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Abstract

Brown algae are the predominant primary producers in coastal habitats, and like land plants are subject to disease and
parasitism. Eurychasma dicksonii is an abundant, and probably cosmopolitan, obligate biotrophic oomycete pathogen of
marine brown algae. Oomycetes (or water moulds) are pathogenic or saprophytic non-photosynthetic Stramenopiles,
mostly known for causing devastating agricultural and aquacultural diseases. Whilst molecular knowledge is restricted to
crop pathogens, pathogenic oomycetes actually infect hosts from most eukaryotic lineages. Molecular evidence indicates
that Eu. dicksonii belongs to the most early-branching oomycete clade known so far. Therefore Eu. dicksonii is of
considerable interest due to its presumed environmental impact and phylogenetic position. Here we report the first large
scale functional molecular data acquired on the most basal oomycete to date. 9873 unigenes, totalling over 3.5Mb of
sequence data, were produced from Sanger-sequenced and pyrosequenced EST libraries of infected Ectocarpus siliculosus.
6787 unigenes (70%) were of algal origin, and 3086 (30%) oomycete origin. 57% of Eu. dicksonii sequences had no similarity
to published sequence data, indicating that this dataset is largely unique. We were unable to positively identify sequences
belonging to the RXLR and CRN groups of oomycete effectors identified in higher oomycetes, however we uncovered other
unique pathogenicity factors. These included putative algal cell wall degrading enzymes, cell surface proteins, and
cyclophilin-like proteins. A first look at the host response to infection has also revealed movement of the host nucleus to the
site of infection as well as expression of genes responsible for strengthening the cell wall, and secretion of proteins such as
protease inhibitors. We also found evidence of transcriptional reprogramming of E. siliculosus transposable elements and of
a viral gene inserted in the host genome.
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Introduction

Like all other living organisms, algae suffer from diseases, which

may range from spectacular outbreaks in natural populations to

significant losses in multibillion dollar crops such as nori [1]. As

aquaculture continues to rise worldwide, and with algae

considered as a sustainable biofuel source, pressure is mounting

to design efficient disease control methods. More generally,

parasites and pathogens are increasingly being considered of

equal importance with predators for ecosystem functioning [2]. In

aquatic as well as terrestrial environments, altered disease patterns

in disturbed environments are blamed for sudden extinctions,

regime shifts, and spreading of alien species. Likewise, algal

pathogens exert a range of complex, profound, sometimes subtle,

and often unexpected impacts in aquatic ecosytems. These range

from host generation shifts to changes in biogeochemical cycling

and atmosphere chemistry (e.g. [3]).

Despite mounting recognition of their importance, molecular

knowledge on algal pathogens is hitherto restricted to viruses (reviewed

in [1]). Likewise, the molecular characterisation of algal immune

responses is in its infancy [4]. To help address these fundamental and

ecological questions, we have developed a laboratory-controlled

pathosystem involving the genome model seaweed Ectocarpus siliculosus

[5] and the oomycete pathogen Eurychasma dicksonii [6,7].

Eu. dicksonii is the most common and widespread eukaryotic

pathogen of marine algae [8]. It occurs in all cold and temperate

PLoS ONE | www.plosone.org 1 September 2011 | Volume 6 | Issue 9 | e24500



seas worldwide [9]. In culture, it infects virtually all species of

brown algae tested (more than 40, [6]), including representatives of

all major orders of this phylum. As brown algae are the

predominant primary producers of temperate and polar rocky

shores, and Eu dicksonii occurs in frequent epidemics [10], we infer

that this pathogen contributes to shaping natural algal populations,

therefore profoundly impacting ecosystem functioning [11].

Importantly, molecular taxonomy unambiguously designates

Eu. dicksonii as the most early-branching clade within the oomycete

lineage [7,12]. Oomycetes (or water moulds) are classified within

the group of Stramenopiles together with diatoms, golden-brown

and brown algae [13]. They are secondarily non-photosynthetic

organisms which exhibit either pathogenic or saprophytic lifestyles

[14,15]. In fact, many of the most devastating agricultural and

aquacultural pathogens belong to the oomycetes [16,17,18,19].

For example, Phytophthora infestans, the causal agent of potato late

blight, is responsible for annual crop losses and pesticide costs

exceeding £5 billion worldwide [20]. Many other species cause

significant environmental damage, especially when recently

introduced (e.g. Phytophthora ramorum). Therefore, the best-studied

oomycete species are phylogenetically highly-derived plant

pathogens, of which five fully sequenced genomes are hitherto

available. However, pathogenic oomycetes are taxonomically

much more diverse, and infect a remarkable palette of hosts

ranging from marine algae, crustaceans, plants, nematodes, fungi,

insects, to fishes and mammals [18]. From a physiological

standpoint, Eu. dicksonii is typical of most basal oomycetes,

inasmuch as it is an obligate biotroph, exclusively growing and

propagating within a living host. After encysting at the surface of

an algal cell, infectious spores inject their protoplasm into the host

cytoplasm, and develop into a multinucleate coenocytic intracel-

lular thallus. After having progressively filled the infected algal cell,

the latter differentiates into a sporangium that releases new

infectious zoospores [7]. The extremely broad host range of Eu.

dicksonii is unusual among biotrophic pathogens, and may reflect a

low level of specialization, suggesting that it may have retained

ancestral infection mechanisms.

In summary, Eu. dicksonii is of considerable experimental interest

because of its basal phylogenetic position, its presumed environ-

mental impact, and amenability to molecular studies. Here, we set

out to investigate the physiology of the E. siliculosus – Eu dicksonii

host-pathogen interaction by constructing cDNA libraries of

axenic cultures. We aimed to address what pathogenicity

determinants and strategies Eu. dicksonii uses to infect E. siliculosus

and what are the consequences of infection on algal physiology.

Overall, we describe here a very original dataset that underlines

both the taxonomical distance between Eu dicksonii and better-

studied oomycetes, and the specialised marine lifestyle of this

pathogen.

Materials and Methods

Biological material and microscopy
Axenic cultures of the fully sequenced Ectocarpus siliculosus strain

CCAP 1310/4 and of Eurychasma dicksonii CCAP 4018/1 were

obtained as described by [21]. They were maintained in half

strength Provasoli medium [22] at 15uC, under illumination with

daylight type fluorescent lamps at a 2–10 mE.m22.s21 irradiance

and a 12 h photoperiod, as described by [6]. Being an obligate

biotroph, Eu. dicksonii was maintained in co-culture with its E.

siliculosus host and transferred into fresh medium every second

week, together with some new uninfected algal host. The Eu.

dicksonii CCAP 4018/1 strain was originally established from a

single developing parasitic thallus, which was propagated into a

clonal healthy algal host. For microscopy, infected algae were fixed

for 45 min with 4% paraformaldehyde in microtubule-stabilising

buffer [23], dipped into methanol for 30 s, and transferred into a

DAPI solution (10 mg/mL in sterile seawater) for 5 minutes and

observed under an epifluoresence microscope equipped with the

following filter set: L365 FT 395, LP 420.

Construction of cDNA libraries and sequencing strategy
Fifty E. siliculosus cells each containing a developing intracellular

Eu. dicksonii thallus were dissected under the stereomicroscope

using a glass Pasteur pipette, and transferred into RNALaterH.

Total RNAs were extracted, subjected to reverse-transcription

using a poly-dT oligonucleotide, PCR-amplified, and cloned

directionally into a pBluescript II sk+ vector (Vertis Biotechnologie

AG, Germany). After plating, 3000 colonies were robot-picked.

Their insert was further sequenced from both ends using Sanger

technology (Genoscope, France).

In parallel, two densely infected E. siliculosus cultures (,20 mg

FW each) were harvested in RNALaterH, without prior dissection.

The ‘‘young’’ culture (4 weeks after inoculation) contained all Eu.

dicksonii development stages, including young intracellular thalli,

mature dehiscent sporangia and encysted spores at the surface of

algal cells. In contrast, the ‘‘old’’ culture (2 months after

inoculation) predominantly contained mature dehiscent sporangia

and encysted spores. Total RNA was extracted and subjected to

cDNA synthesis as above. For each sample, 50,000 sequence reads

were obtained using 454 pyrosequencing.

Bioinformatic analysis
Data assembly. The sequence reads were first assembled

separately for each individual dataset using CAP3 (default

parameters) [24], and then further assembled, also using CAP3,

(default parameters, without resorting to quality file) into the final

hybrid assembly discussed throughout the manuscript. Unigenes

containing poor quality sequence reads (manual assessment of

quality) were removed from the final dataset. A total of 5889

unassembled EST sequences (dissected library) were submitted to

the EST db at EMBL and were assigned accession numbers

FR839767-FR845655. Pyrosequencing reads (old culture and

young culture libraries) were submitted to the EMBL short-read

assembly (SRA) database. Sequences from each of the three

databases were assembled into a total of 9847 unigenes.

Sequence Analysis. Unigenes were mapped to the E. siliculosus

nuclear, chloroplastic and mitochondrial genomes with the use of

GenomeThreader [25] to produce the ‘host’ dataset. Genome-

Threader was applied with default parameters, except for the

minimum alignment length and percent identity, which were set to

90% and 95% resp. Non-mapping unigenes were assigned to Eu.

dicksonii after blastn analysis (98% to 100% sequence similarity) to

remove potential contaminants, producing the ‘pathogen’ dataset.

Open reading frames were predicted with OrfPredictor [26], based

on a blastx analysis run against the NCBI Genbank non- redundant

(nr) database and the E. siliculosus genome database (http://

bioinformatics.psb.ugent.be/genomes/view/Ectocarpus-siliculosus).

Sequence similarity searches were carried out using local blast tools

[27], the NCBI nr database (28-07-2010 version) and several

predicted proteomes of fully sequenced Eukaryotes. These include

the proteomes of six oomycete species sequenced to date: Phytophthora

infestans, [28]; Phytophthora sojae, [14]; Phytophthora ramorum, [14]; Pythium

ultimum, [29]; Hyaloperonospora arabidopsidis [30] and Saprolegnia

parasitica (draft genome, publically available at; (www.broadinstitute.

org/annotation/genome/Saprolegnia_parasitica/MultiHome.html).

Additional proteomes included were: the model brown alga and host

species used in the current study, Ectocarpus siliculosus; the marine

Eu. dicksonii Infected E. siliculosus cDNAs
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centric diatom Thalassiosira pseudonana; the marine pennate diatom

Phaeodactylum tricornutum; the coccolith-bearing haptophyte Emiliania

huxleyi; the Apicomplexan malaria parasite Plasmodium falciparum; the

model plant Arabidopsis thaliana; the amoeboflagellate Naegleria gruberi;

the amphibian pathogenic chytridiomycete fungus Batrachochytrium

dendrobatidis and the plant pathogenic ascomycete fungus

Mycosphaerella fijiensis. Predicted protein domains were identified

using a standalone InterProScan program [31] (default settings) and

the NCBI conserved domain database [32]. E. siliculosus transposable

elements were identifed and named according to [5] and [33]. Their

sequences were retrieved from the following URL: http://

urgi.versailles.inra.fr/Data/Transposable-elements/Ectocarpus.

The Emboss tool infoseq [34] was used to generate statistics for

host and pathogen datasets independently.

Signal peptide predictions were carried out using SignalP

version 3.0 [35] with a hidden Markov model probability cutoff of

0.6, and 1160 candidate secreted proteins were obtained.

Effector protein motif predictions. Searches for RXLR

and CRN motifs were carried out according to the methods of

[36]. Briefly, string searches were carried out using the expression

RxLR –x (1,40)- [ED] [ED] [KR] using custom build python

scripts. This string search was also performed just with the RxLR

expression, and was performed on all sequences, as well as those

with predicted signal peptides. String searches were also

performed with both the CRN motifs from Phytophthora species

and Pythium ultimum. HMM profile searches for all these motifs

were also carried out using the HMMer 2.2 package as described

in [36].

Multiple alignments were conducted using the program

CLUSTALW [37] (default parameters) and visualised using

Geneious (version 4.8; [38]). Distance trees were constructed

using Geneious with neighbour joining algorithms using 1000

bootstrap replications.

Results

Cytological observations of Eu. dicksonii infected E.
siliculosus

The morphological development and ultrastructural cytology of

Eu. dicksonii infecting both E. siliculosus and the related filamentous

phaeophyte alga Pylaiella littoralis has been investigated previously

[7]. Infection is initated by secondary cysts, which attach to the

surface of the host cell. Upon germination, the algal cell wall is

breached, and cytoplasm from the pathogenic cell is transfered

into the host cytoplasm. The initial phase of parasite development

as a non-walled thallus is reminiscent of fungal pathogens of higher

plants, such as Plasmodiophora brassicae and Olpidium brassicae

(Figure 1A, [7]). The Eu. dicksonii thallus develops as a spherical

intracellular syncitium, progressively filling the individual algal cell

and ultimately causing its hypertrophy (Figure 1B). The sporan-

gium develops by differentiation of the syncitium that releases new

infectious zoospores (Figure 1C). The Eu. dicksonii thallus never

propagates to other cells within the algal filament. During

infection, the host nucleus and Golgi apparatus are closely

associated with the pathogen thallus (Figure 1D–F).

cDNA library quality control and statistics
3000 clones from microdissected Eu. dicksonii-infected E.

siliculosus cells were Sanger-sequenced (Genoscope, France) and

assembled into contigs (CAP3). This resulted in the identification

of 1424 unigenes. Pyrosequencing reads, from both the ‘young

culture’ and ‘old culture,’ were assembled at the NERC National

Molecular Genetics Facility (Liverpool, UK), resulting in two data

sets of 4778 unigenes (young culture) and 6840 unigenes (old

culture). Unigenes from these three datasets were combined to

produce a single dataset, and assembled to produce 9873 unigenes

totalling over 3.5 Mb of sequence data (Table 1). 28 sequences (15

from the young culture library, 12 from the old culture library, and

1 singlet from the dissected library) were discarded on the basis of

poor sequence (containing regions of more than 20 bases called as

Ns). 38 singlets, originating from the dissected library, were also

removed on the basis of containing less than 90 nt of readable

sequence. The final total hybrid assembly (discussed throughout

the text) of 9873 unigenes therefore contained 9658 contigs and

215 singlets. The total 9873 unigene dataset was made up of 295

contigs with representatives from all three libraries, 1680 contigs

with representatives in both the young culture and old culture

libraries, 52 contigs with representatives in both the young culture

and dissected libraries, 136 contigs with representatives in both the

dissected and old culture library and 7710 unigenes that were only

present in one of the three libraries (Figure 2).

Unigenes were mapped to the E. siliculosus genome as described

in [5]. 6787 unigenes were mapped to the E. siliculosus genome

and, therefore, predicted to be of host origin. 3152 unigenes did

not map to the E. siliculosus genome. 66 poor quality or short

sequences were excluded, leaving 3086 sequences ascribed to Eu.

dicksonii. This resulted in the creation of two datasets, ‘host

sequences’ containing 6787 unigenes (Figure S1), and ‘pathogen

sequences’ (Figure S2) containing 3086 unigenes. Strikingly,

unigenes from the host dataset have a mean GC of 51.9%

whereas those from the pathogen dataset have a much lower mean

GC of 40.5% (Table 2).

Highly expressed transcripts
Major up-regulation of Ectocarpus transposable

elements. We used the number of sequence reads normalised

over contig length as a proxy to evaluate relative gene expression

levels in both the ‘‘young’’ and ‘‘old’’ pyrosequenced libraries.

Unsurprisingly, the vast majority of the most abundantly expressed

transcripts are host housekeeping genes. However, 16 (resp. 25) of

the top 150 most expressed unigenes in the young and old libraries

are E. siliculosus transposable elements (TEs). E. siliculosus TEs

identified among the top most 150 highly expressed contigs in at

least one library were extracted, and their expression level is

plotted on Figure 3A. We further compared the expression level of

TEs annotated by [5] between the two Eu. dicksoniii-infected

libraries and the Ectocarpus genome initiative EST collection

(Figure 3B). The latter mostly encompasses distinct development

stages of unstressed Ectocarpus. Whereas pyrosequencing read

counts and EST numbers are not directly comparable between the

EGI dataset [5] and ours, differential expression of some TEs is

nevertheless clearly discernible. Indeed, the five most expressed

TEs identified by Cock and co-authors are also well represented in

both Eu. dicksonii-infected libraries. However, the retroelements

RTE2, RTE3 and RTE4, the LTR element NgaroDIRS6, and

the LARD element EsLARD1_ZnF, virtually silent in unstressed

conditions, appear strongly induced in the ‘‘young’’ and ‘‘old’’

pyrosequenced libraries. Interestingly, RTE2, RTE3 and RTE4

also belong to the top 10 most abundant repeats in the E. siliculosus

genome, suggesting stress-induced transposing activity in the E.

siliculosus genome [33].

Highly expressed Eurychasma transcripts. The 10 most

abundant sequences within the dissected library are of pathogen

origin, with the exception of a conserved unknown E. siliculosus

protein, demonstrating the efficacy of microdissection for

enriching the sample in pathogen RNAs (Table 3). The majority

of the most abundant sequences are housekeeping and ribosomal

Eu. dicksonii Infected E. siliculosus cDNAs
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genes. However, three unigenes of Eu. dicksonii origin are highly

abundant in this library and are proteins with unknown functions

(Table 3). Contig500203 encodes a methionine and lysine rich

unknown protein. Contig500580 encodes a predicted protein with

similarity to a group of unknown oomycete proteins. These

proteins are a group of at least 8 proteins present in the Saprolegnia

parasitica genome, but absent in the genomes of other sequenced

oomycetes. These appear to be uncharacterised cytoplasmic

proteins, which may be ancestral proteins lost from higher

oomycetes. Contig50031 appears to encode a lysine and alanine

rich protein or protein fragment, with no similarity to known

proteins.

Functional Annotation
The 9873 unigene set was annotated by comparison to the

NCBI non-redundant (nr) protein database (28-07-2010 version)

and the E. siliculosus genome database (http://bioinformatics.psb.

ugent.be/webtools/bogas/overview/Ectsi; [5] using BLAST anal-

yses [25]. Overall, approximately 20% of the sequences in the total

dataset showed similarity to previously described genes in the

NCBI nr protein database, using an e value cutoff of ,1e-05,

indicating that this is largely a unique dataset.

Functional annotation of host genes. The E. siliculosus

unigene set (host sequences) was initially annotated by direct

comparison to the E siliculosus genome sequence [5]. Blastx

analysis (expectation value ,1e -05) of this dataset to the E.

siliculosus predicted proteome resulted in 1299 (19.2%) of

sequences matching predicted E siliculosus proteins. 46% (3163)

have a significant blastn hit to genomic mRNA sequences, which

include the 39 UTRs, with the remainder of the sequences hitting

mitochondrial, chloroplastic or intergenic sequences. Protein

sequences were predicted using ORFPredictor [26] using the E.

Figure 1. Co-localisation of E. siliculosus nuclei and Eu. dicksonii thalli. A, B, C: Successive stages of Ectocarpus infection by Eurychasma
dicksonii. The Eu. dicksonii thallus develops as a spherical intracellular syncitium (A, arrows), progressively filling any individually infected algal cell,
ultimately causing its hypertrophy (B, arrow). The syncitium then differentiates into a sporangium (C, arrows, Congo red staining) that releases new
infectious spores into the medium via its apical apertures (C, arrowheads). The original infectious spore at the surface of the infected Ectocarpus cell is
visible in B (arrowhead). The structure designated with a brace in C is an algal plurilocular sporangium containing parthenogenetic zoospores. Bars: A,
B: 20 mm; C: 50 mm. D. Eu. dicksonii syncyitium (3 nuclei visible, arrowheads) developing next to the nucleus of a highly vacuolated E. siliculosus cell
(strain CCAP 1310/299). Picture: courtesy of Dr S. Sekimoto. E & F. DAPI staining (E) and corresponding Nomarski image (F) of the microscopic sexual
development stage (gametophyte) of the kelp Macrocystis pyrifera infected with Eurychasma dicksonii. The left hand side algal cell contains a very
young Eurychasma thallus (one nucleus visible, white arrowhead) derived from the protoplasm of the empty spore visible at its surface. Insert:
merged images. Scale bar: 10 um.
doi:10.1371/journal.pone.0024500.g001

Table 1. Assembly statistics, individual cDNA libraries and final hybrid assembly.

unigenes (average length; max length) Ectocarpus: Eurychasma ratio
Non-redundant sequence
information

Dissected library 1432 (722 nts, 2085 nts) 30%: 70% 833 kb

‘‘Young’’ culture 4780 (273 nts, 3645 nts) 79%: 21% 1.4 Mb

‘‘Old’’ culture 6842 (298 nts, 2807 nts) 74%: 26% 2.1 Mb

Hybrid assembly 9873 (350 nts, 5341 nts) 69%: 31% . 3.5 Mb

doi:10.1371/journal.pone.0024500.t001

Eu. dicksonii Infected E. siliculosus cDNAs
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siliculosus blastx results and checked for agreement with the E.

siliculosus genome database. Predicted protein sequences were

analysed for the presence of an N-terminal signal sequence, using

both Hidden Markov Models and Neural Network algorithms in

SignalP [35]. 839 (12.4%) of the host unigenes were predicted to

contain a signal peptide. Predicted proteins were also analysed for

functional domains using InterProScan [31]. 822 unigenes (12%)

of the dataset had one or more hits to functional domains using

InterProScan. All the 822 predicted ORFs with InterproScan hits

were within the 1299 sequences predicted to match protein-coding

regions of the E. siliculosus genome. 63% of the unigenes that are

derived from E. siliculosus protein coding regions, therefore,

contain functional domains as identified by InterproScan.

Functional annotation of host genes was checked with the

HECTAR predictions for full-length sequences in the E.

siliculosus genome database [5]. Predicted ORFs in this dataset

were assigned to functional categories based on GO annotations of

the InterProScan/HECTAR predictions (Figure 4). The largest

category was gene regulatory proteins (15% of the total), including

predicted transcription factors, translation factors, DNA and RNA

binding proteins and proteins containing one or more coiled coil

domains. 14% of predicted ORFs were classified as involved in

translation, with approximately two thirds of these being

ribosomal proteins. 14% of predicted proteins were also

classified as being involved in protein modification, targeting or

turnover including chaperones, and proteins involved in

ubiquitination and proteolysis.

Functional annotation of pathogen genes. The Eu. dicksonii

unigene dataset (containing sequences that did not map to the host

genome) was analysed and ORFs were predicted as described

above for E. siliculosus.

InterProScan analysis was performed on Eu. dicksonii predicted

ORFs, in the same manner as on the host dataset. 1397 of the

3086 (44%) pathogen unigenes were predicted to contain one or

more functional domain using InterProScan. As seen with the host

dataset, the largest class of proteins were those predicted to contain

gene regulatory domains, including those with coiled-coil domains.

This class represented almost a quarter (24%) of all pathogen

sequences with functional domains (Figure 4). 8% of sequences

were classified as being involved in signalling in the pathogen

dataset, compared to just 4% of host sequences. Interestingly,

proteins predicted to be involved in pathogenicity and suppression

of immunity were also identified in the pathogen dataset, but were

absent from host sequences. A higher percentage of proteins

classified as having a role in redox reactions, including those

involved in detoxification and homeostasis, were identified within

the host dataset (9%) in comparison to the pathogen dataset (5%).

It is anticipated that several of these proteins function in cellular

defence mechanisms.

In addition to blastx similarity searches with the NCBI nr

database, fifteen eukaryotic proteomes (listed in the methods

section) were added to the analysis (Figure 5). Up to 25% of the

pathogen sequences showed significant similarity (, 1e-05) to

proteins from sequenced oomycetes. Interestingly about the same

number (28% at ,1e -05) showed significant similarity to proteins

in the NCBI nr dataset and to the algal host E. siliculosus predicted

proteome (24.4% at 1e-05), indicating that this dataset is largely

made up of unique, uncharacterised sequences. As expected, the

Eu. dicksonii dataset showed the most similarity to the oomycete

proteomes, and to E. siliculosus. A lesser degree of similarity was

seen with the diatom, haptophyta and apicomplexa proteomes.

Surprisingly, a higher level of similarity (up to 18%, at 1 e-05) was

observed between the pathogen unigenes and the proteome of the

model plant Arabidopsis thaliana, than with some of the chromal-

veolata, such as Plasmodium falciparum with which there was only

11% similarity (at 1e-05). Likewise, up to 15% sequence similarity

was seen between Eu. dicksonii unigenes and distantly related

organisms such as the amoeboflagellate Naegleria gruberi and true

fungi (Figure 5).

Table 2. Characteristics of host and pathogen datasets.

Total Dataset Host sequences Pathogen sequences

Total unigenes 9873 6787 3086

Longest contig (nt) 5341 4513 5341

Shortest contig (nt) 90 95 92

Mean contig length (nt) 355 325 409

Mean GC (%) 48.2 51.9 40.5*

Predicted secreted proteins 1190 (11.9%) 839 (12.4%) 351 (11.6%)

doi:10.1371/journal.pone.0024500.t002

Figure 2. Venn Diagram showing numbers of overlapping
sequences from each library within the total dataset.
doi:10.1371/journal.pone.0024500.g002

Eu. dicksonii Infected E. siliculosus cDNAs
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Figure 3. Over-representation of Ectocarpus transposable elements (TEs) in Eurychasma-infected libraries. A. Relative expression of
Ectocarpus TEs in the pyrosequenced ‘‘young’’ and ‘‘old’’ Eurychasma-infected libraries. Total read counts were normalised over contig length in order
to identify the most expressed unigenes in each library. Expression values are given for all TEs belonging to the top 150 most highly expressed
unigenes in at least one library. If several contigs matched the same TE in a given library, their relative expression levels were summed. TE
nomenclature is as per Maumus (2009). B. Differential expression pattern of Ectocarpus TEs between the pyrosequenced ‘‘young’’ and ‘‘old’’
Eurychasma-infected libraries vs. the Ectocarpus Genome Initiative EST collection (‘‘EGI dataset’’, Cock et al, 2010). For each library, sequence read
counts were normalised over the genome coverage of each TE in order to control for the leaky transcription hypothesis. The 5 most highly expressed
TEs in the EGI dataset are highlighted in orange; those circled in red belong to the 10 most abundant repeated elements identified in the Ectocarpus
genome. Arrows point to TEs highly induced in the ‘‘young’’ and ‘‘old’’ infected cultures.
doi:10.1371/journal.pone.0024500.g003
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351 (11.6%) of the pathogen sequences were predicted to

contain a signal peptide. 179 of these also had one or more hits to

InterProScan domains, including non-specific ‘seg’ hits. At least 30

of those containing known domains were in fact membrane

proteins, or fragments of membrane proteins that were likely

picked up with the SignalP algorithms because they are not full

length. In the majority of cases, it is not possible to conclude

whether our contigs represent full-length sequences with real signal

peptides, or simply fragments of proteins with hydrophobic or

transmembrane spanning regions. However, 10 sequences from

the Eu. dicksonii dataset are predicted to encode full-length,

unknown, secreted proteins that do not contain transmembrane

domains (Table 4). These predicted proteins either have no

sequence similarity to known proteins or domains, or have an

Table 3. Top 10 most highly expressed unigenes in the Eu. dicksonii-enriched microdissected library.

Contig Length (bp)Members Origin Hybrid assembly Top blastn/x hit custom database* or Genbank nr

500130 93 80 Pathogen In contig2041 PITG_00179 40S ribosomal protein S12 P. infestans 6e-44

500773 1473 65 Pathogen In contig2006 XP_002908783.1 beta 1 tubulin P. infestans e = 0

500203 831 49 Pathogen In contig1846 No hit

5001047 1701 47 Pathogen 5001047 18S rRNA E. dicksonii

500580 1176 43 Pathogen In contig1954 SPRG_15343T0 predicted protein S. parasitica 4e-10

500569 756 40 Pathogen In contig1953 XP_001809251 similar to I-connectin T. castaneum 7e-12

500393 1442 33 Pathogen 500393 28S rRNA E. dicksonii

500904 937 28 Pathogen In contig2041 PITG_00179 40S ribosomal protein S12 P. infestans 6e-44

500588 1258 26 Host 500588 Esi0110_0040 conserved hypothetical protein

50031 713 24 Pathogen In contig1807 No hit

*custom database made up of proteomes described in Figure 5.
doi:10.1371/journal.pone.0024500.t003

Figure 4. Classification of unigenes based on identification of functional domains using InterproScan. Functional categories assigned
to the 822 E. siliculosus (host) and 1397 Eu. dicksonii (pathogen) predicted ORFs (12% and 43% of total unigenes, respectively) with an Interpro hit.
Numbers assigned to each category are percentages of the 822 and 1397 predicted ORFs. Amino acids includes amino acid synthesis and
metabolism; cell cycle genes also include mitosis, DNA and RNA synthetic genes; CW/CHO includes cell wall biosynthesis and carbohydrate synthesis
and metabolism; cytoskeleton includes transcripts involved in cytoskeletal rearrangements; defence and stress includes transcripts involved in
general and specific defence or stress responses; energy/metabolism includes transcripts involved in energy production and cellular metabolism but
does not include those involved specifically in respiration; gene regulation includes transcripts involved in DNA and RNA binding, transcription
factors and transcripts with coiled-coil domains, lipids includes both lipid biosynthesis and metabolism; pathogenicity includes transcripts with a
predicted function in pathogenicity or virulence, photosynth includes photosynthetic machinery; protein mod/turnover includes transcripts involved
in protein folding, targeting, modification and degradation; prot-prot int includes transcripts predicted to be involved in protein-protein interactions;
redox includes transcripts involved in homeostasis, detoxification and those classified as redox antioxidants; mitochondrial/respn transcripts are
predicted to be mitochondrial and/or involved in respiration; signalling includes transcripts with a predicted role in signalling or signal transduction;
small mol binding includes those transcripts which bind small molecules; translation includes those transcripts with a role in translation, including
ribosomal proteins; transposons includes sequences both of transposons and those of putative retroviral origin; transcripts which could not be
assigned to any one of the above categories are classified in the section termed other.
doi:10.1371/journal.pone.0024500.g004

Eu. dicksonii Infected E. siliculosus cDNAs

PLoS ONE | www.plosone.org 7 September 2011 | Volume 6 | Issue 9 | e24500



Interpro hit to the non-specific ‘seg’ database. There is no

significant sequence similarity between the 10 predicted proteins.

However, three of them have similarity to uncharacterised

secreted proteins from other oomycetes. These proteins may

possibly be ancient oomycete effectors, however further work is

required to investigate the precise function of these proteins. Other

potentially secreted pathogenicity factors, which contain conserved

domains are listed in Table S1.

Insights into oomycete infection of brown algae
Pathogen cell surface proteins. Mucins are typically high

molecular weight cysteine, threonine, or serine non-glycosylated

Figure 5. Comparison of Eu. dicksonii sequences to the non-redundant protein database at NCBI and proteomes of fully sequenced
organisms. Unigenes were blasted using the BLASTX algorithm to the nr database and to the proteomes of Phytophthora infestans (Pinf),
Phytophthora ramorum (Pram), Phytophthora sojae (Psoj), Pythium ultimum (Pult), Saprolegnia parasitica (Sapa), Hyaloperonospora arabidopsidis (Hpa),
Ectocarpus siliculosus (Ectsi), Thalassisosira pseudonana (Thaps), Phaeodactylum triconutum (Phatr), Emiliana huxleyi (Emilhu), Plasmodium falciparum
(Plafa), Arabidopsis thaliana (Atha), Naegleria gruberi (Naegr), Batrachochytrium dendrobatidis (Batde) and Mycosphaerella fijiensis (Mycfi). For each E-
value class the percentage of unigenes showing similarity is indicated.
doi:10.1371/journal.pone.0024500.g005

Table 4. Predicted full-length secreted Eu. dicksonii proteins of unknown function.

Contig Length (aa) Signal Peptide (aa) Top blastx hit custom database* or Genbank nr

1471 154 22 no hits

1573 91 41 conserved hypothetical (134aa) protein Anaerococcus tetradius ZP_03930892 2e-12.

908 132 34 no hits

1962 140 18 conserved hypothetical (102aa) protein Phytophthora infestans PITG_08303 1e-10.

1984 231 15 no hits

402981 113 21 conserved hypothetical (115aa) protein Phytophthora infestans PITG_08745 0.01e.

500818 138 15 no hits

500933 130 29 no hits

405461 157 24 hypothetical protein Psta_475a (266aa) Pirellula staleyi YP_003373260 5e-08.

4YO14FM1 141 34 no hits

*custom database made up of proteomes described in Figure 5.
doi:10.1371/journal.pone.0024500.t004
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proteins that act as lubricants, protectants, signal tranducers or

adhesins [39] and have been identified in the cell walls of higher

oomycetes such as P. ramorum [40] and P. infestans [41]. We

identified three gene fragments (contig1838, contig403969 and

contig500361) with similarity to mucins or mucin-like sequences in

the pathogen dataset (Table S1). We also identified a unigene

sequence, contig500361, from the dissected library with a

fibronectin type-3 domain (Table S1). Contig500361 is missing

an initial start codon, but the entire protein fragment is predicted

to be on the outside of the cell, anchored to the cell membrane,

using both the new Eukaryotic subcellular predictor, Euk-mPLoc

2.0, [42] and TMHMM [43]. Contig500361 is not predicted to

contain a signal sequence for secretion, according to SignalP [33]

however it is likely that the N-terminal section of the protein is

missing from Contig500361. Fibronectin is a high molecular

weight extracellular matrix protein with diverse functions

including roles in adhesion, growth, differentiation and wound

healing [44]. Contig500361 is, therefore, likely to be part of a large

surface protein in Eu. dicksonii.

Host and pathogen cell wall interactions. Higher

oomycetes secrete cell wall degrading enzymes, to aid in

penetration of host cells [45]. Since Eu. dicksonii penetrates the

host algal cell to initiate infection, we looked for cell wall degrading

enzymes within the Eu. dicksonii unigenes, as well as for algal genes

that may be involved in strengthening or remodelling the host cell

wall to prevent penetration.

An Eu. dicksonii unigene had similarity to genes involved in the

degradation of alginates, which are a key component of the brown

algal cell wall matrix [46]. Contig500758 was predicted by

InterproScan to contain a full alginate lyase 2 domain and has

weak similarity to a 222 aa alginate lyase from Pseudomonas syringae

pv. phaseolicola (Table S1). Phylogenetic analysis showed that it also

had similarity to alginate lyase sequences from Chlorella virus and

algal gastropods (Figure 6). However, it is likely that this gene is

not full length, and therefore the prediction of signal peptides,

specific substrates or catalytic residues is speculative without first

obtaining the full length gene sequence. Interestingly, the

Hyaloperonospora arabidopsidis, Saprolegnia parasitica, Phytophthora infes-

tans, Phytophthora ramorum and Phytophthora sojae genomes do not

contain homologues of Contig500758, indicating that this may be

uniquely produced for the degradation of the algal host wall by Eu.

dicksonii, and thus directly relate to its host spectrum. Con-

tig500758 has similarity to alginate lyases from algal grazers

(Haliotis species) and fungi and groups within a clade of alginate

lyases from these organisms (Figure 6).

We also identified a mannuronan C5-epimerase, the enzyme

that catalyses the final step in alginate biosynthesis in the E.

siliculosus sequences (Contig290, E. siliculosus Esi0495_0002). In

kelps, C5 epimerases belong to a small family, with some isoforms

induced in protoplast and elicitor-treated cultures [47–48]. The

representation of the otherwise lowly expressed Esi0495_0002

gene [5] in our dataset suggests that alginate biosynthesis may be

important to strengthen the host cell wall as a response to Eu.

dicksonii infection. However, none of the other Ectocarpus enzymes

involved in alginate biosynthesis [49] were represented in our

dataset.

Although not full length, two additional Eu. dicksonii contigs

encode glucanases that may be involved in breakdown of host cell

wall glucans or cellulose. The predicted protein sequence of

Contig500983 contains a partial exo-beta-1,3-glucanase domain

(Table S1). It has similarity to glucan 1,3 beta-glycosidase and

endo-1,3-beta glucanase from P. infestans, both of which are

secreted proteins. Contig403087 is similar to the secreted putative

exo-1,3-beta-glucanase from P. infestans (Table S1).

There are 9 putative cellulose synthase genes in E. siliculosus [5].

We identified three of these in our host dataset, suggesting a role

for host cellulose synthesis during infection by Eu. dicksonii.

Contig1852 mapped to host gene Esi0004_0105, Contig404144

mapped to host gene Esi0185_0053, whilst Contig301614 and

Contig1623 mapped to the 39 untranslated region of

Esi0231_0017 (Table S1).

Eu. dicksonii thalli are first formed in a non-walled state, and then

mature to walled thalli as infection progresses [7]. Therefore we

expect cell wall biosynthesis to be an important part of the

infection process of this oomycete. Oomycetes have traditionally

been described as cellulosic organisms, however, chitin and

chitosaccharides have been identified in the cell walls of several

oomycetes, as have chitin synthases [50,51]. We were not able to

identify genes with similarity to cellulose synthases in Eu. dicksonii.

However, we did identify a putative chitin synthase, namely

Contig500448, which displays significant similarity to the chitin

synthase 1 gene from the oomycete Saprolegnia monoica [52,53]

(Table S1).

Brown algal cell walls also contain sulfated fucans (fucoidans).

Possible enzymes in the biochemical pathway for the synthesis and

sulfation of fucans have recently been identified in the E. siliculosus

genome [49], however, we were unable to identify any of these

enzymes in our E. siliculosus dataset. At least two kinds of

glycosidases act on fucans, flucan sulfate hydrolases and

fucoidonase [54] however we were unable to detect pathogen

transcripts with similarity to these enzymes in our dataset.

Searching for known oomycete effector protein

families. All oomycete avirulence genes cloned to date

contain a signal peptide for secretion and the RXLR amino acid

motif at the N terminus of the protein. Hundreds of effector

molecules containing this motif have been predicted in the

genomes of sequenced oomycetes [28]. We therefore mined our

dataset for RXLR-like sequences. We were unable to

unambiguously identify transcripts that fulfill the criteria for

putative RXLR effectors, as identified by [55] and [28].

The Crinkler (CRN) protein family elicits host responses in P.

infestans host interactions, and contain an LFLAK motif. These

effector proteins have been identified in all Phytophthora species

sequenced to date [14,28] and in the legume pathogen Aphanomyces

euteiches [36]. A group of similar proteins has also been identified in

the Pythium ultimum genome, with a related, but divergent, motif

[29]. It is therefore possible that CRN proteins are ancestral

effector proteins present throughout the oomycete lineage.

However, we were unable to identify CRN proteins in our

dataset. Thus, complete transcriptome or full genome sequencing

will be needed to prove or disprove the absence of RXLR and

CRN effectors in Eu. dicksonii.

Genes encoding other potential pathogenicity factors in

Eu. Dicksonii. A vast array of pathogenicity factors and

potential effector molecules, which may be involved during

infection, or which trigger host defences, have now been

identified in higher oomycete pathogens [16,56]. Pathogenicity

determinants are, either, presented at the cell surface, or secreted

and/or actively transported into the host cell, to manipulate the

host. We therefore, mined our dataset for potentially secreted

proteins with similarity to known effectors or pathogenicity factors.

Contig400638 encodes a protein with a predicted protein

tyrosine phosphatase-like (PTPLA) domain and a signal peptide

for secretion. It has significant similarity to a conserved hypothetic

protein from P. infestans and to a protein tyrosine phosphatase-like

protein from Rattus norvegicus (Table S1). PTPLA proteins are key

regulatory proteins, involved in regulating signal transduction by

removal of phosphate from tyrosine residues in proteins such as
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MAP kinases. It is, therefore, possible that Eu. dicksonii secretes a

PTPLA protein to interfere with host defence signal transduction,

perhaps blocking transduction of host signaling that would lead to

an algal defence response.

Contig500988 encodes a protein with a signal peptide and a

histone deacetylase domain. The predicted protein has significant

similarity to histone deacetylases from protozoan parasites (Table

S1). Histone deacetylases may be involved in transcriptional

regulation by removal of acetyl groups from the lysine residues of

histones.

Sequences derived from Eu. dicksonii with similarity to

cyclophilins/immunophilins, which may also be involved in

pathogenicity were also identified (Table S1).

Eu. dicksonii genes involved in growth regulation and

programmed cell death. Several Eu. dicksonii sequences, which

are not predicted to be secreted, or which are not full-length, are

similar to genes involved in growth inhibition or programmed cell

death in other models. Singlet 8YN09FM1 encodes a protein

fragment which contains a PHD domain (Table S1). PHD folds

into an interleaved type of Zn-finger chelating Zn ions in a similar

manner to RING-finger domains. Several PHD-finger proteins

have now been identified that bind modules of methylated histone

H3 and thereby inhibit transcription [57,58,59]. 8YN09FM1 also

contains an inhibitor of growth domain (Table S1), which binds

chromatin and acts as a transcription regulator. 8YN09FM1 does

not encode a full-length protein, and does not contain the

predicted start of the protein. It is therefore not possible to

determine if this protein is secreted to interfere with host growth

during infection, or is targeted to regulate Eu. dicksonii growth,

temporarily silencing genes possibly as a stealth mechanism, upon

onset of infection. Alternately, this could be the product of a

generalized stress response in Eu. dicksonii.

Contig400862 and contig402793 also encode fragments of Eu.

dicksonii translation factor(s) possibly involved in programmed cell

death (Table S1). Neither contig is full-length and both are missing

the predicted start of the gene(s), so it is not possible to predict the

presence of signal peptides for secretion. The similar P. infestans

protein (XP_002899252; PITG_14133) does not contain a signal

peptide. Therefore Contig_400862 and contig_402793 may also

represent oomycete gene(s) targeted internally rather than to the

host.

Insights into pathogen physiology, stress responses and

metabolism. We identified a unigene encoding a protein

fragment predicted to be an hypoxia-induced protein.

Contig_404084 from Eu. dicksonii was similar to HIGi hypoxia-

inducible domain family member 2A from Xenopus laevis and the

Figure 6. A Eu. dicksonii candidate pathogenicity effector has similarity with alginate lyases of brown algal grazers and fungi. The
conserved amino acid sequence region between eukaryotic, bacterial and viral alginate lyases present in the NCBI non-redundant database and the
predicted protein sequence of the Eu. dicksonii gene fragment Contig500758 were aligned using MUSCLE. A dendrogram was produced using
Geneious 4.8 with a neighbour-joining algorithm and 1000 bootstrap iterations. Branches with less than 50% bootstrap support were collapsed.
Genbank accession numbers of the sequences used in the alignment are indicated on the tree. The Eu. dicksonii sequence groups with a clade of
eukaryotic alginate lyases from fungi and abalone (Haliotis sp.), highlighted in blue. The latter also contains sequences from a green algal virus,
thought to have been acquired by horizontal gene transfer.
doi:10.1371/journal.pone.0024500.g006
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predicted protein fragment contained two transmembrane

domains and an HIG_1_N response to hypoxia domain (Table

S1). We also identified three sequences with thioredoxin-like

domains within our pathogen dataset (Table S1). Several gene

fragments with functional domains classified as transporters were

also identified in Eu. dicksonii (Table S1). None of these sequences

were full length, or predicted to contain signal peptides, however

they may play an important role in the uptake of nutrients from

the host.

One pathogen sequence, Contig_500199, predicted to encode a

secreted lipase was identified in the dissected library, indicating

host lipids may be an important nutrient source for Eu. dicksonii

(Table S1). We identified 13 sequences, which we were unable to

determine as secreted (1.3% of those with functional domains;

0.4% of total dataset) of Eu. dicksonii origin, that are involved in

lipid metabolism, and 29 (2.3% of those with a functional domain

and 1% of total dataset) involved in amino acid biosynthesis and

metabolism (Figure 4), highlighting the importance of these

processes in oomycete metabolism as previously reported in

higher oomycetes [60,61].

Host responses to Eu. Dicksonii. Contig1359 encodes the

full-length putative protein inhibitor Esi0079_0059 from E.

siliculosus. Esi0079_0059 contains a proteinase inhibitor I13

domain (Table S1) and is predicted to exhibit serine-type

endopeptidase inhibitor activity. This protein also contains a

signal peptide for secretion from host cells. Esi0079_0059, is

therefore, likely to be secreted as a defence response to protect host

proteins from Eu. dicksonii secreted peptidases.

Contig303625 encodes the fragment of an E. siliculosus nuclear

movement domain protein (Esi0000_0481). This protein contains

a p23_NUDC_like domain (Table S1), required for movement of

the nucleus of other eukaryote species. Interestingly, the expression

of this unigene correlates with a close association between the host

nucleus and the infecting Eu. dicksonii thallus. The latter is observed

at the earliest detectable stage of infection, suggesting an early

migration of the host nucleus towards the infection site (Figure 1).

Contig2091 encodes an E. siliculosus protein (Esi0035_0036)

currently un-annotated in the genome database. This protein

contains a GRIM_19 domain, which promotes cell death via

apoptosis in animals.

Expression of an E. siliculosus viral sequence. Intriguingly,

Contig_403835 encodes a fragment of Esi0052_0171 a gene that

belongs to the lysogenic virus inserted into the Ectocarpus genome.

However, a comprehensive transcriptomic analysis reported by [5]

revealed that the inserted viral genome is transcriptionally silent

throughout the life cycle of Ectocarpus, even following the application of

several stress treatments (hyperosmotic, hypoosmotic and oxidative

stress). Hence, this result suggests that although lysogeny has yet to be

observed in the E siliculosus strain used in the present study, the

expression of inserted viral genes may still be triggered by infection

from another pathogen. Unfortunately, the gene encoded by

Esi0052_0171 (EsV-1-191) does not contain any conserved domains

or have similarity to any functionally characterised protein, giving little

clue as to what its function could be.

Discussion

In this study we describe an extensive characterisation of an

EST collection of the brown alga E. siliculosus infected with the

marine oomycete Eurychasma dicksonii. Given its wide host range

and worldwide distribution, Eu. dicksonii is likely to be important to

the ecology of coastal habitats where brown algae are predominant

primary producers. Furthermore, Eu. dicksonii belongs to the most

early branching clade within the oomycete lineage, and is

therefore of considerable interest to decipher the origin and

evolution of pathogenicty in this group. This study represents the

first large scale sequencing study undertaken outside the best

studied oomycete orders (namely Pythiales, Peronosporales and

Saprolegniales). The latter, however, only represent a fraction of

the lineage’s diversity. Thus, and perhaps not so surprisingly, only

1314 (42% of a total 3074) pathogen unigenes shared sequence

similarity with known oomycete genes. 1760 of the pathogen

unigenes had no similarity to any known sequence, and no

defining protein domains with which to predict function. In a

similar study of the Aphanomyces euteiches transcriptome, Gaulin et al

[36] found that approximately 70% of EST sequences showed

similarity to previously described genes in the NCBI non-

redundant protein database and around 80% showed similarity

to Phytophthora proteins. Within the sequences we identified of Eu.

dicksonii origin, only a maximum of 28% showed similarity to

previously described proteins. Therefore, our Eu dicksonii gene

dataset is largely unique and indicates how far away we are from

identifying the full repertoire of oomycete genes, despite the

availability of several genomes from plant and fish pathogenic

species. Additionally, it is clear from this study that Eu. dicksonii

shares some genetic similarity with higher order oomycetes, but is

in fact very unique genetically, in comparison to these other

sequenced oomycetes.

Making use of the recently completed E. siliculosus genome [5],

we were able to unambiguously map 6787 of our unigenes to the

algal host. Of these sequences, only approximately 20% mapped

to protein coding regions. E. siliculosus contains large 39UTR

regions and mapping of EST datasets generated in previous

projects has resulted in large proportions mapping to these 39

UTRS [5]. Therefore the result that up to 80% of our sequences

map outside of the protein coding regions of E. siliculosus genes is

consistent with previously reported data and may go part-way to

explaining the low number of host sequences with significant

similarity in the NCBI nr protein database.

The unusually high level of expression of a broad range of TEs

in E. siliculosus is also fully consistent the observations reported by

the Ectocarpus Genome Initiative [5]. Importantly however, the

most highly expressed TEs in our libraries only partially overlap

those identified in this earlier work. Our results suggest an

environmental, most probably stress-dependent, transcriptional

regulation of TEs in E.siliculosus We conclude that, whilst

methylation has not been detected in E. siliculosus, TE expression

is probably tightly regulated in the genome by an as yet

uncharacterised mechanism. Finally, the fact that the retro-

elements RTE2, RTE3 and RTE4 are the most highly induced in

infected libraries and among the most abundant repeats in the E.

siliculosus genome points to a stress-induced transposing activity,

which remains to be investigated.

We found a GC content in host sequences of 51.9% consistent

with the E. siliculosus genome GC content of 53.6%. However,

analysis of our Eu. dicksonii dataset revealed a much lower GC

content, at 40.5%. This figure appears to be representative of real

protein encoding Eu. dicksonii genes sequenced so far, and is not a

result of poor quality or non-protein coding sequencing. This

result is in stark contrast with the GC content of other sequenced

oomycete genomes, which is approximately 58% GC [14,28–30].

A breadth of possible explanations, including pathogenic lifestyle,

have been formulated to account for low genome GC content

[62]. Hence, the biological significance of the GC-impoverished

Eu. dicksonii transcriptome remains unclear . Interestingly, it is

known that unlike other oomycetes, Eu. dicksonii uses a previously

reported stop codon to encode tryptophan in mitochondrial genes

[7]. This bias towards the use of UGA, rather than UGG in
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mitochondria is consistent with the widely held view that AT-rich

genomes are prone to Trp-UGA codon reassignment.

Several hundred candidate effector molecules carrying a RXLR

or CRN motif have now been identified in the genomes of

oomycetes pathogenic on plants [16,28] and one putative RXLR-

effector was found in Saprolegnia parasitica, which is a pathogen of

fish [63]. It is widely assumed that the RXLR motif mediates the

translocation of pathogenicity effectors into host cells [55,64]. It is

also functionally interchangeable with the PEXEL translocation

signal of apicomplexa pathogens [65,66]. Despite Eu. dicksonii

being an obligate intracellular biotrophic pathogen, we were

unable to unambiguously identify oomycete effector molecules in

our dataset. Thus, it is possible that Eu. dicksonii does not contain

RXLR proteins, and uses an alternate signal for translocation of

effectors into host cells. Alternately, since the current study does

not represent a complete Eu. dicksonii transcriptome, and since

many of our sequences are not full length, RXLR effectors may be

present, but unidentifiable using the current dataset. Furthermore,

if such effector sequences are expressed at low levels we may not

pick them up in EST libraries derived from infected host material.

Full transcriptome or genome sequencing of Eu. dicksonii is

therefore required to comprehensively search for the ancient

origins of RXLR, CRN or other effectors within the oomycete

lineage.

Whilst RXLR or CRN-type effectors were not identified in this

study, we were able to identify sequences as potential pathogenic-

ity factors, including both genes not previously described as

oomycete pathogenicity determinants, and genes with similarity to

pathogenicity factors from oomycetes and other organisms.

A novel putative pathogenicity factor is the protein encoded by

Contig500758, a predicted alginate lyase. This sequence does not

have homologues in sequenced oomycete genomes and appears to

be most similar to alginate lyases from fungi and brown algal

grazers such as abalone (Haliotis ssp., Figure 6). Since alginates are

the major structural component of the brown algal cell wall, we

hypothesize that this Eu. dicksonii protein may be a major

pathogenicity determinant. Several other sequences with similarity

to cell wall degrading enzymes were also identified in the pathogen

dataset. It has been reported that Eu. dicksonii has an extremely

wide host range, infecting all brown algae tested so far [6]. It is

possible that this infection is achieved primarily through the

pathogen’s ability to degrade host alginate, and other cell wall

structural components, and thereby enter the host cell. Several

other proteins involved in production or degradation of both host

and pathogen cell walls were also identified in this study,

indicating the importance of the cell wall in oomycete-host

interactions. Enzymes involved in alginate and cellulose biosyn-

thesis were identified in the host sequence set, whilst a putative

chitin synthase was identified in Eu. dicksonii. This suggests that

chitin or chitosaccharides may be ancient and important

components of the oomycete cell wall that may have either been

lost in higher oomycetes, or which fulfil subtle functions in

structuring the cell wall.

We identified three E. siliculosus putative cellulose synthases in

our host dataset. Evidence for secreted cellulose degrading

enzymes in Eu. dicksonii was not as conclusive. It is possible that

E. siliculosus strengthens the cell wall using cellulose in response to

pathogen attack and degradation of alginates. Esi0185_0053 has a

CesA_CelA-like domain, and Esi0231_0017 has a cellulose

synthase domain, along with a glycosyl transferase GTA family

domain. However, Esi0004_0105 only contains a glycosyl

transferase GTA family domain. Since the annotation of these

genes is purely based on bioinformatic analysis, their exact

enzymatic function is not known. Therefore, it is possible that at

least one of these genes could function in the production of the

related defence molecule callose, rather than cellulose.

Rearrangement of actin microfilaments to focus on the infection

site, and movement of the host nucleus to the site of attack is a

well-documented feature of plant-oomycete and plant-fungal

interactions (reviewed in [67]). However, little is known of the

brown algal response to infection. In the present study, we

identified an E. siliculosus candidate nuclear movement protein

within our dataset. Furthermore, the Eu. dicksonii thallus is always

observed in close proximity to the host nucleus and Gogli, ([7];

Figure 1 this study). This association between Eu. dicksonii and its

host nucleus is already established at the earliest detectable stages

of infection, and is conserved across the brown algal genera

Ectocarpus, Macrocystis and Pylaiella. These observations suggest that

migration of the host nucleus towards the parasitic thallus is a

physiologically-relevant feature underpinning the infection pro-

cess.

Further host responses to infection by Eu. dicksonii might be

mediated by the secretion of a proteinase inhibitor, presumably

targeted towards proteinases produced by the pathogen. These

findings highlight the power of the production of EST libraries

from infected host material to build up a picture of the dynamics of

the interactions between E. siliculosus and Eu. dicksonii during

infection. However, since many of the oomycete sequences

identified in this study do not show similarity to previously

described genes, future challenges include functional characterisa-

tion of such genes and identification of further pathogenicity

determinants in this organism.
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5. Cock JM, Sterck L, Rouzé P, Scornet D, Allen AE, et al. (2010) The Ectocarpus

genome and the independent evolution of multicellularity in the brown algae.

Nature 465: 617–621.
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