLa cells, which contain HDAC1, HDAC2, CHD3, and CHD4

[26,27], but lack CHD5 (Figure 2a). CHD5 could interact with

both HDAC1 and HDAC2 in these cells, as found for CHD4

(Figure S2). This also indicates the HDAC1 antibody is capable of

identifying HDAC1/CHD5 complexes, when present. Others

have found that neurons preferentially contain HDAC2 instead of

HDAC1 [42,55], and this may account for the specificity of the

CHD5-HDAC2 interaction we observed in neurons and brain.

We fractionated nuclear proteins using size-exclusion chroma-

tography, to ask whether CHD5 protein also existed as monomers.

CHD5 migration was approximately megadalton, and little or no

CHD5 was detected at the expected size for monomeric or dimeric

CHD5 (Figure 4c), suggesting CHD5 was predominantly present

in a large complex similar in size to NuRD and SWI/SNF ATP-

dependent remodeling enzymes. HDAC2 and p66ß co-migrated

with CHD5, consistent with the proteins being present in a

NuRD-like complex (Figure 4c). We did not detect smaller

complexes, as found for Mi2 proteins in flies.

CHD5 depletion alters neuronal expression of genes
implicated in aging, Alzheimers’, and neuronal function

We hypothesized that CHD5 might regulate neuronal gene

expression. To deplete primary neurons of CHD5, we constructed

lentiviral vectors to express shRNA targeting CHD5. We

Figure 3. CHD5 protein is a nuclear protein in rodent brain and
cultured neurons. A) Rat brain sections were prepared, stained with
CHD5 antisera HD5A-A day 77, and protein was visualized using
immunohistochemistry. B) Neurons harvested from E18 rats were
grown on coverslips, and stained for CHD5 (Green; Antisera HD5A-A day
77) and a neuronal marker (Red- Tuj1), and counterstained for DNA
(Blue-DAPI). Individual and merged panels are shown.
doi:10.1371/journal.pone.0024515.g003

Figure 4. CHD5 protein is found in a NuRD-like complex in
mouse brain. A) Proteins were purified from mouse brain nuclear
extract using CHD5 antisera HD5A-A day 77 or control IgG crosslinked
to Protein A beads. Proteins were analyzed by SDS-PAGE and detected
by silver stain. B) Mouse brain nuclear extracts were immunoprecipi-
tated using the antisera indicated below, analyzed by SDS-PAGE,
transferred, and detected by immunoblotting using CHD5 antisera.
Note different CHD5 antisera were used for IP (HD5A-A day 77) and for
immunoblotting (HD5A-E day 77). C) Mouse brain nuclear extracts were
immunoprecipitated using the antisera indicated below, analyzed by
SDS-PAGE, transferred, and detected by immunoblotting using HDAC1
or HDAC2 antisera. Brain indicates mouse brain nuclear extract; HeLa
indicates HeLa nuclear extract. D) Mouse brain nuclear extracts were
size-fractionated using gel filtration. Size of fractions was estimated by
calibrating the column with standards. Fractions were analyzed by SDS-
PAGE, transferred, and detected by immunoblotting with the indicated
antisera (for CHD5, antisera HD5A-E day 77 was used). The input nuclear
extract (NE) is shown as a positive control.
doi:10.1371/journal.pone.0024515.g004
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identified sequences that reduced the amount of CHD5 protein

expressed in primary rat neurons (Figure 5a); shRNA that reduced

CHD5 mRNA also reduced CHD5 protein. We identified CHD5-

dependent gene expression in primary neurons using microarray

analysis (described in detail in Methods S1); primary data were

deposited in GEO (GSE27620). We found the expression of

several hundred genes was augmented or diminished following

depletion of CHD5 protein; approximately similar numbers of

genes were affected in each direction (Figure 5b). Pathways from

the MSigDB database of the BROAD institute of MIT were

queried for regulation by CHD5; these gene sets come from many

cell types and sources [56]. At both day 9 and day 12 of

differentiation, the most strongly downregulated gene sets were

‘‘AGEING_BRAIN_UP’’, a gene set identified from aging human

brain, [57] and ‘‘STEMCELL_NEURAL_UP’’; ‘‘ALZHEI-

MERS_DISEASE_UP’’, a gene set identified in human brains

of Alzheimer’s patients [58] was also strongly downregulated,

while ‘‘ALZHEIMERS_INCIPIENT_UP’’ [58] was downregu-

lated less strongly (Table S2). The ‘‘AGEING_BRAIN_DN’’ gene

set [57] was upregulated at the same times; thus, CHD5 had

opposite effects on genes that were upregulated and downregu-

lated in the human brain during aging. At day 5, ‘‘RETT_DN’’

[59] and ‘‘NGFPATHWAY’’ were also upregulated at day 5. To

our knowledge, CHD5 had not previously linked to aging or

Alzheimer’s disease.

Among GO term gene sets, defects in expression of neuronal

gene sets were prominent (Table S3). ‘‘NEURON FATE

COMMITMENT’’ was significantly upregulated at day 12,

‘‘BEHAVIORAL FEAR RESPONSE’’ was downregulated at

days 9 and 12; ‘‘NEGATIVE REGULATION OF NEURON

DIFFERENTION’’ was upregulated at days 9 and 12, ‘‘SYN-

APSE ORGANIZATION AND BIOGENESIS’’ was upregulated

at day 12, ‘‘NEURON PROJECTION’’ was upregulated at days

5 and 9, while ‘‘NEURITE DEVELOPMENT’’, ‘‘FOREBRAIN

DEVELOPMENT’’, and ‘‘DENDRITE’’ were upregulated at day

9. Cell cycle defects were also evident: ‘‘CELL DIVISION’’ was

significantly upregulated at day 12; ‘‘REGULATION OF

PROGRESSION THROUGH CELL CYCLE’’ was downregu-

lated days 5, 9, and 12; ‘‘CYCLIN DEPENDENT PROTEIN

KINASE ACTIVITY’’ was downregulated at days 5 and 12.

CHD5 had not been identified as part of any of these pathways

prior to our work.

We validated selected expression changes using independent

biological samples. Targets were considered validated by us when

the initial microarray result (performed as a timecourse, in

triplicate) was reproduced in at least 3 independent replicate

experiments (also performed as timecourses in triplicate); any

target that did not replicate in the experiment performed using a

different shRNA reagent was considered a potential off-target

result. We tested genes previously implicated in Alzheimer’s

disease through gene set enrichment analysis, and confirmed that

App and ApoE were downregulated by a reduction in CHD5,

suggesting CHD5 was activating their expression (Figure 6 and

Table S4). CHD5 mRNA was also downregulated by the

knockdown, while the highly homologous CHD3 and CHD4

were unaffected (data not shown). We next validated genes with

known neuronal function including Vip, Npy, Maoa, Dlx1, Nrxn1,

Fmr1, Dlx1, Nefl, and Nefm (Figure 6 and Table S4). Reduction

in CHD5 expression reduced the amount of mRNA for these

genes. For other neuronal genes (L1cam, Gabrd, Ampd3) CHD5

functioned as a repressor (Table S4). We confirmed CHD5

activation of expression of the transcription factors Nfia and Id2

(Figure 6 and Table S4). Nfia was previously identified as an

activator of Ndrg2 expression in brain [60]; we verified Ndrg2

expression was reduced by CHD5 inhibition (Table S4), which

may be mediated by loss of Nfia. Finally, we examined chromatin

remodeling enzymes and other regulators, confirming expression

increased for the SWI/SNF components Baf45b/Neud4, Baf53b/

Actl6b and BAF 60a/Smarcd1, the histone methyltransferases

Suv39h1 and Suv420h2 and the micro-RNA processing enzyme

Dicer (Figure 6 and Table S4). Baf45b and Baf53b are both brain

specific components of the SWI/SNF complex varaint nBAF,

which is also restricted to brain [36,38,39]. The functions of nBAF

include development of neurons after neuronal precursor

formation and dendrite formation. We found the GO term

‘‘DENDRITE’’ was upregulated at day 9 following inhibition of

CHD5, consistent with our finding that CHD inhibition increased

expression of the nBAF components Baf45b and Baf53b.

We note that the effects of CHD5 depletion are most prominent

at different times for different genes. We do not yet understand

Figure 5. Inhibition of CHD5 protein expression in primary rat
neurons. A) Neurons from E18 rats were cultured, infected with the
indicated CHD5 lentivirus (1–8) or control lentivirus (Control shRNA,
GFP) on day 1, protein was harvested at day 5, analyzed by SDS-PAGE,
transferred, and immunoblotted with antisera recognizing CHD5
(HD5A-E day 77) or HSP90 (a loading control). Mouse brain nuclear
extract is shown as a positive control. B) Neurons from E18 rats were
cultured, infected with CHD5 lentivirus 1 or control lentivirus on day 1,
and mRNA was harvested at day 5, 9 and 12. cDNA was synthesized,
then quantified using Illumina microarrays. The number of genes that
were upregulated (green) and downregulated (red) in a statistically
significant manner was counted at days 5, 9, and 12. ‘‘All genes’’ is the
sum of genes upregulated and dowregulated by inhibition of CHD5
protein. Microarray data are deposited in GEO (GSE27620).
doi:10.1371/journal.pone.0024515.g005
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why this is. For genes such as Id2 and Nfia, CHD5 alters gene

expression at the earliest time tested, while for other genes such as

Vip and Baf45b, the effect of CHD5 depletion is not detected until

later. We hypothesize that in these cases, CHD5 might be working

with a pathway that is turned on after several days of culture. For

example, CHD5 might activate Vip through a transcription factor

that is repressed or inactive at day 5, and expressed/activated

later, in which case CHD5 would have no detectable effect until

the transcription factor recruiting CHD5 was functional.

CHD5 binds target genes, suggesting direct regulation
As noted above, changes in gene expression caused by reduction

in CHD5 protein could be the direct result of CHD5 function on

these target genes. Alternatively, CHD5 function could be indirect,

for example CHD5 might regulate expression of a regulator of a

target gene. To distinguish these possibilities, we performed ChIP

for CHD5 on cultured rat neurons. We found CHD5 binding to

the CHD5 targets Nfia, Vip, App, Baf45b, and Ddit4 (Figure 7a).

CHD5 binding was 2 to 10 fold greater than control IP at these

target loci, while CHD5 binding was at background (similar to

control IP) at other loci such as downstream of the Fos promoter

(+13.4k). There was no simple correlation between CHD5 binding

and H3K9,14 acetylation or H3K27me3 (Figure 7b and data not

shown), suggesting it was unlikely these positive and negative

marks served to recruit CHD5. We investigated sequences flanking

the DDIT4 promoter to test our ChIP specificity; we found little if

any CHD5 signal at several nearby loci (Figure 7c). We extended

our ChIP to mouse brain; using an organ obtained from an

animal, rather than cultured cells, we found CHD5 binding to the

CHD5 promoter using 2 different primer sets (Figure 7d). Again,

CHD5 signal was absent at flanking regions, confirming the

specificity of our CHD5 ChIP in a second species.

CHD5 has been identified as a tumor suppressor for

neuroblastoma. However, little is known about the function of

CHD5. We found CHD5 was a nuclear protein predominantly

found in neurons. We found CHD5 was in a megadalton, NuRD-

like complex containing HDAC2, p66ß, MTA3, RbAb46 and

MBD3. CHD5 was present early in development and in adult

brain, and CHD5 was expressed in several brain regions, implying

CHD5 may play a broad role in brain development or function.

CHD5 appears to regulate gene expression, as inhibition of CHD5

protein expression alters mRNA amounts of many genes. To our

Figure 6. Depletion of CHD5 protein alters gene expression in primary rat neurons. Rat neurons were harvested and plated (D0), infected
with CHD5 or control lentivirus 24 hours later (D1) and mRNA was harvested Day 5, 9, and 12. cDNA was synthesized, and quantified using
quantitative PCR. mRNA amounts were normalized to the housekeeping gene TBP. ‘‘KD’’ indicates infection with CHD5 lentivirus, ‘‘Con’’ indicates
infection with control lentivirus. Symbols indicate average values from 3 plates, while error bars indicate standard deviations. The absolute expression
of these genes is quite different, so they are plotted to different scales.
doi:10.1371/journal.pone.0024515.g006
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knowledge, this is the first report of gene regulation by CHD5 in

neurons. A previous report of gene regulation by CHD5 was

performed in fibroblasts, and did not determine whether CHD5

bound the target genes [4]. The regulation we observed may be

direct in some cases, as CHD5 binding was found at a number of

these target genes at promoters and distal sites. Using microarrays

and pathway analysis, we found CHD5 regulated genes that were

previously found to change expression in response to aging or

Alzheimer’s disease, suggesting CHD5 may play a broader role in

human disease than currently recognized.

Supporting Information

Figure S1 CHD5 motifs and sequence homology. A) The

human protein sequences of the indicated ATPases were aligned

using MacVector (Accelrys Inc.). The Mi2, SWI/SNF, ISWI,

CHD1/2, and CHD6-9 subfamilies are indicated. CHD5 and Mi2

subfamily are marked in red. B) Motifs from representative

ATPase family members were identified using PROSITE [61].

The ATPases and domains are drawn to the same scale; increasing

length corresponds to more amino acids. The N terminus of each

protein is at the left. PhD domains are in red, chromo domains are

in blue, ATPase domains are in green, and other domains not

found in the Mi2 subfamily are shown in black. Ab1 indicates

region targeted by antisera HD5A-E, and Ab2 indicates region

targeted by antisera HD5A-A.

(EPS)

Figure S2 CHD5 is capable of binding HDAC1. HeLa

cells were transfected with human CHD5 cDNA (shown) or

control (not shown). Extracts were immunoprecipitated with the

indicated antisera, analyzed by SDS-PAGE, transferred, and

detecting by immunoblotting with the indicated antisera. Note

that CHD5 IP does not enrich for CHD4, suggesting these

proteins are not associated, and CHD5 antisera does not cross-

react with CHD4.

(EPS)

Table S1 Peptide sequence from CHD5 and associated
proteins. Table S1a- CHD5 Peptides. Table S1b- HDAC2

Figure 7. CHD5 protein binds to target genes in primary rat neurons and mouse brain. Neurons from rats were cultured; neurons and
brain were crosslinked with formaldehyde, and analyzed by ChIP-Q-PCR with the indicated antibodies (for CHD5, antisera HD5A-A day 77 was used)
as described in the methods. Fos +13.4k locus is one measure of background for CHD5 ChIP; we have not found CHD5 binding to this region. Another
measure of background is ChIP with control IgG; the mean+standard deviation for all loci was approximately equal to 0.05 in rat primary neurons,
similar to the signal we see at Fos +13.4k, and 0.02 in mouse brain. The gene name and the distance from the TSS are listed below. Data are shown as
the averages and standard deviations of three experiments performed with independent preparations of primary rat neurons and mouse brains. A)
CHD5 binding, primary rat neurons. B) H3K9,14 acetylation, (a mark associated with some active chromatin), primary rat neurons. C) CHD5 binding,
primary rat neurons. D) CHD5 binding, mouse brain.
doi:10.1371/journal.pone.0024515.g007

CHD5 Regulates Neuronal Genes

PLoS ONE | www.plosone.org 8 September 2011 | Volume 6 | Issue 9 | e24515



Peptides. Table S1c- Gatad2b/p66ß Peptides. Table S1d- MTA3

peptides.

(DOCX)

Table S2 Gene sets altered in a statistically significant
manner by CHD5 inhibition. The columns ‘‘Pathway Name’’

and ‘‘Annotation’’ list gene sets from the molecular signature

database. Z scores for changes in the gene set are listed in the

following columns. ‘‘D12KD_D12C’’ compares gene set expression

after treatment with CHD5 shRNA lentivirus to contol, at day 12.

Negative Z scores indicate expression of the gene sets are reduced,

and thus CHD5 is formally an activator, while positive Z scores

indicate expression of the gene sets are increased, and thus CHD5

formally represses them. ‘‘D9KD_D9C’’ and ‘‘D5KD_D5C’’

measure the effect of CHD5 depletion at earlier times.

‘‘D12C_D5C’’ and ‘‘D9C_D5C’’ compare the change in gene set

expression in control cells at day 12 and day 9 relative to day 5.

(XLS)

Table S3 GO term gene sets altered in a statistically
significant manner by CHD5 inhibition. The columns

‘‘Gene Ontology Term’’ and ‘‘Annotation’’ list gene sets from the

molecular signature database. Z scores for changes in the gene set are

listed in the following columns. ‘‘D12KD_D12C’’ compares gene set

expression after treatment with CHD5 shRNA lentivirus to contol, at

day 12. Negative Z scores indicate expression of the gene sets are

reduced, and thus CHD5 is formally an activator, while positive Z

scores indicate expression of the gene sets are increased, and thus

CHD5 formally represses them. ‘‘D9KD_D9C’’ and ‘‘D5KD_D5C’’

measure the effect of CHD5 depletion at earlier times. ‘‘D12C_D5C’’

and ‘‘D9C_D5C’’ compare the change in gene set expression in

control cells at day 12 and day 9 relative to day 5.

(XLS)

Table S4 Summary of CHD5 targets validated by Q-RT-
PCR. The column ‘‘Target of CHD5’’ lists genes identified as

CHD5 targets using microarray analysis. The column ‘‘CHD5

Function’’ lists the result validated in at least 3 independent

experiments. ‘‘Activator’’ indicates expression was reduced follow-

ing CHD5 depletion for at least one time window, ‘‘Repressor’’

indicates expression was increased following depletion, while

Activator/Repressor indicates both, at different times. ‘‘CHD5

Binding’’ indicates measurement by ChIP; Yes indicates binding

above control IP and control locus. ‘‘Region(s) indicate where

binding was (or was not) observed. ‘‘Gene Sets’’ indicates, for the

gen in that row, the gene sets from Table S2 this gene is found.

(XLS)

Table S5 Sequences. 5A) Primers for measuring mRNA

amounts using Q-RT-PCR. 5B) Mouse primers. 5C) Rat primers.

5D) Primers for detecting proteins in rat chromatin using ChIP.

5E) Sequences and names for pLKO.1 lentivirus shRNA

constructs. 5F) Primers for expressing hCHD5 fragments to raise

antisera.

(DOCX)

Methods S1 Production of CHD5 antisera, character-
ization of CHD5 antisera specificity, isolation of mouse
brain nuclear extracts, measurement of mRNA from
mouse and human organs, Illumina BeadChip analysis,
and Pathway analysis are described. Additional references

are provided.

(DOCX)
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