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Abstract

Chronic inflammation is one of the major causes of cartilage destruction in osteoarthritis. Here, we systematically analyzed
the changes in gene expression associated with the progression of cartilage destruction in monoiodoacetate-induced
arthritis (MIA) of the rat knee. Sprague Dawley female rats were given intra-articular injection of monoiodoacetate in the
knee. The progression of MIA was monitored macroscopically, microscopically and by micro-computed tomography. Grade
1 damage was observed by day 5 post-monoiodoacetate injection, progressively increasing to Grade 2 by day 9, and to
Grade 3–3.5 by day 21. Affymetrix GeneChip was utilized to analyze the transcriptome-wide changes in gene expression,
and the expression of salient genes was confirmed by real-time-PCR. Functional networks generated by Ingenuity Pathways
Analysis (IPA) from the microarray data correlated the macroscopic/histologic findings with molecular interactions of genes/
gene products. Temporal changes in gene expression during the progression of MIA were categorized into five major gene
clusters. IPA revealed that Grade 1 damage was associated with upregulation of acute/innate inflammatory responsive
genes (Cluster I) and suppression of genes associated with musculoskeletal development and function (Cluster IV). Grade 2
damage was associated with upregulation of chronic inflammatory and immune trafficking genes (Cluster II) and
downregulation of genes associated with musculoskeletal disorders (Cluster IV). The Grade 3 to 3.5 cartilage damage was
associated with chronic inflammatory and immune adaptation genes (Cluster III). These findings suggest that temporal
regulation of discrete gene clusters involving inflammatory mediators, receptors, and proteases may control the progression
of cartilage destruction. In this process, IL-1b, TNF-a, IL-15, IL-12, chemokines, and NF-kB act as central nodes of the
inflammatory networks, regulating catabolic processes. Simultaneously, upregulation of asporin, and downregulation of
TGF-b complex, SOX-9, IGF and CTGF may be central to suppress matrix synthesis and chondrocytic anabolic activities,
collectively contributing to the progression of cartilage destruction in MIA.
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Introduction

Osteoarthritis (OA) is a debilitating joint disease, causing severe

pain and physical disabilities to millions of people worldwide

[1,2,3]. The etiopathology of OA is multifactorial. Chronic

inflammation, degeneration of the extracellular matrix and

abnormal remodeling of the underlying bone, all take part in

cartilage destruction [4,5,6,7]. Cartilage matrix is mainly com-

posed of collagens and proteoglycans synthesized by chondrocytes

residing in the matrix. Collagens, mainly Type II, type IX and

type XI, provide the tensile strength, whereas proteoglycans rich in

water act as shock absorbents during cartilage loading.

At the onset of the disease, an etiologic agent or an insult/

trauma of the joint causes focal edema and minor surface erosion

in the cartilage. Progression of cartilage destruction is marked by

further fibrillation accompanied by loss of matrix and chondro-

cytes in the superficial layers of the cartilage. Proliferating

chondrocytes become apparent as cell clusters in the middle zone

of the cartilage. Further progression of fibrillation and cartilage

erosion leads to increased loss of cartilage matrix resulting in bone

denudation, the hallmark of osteoarthritic lesions. The rate of

disease progression and amount of joint damage is not predictable,

and varies among patients. However, the progression of joint

damage appears to follow a similar pattern and therefore can be
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categorized into various grades according to the extent of damage

in the cartilage and bone [8,9].

Chondrocytes take part in cartilage damage by synthesizing

catabolic cytokines and enzymes that breakdown the matrix as

well as impairing their ability to repair the matrix. Studies focusing

on the molecular events in human OA inception and progression

by genomic or proteomic profiling of intra-articular lesions have

revealed distinct gene profiles in OA specimens as compared to

visually unaffected cartilage [10,11,12,13,14,15]. Similarly, gene

association studies in large populations have identified a number of

genes that might confer susceptibility to OA [16,17,18,19].

However, the knowledge of the discrete molecular events that

support the time-dependent progression of OA remains incom-

plete.

In this study, we aimed to conduct a systematic longitudinal

examination of molecules and pathways associated with the

progression of cartilage damage. A widely used model of

monoiodoacetate-induced arthritis (MIA) of the rat knee was

utilized [20,21]. The progression of MIA was analyzed by

macroscopic, microscopic and micro-tomographic (mCT) analyses

and categorized into various stages of cartilage damage using the

grading system of Pritzker et al. [9]. A transcriptome-wide analysis

was conducted on the cartilage of temporally well-defined stages of

MIA and compared to those of sham control cartilage. Ingenuity

Pathways Analysis (IPA) was employed to obtain key insights into

molecular relationships and networks/mechanisms during the

progression of cartilage destruction. This analysis linked the

microarray data to relevant, manually curated information from

periodically updated knowledge databases in order to interpret the

global impact of differentially regulated molecules during MIA

progression. We believe that this study is the first to systematically

elucidate the longitudinal time-dependent gene regulation and

molecular networks/mechanisms throughout the course of MIA

progression and cartilage destruction.

Results

Macroscopic and microscopic changes in cartilage and
subchondral bone during the progression of MIA

The progression of MIA was monitored by overall macroscopic

and microscopic changes at the distal ends of femurs (Figure 1).

The articular surface of Cont femurs exhibited normal cartilage

morphology, histology and bone imaging by mCT, typical of

Grade 0/healthy cartilage (Figure 1 a–d, Movie S1). The

progression of MIA followed the similar pathologies as described

by Guzman et al. [22]. Typically, femurs from MIA afflicted knees

exhibited greater extent of cartilage damage around the patellar

groove than on femoral condyles and intercondylar fossa (Figure 1

e, f, i, j, m, n). The examination of time-dependent progression of

knee cartilage damage showed that, on day 5 post MIA induction

(MIA5), femurs showed cartilage damage typical of Grade 1, i.e.,

superficial fibrillation, chondrocyte proliferation, clustering and

disorientation, and some loss of tidal ridge demarcation (Figure 1e–

g) [9,22]. Bone damage was not apparent microscopically or by

mCT imaging at both patellar and condylar surfaces (Figure 1e–h,

Movie S2).

Analysis of MIA9 cartilage revealed marked lesions at the apexes

of condyles and ridges of the patellar groove (Figure 1i–k). The loss

of the tidal layer and deeper lesions in some areas were observed.

Chondrocytes appeared larger, some with multiple nuclei and

disarrayed. Subchondral bone marrow extensions towards carti-

lage and deposition of fibrous tissue in the lesions typical of Grade

2 cartilage degeneration were apparent. The mCT images revealed

scattered subchondral bone lesions on the femoral condyles and

patellar groove (Figure 1l, Movie S3).

On day 21 post-monoiodoacetate injection (MIA21), increased

cartilage and bone damage in the patellar groove and ridges, full-

depth lesions and pits on the femoral condyles were observed

(Figure 1m–o). Histology revealed fissuring with matrix loss,

fibrocartilage formation within the denuded cartilage and

abnormal subchondral bone marrow intrusion typical of Grade

3 to 3.5 damage. Micro-CT imaging showed pitted areas of bone

loss on the femoral condyles and patellar groove (Figure 1p,

Movie S4).

Transcriptome-wide regulation of gene expression
during the progression of MIA

We next determined the changes in transcriptome-wide gene

expression profiles during the progression of MIA in the distal end

of femoral cartilages in Cont, MIA5, MIA9 and MIA21 rats

exhibiting Grade 0, Grade 1, Grade 2 and 3–3.5 cartilage damage,

respectively. Principal components analysis (PCA) revealed

relatively uniform distribution of overall gene expression among

the samples in each group (n = 3) except in MIA9 group, where the

overall gene expression was distributed between MIA5 and MIA21

(Figure 2A). Significant differences in gene expression over the

course of MIA progression were observed, as evidenced by the

average F ratio (signal to noise ratio) of 18.8.

Of the 27,342 transcripts detectable by Affymetrix GeneChips

array, 2,034 (7.44%) transcripts were significantly (p,0.05) and

differentially up- or downregulated at one or more time points by

more than two-fold change. In the hierarchical clustering analysis

of the differentially regulated genes (p,0.05, over 62-fold change),

distinct sets of genes were regulated at each stage of MIA

progression (Figure 2B). The most interesting information derived

from the hierarchical clustering was that: (i) as compared to Cont,

the maximal changes in gene expression occurred in MIA5,

judging by its farthest distance from Cont (Figure 2B), followed by

MIA21 and MIA9; and (ii) distinct individual sets of genes were

temporally either upregulated or suppressed during the progres-

sion of MIA.

Cluster analysis of major functional genes during the
progression of MIA

Among the 2,034 transcripts that were significantly up- or

downregulated during the progression of MIA, 1,971 were

unique genes annotated by Ensembl. These genes were then

analyzed by Davies-Bouldin index [23] to render optimal number

of clusters for partition clustering and were assigned to one of the

five trends of temporal gene regulation (Figure 3). The graphs

represent 10 most regulated genes in each cluster, and were

groups of genes that exhibited: peak-upregulation at day 5 after

MIA induction, followed by decrease in gene expression (Cluster

I ); peak-upregulation at day 9 after MIA induction (Cluster II );

gradual increase in gene expression that peaked at day 21 after

MIA injection (Cluster III ); peak-downregulation at day 5 after

MIA injection, followed by relative increase in gene expression

(Cluster IV ); and peak-downregulation at day 9 after MIA

induction (Cluster V ). Validation of at least two genes in each

cluster by rt-PCR exhibited similar trends in the differences in

gene expression as in microarray analysis (Figure 4). However, rt-

PCR technique being more sensitive contributed to greater fold

changes in gene expression as compared to the microarray

analysis.

Among the five distinct biologically functional gene clusters,

IPA identified three clusters mainly associated with inflammation

Gene Regulation during MIA Progression
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and immunological disorders (Clusters I, II and III ), and the

remaining two clusters associated with musculoskeletal function

and disorders (Clusters IV and V ) (Figure 3, Table 1). To delineate

the overall functional relevance, the genes were further catego-

rized into 7 functional sets: (i) Inflammation (cytokines, chemo-

kines, and their receptors); (ii) Inflammation regulators (mediators,

transcription factors, and signaling molecules that regulate

inflammation); (iii) Cell division/proliferation; (iv) ECM (molecules

of the matrix); (v) ECM regulators (molecules that regulate matrix

synthesis and degradation); (vi) Growth factors (growth factors

and their receptors); (vii) Growth factor regulators (signaling

molecules and transcription factors that regulate growth factors)

(Figure 5, Tables 2, 3, 4, 5 and 6). Genes including molecules

involved in cell metabolism, transporters and ion channels, and

those with unknown functions were not included in the present

analysis. The genes in these Tables reflect: genes with known

function, the degree of gene regulation, and are in proportion to

the group of genes regulated in a particular cluster shown in

Figure 5.

Cartilage with Grade 1 damage (MIA5) exhibits gene
expression associated with innate immunity and cell
proliferation.

The cartilage with Grade 1 damage showed upregulation of

genes in Cluster I, and downregulation in Cluster IV. According to

IPA, the genes in Cluster I were functionally associated with

inflammation (116 genes; p-value 9.12E-09 – 1.80E-03) and

immunological diseases (103 genes; p-value 2.55E-09 – 1.80E-03)

(Table 1). The inflammation associated cytokine, chemokines and

their receptors significantly upregulated were Il1b, IL1rl1, Tlr7,

Ccr2, and Il-33. The major inflammation regulatory upregulated

genes were, C3ar1, Itgb2, -a2, -a4, Ptger4, various IgG Fc receptors

(Fcrls, Fcgr1a, Fcgr2a, Fcgr2b), molecules of the major histocompat-

ibility complex (Hla-dmb, H2-Ea, cd74, Hla-dma, Rt-1ba) and

transcription factors Irf5, Irf8 (Table 2, Table S1) [24].

Interestingly, the genes associated with cell cycle/division/

differentiation such as Diap3, Anln, Prc1, Emb, Kif4, Kif23, Dusp6,

Vav1, Ccnb1, Ccna2, Ccnb2, Ccne1, Ccnf, and Cdk6 were also highly

upregulated (Table 2, Figure 5A, Table S1). The expression of

Figure 1. Progression of MIA at the distal femoral ends by macroscopic, microscopic, and mCT analyses. Right knees of rats were given
an intra-articular injection of MIA on day 0, and distal ends of right femurs examined on post-injection days 5 (Grade 1 damage, MIA5), 9 (Grade 2
damage, MIA9) and 21 (Grade 3–3.5 damage, MIA21) and compared to saline-injected sham control (Cont). Macroscopic view of condyles, patellar
grooves of cartilage, histology, and subchondral bone imaging by mCT of: (a, b) Cont femur showing smooth surface, (c) normal histology and no
bone lesions on the femoral condyles and patellar grove and (d) lack of lesions in the subchondral bone (Movie S1); (e, f) MIA5 cartilage showing
superficial abrasions on the condyles (black arrows) and patellar groove (white arrows), (g) superficial fibrillation (black arrow), chondrocyte clustering
and disorientation (blue arrow), and (h) no bone lesions in mCT images (Movie S2); (i, j) MIA9 cartilage exhibiting lesions at the apexes of condyles
(black arrow) and ridges of the patellar groove (white arrow), (k) thinning of cartilage, matrix and cell loss above the tidal layer with large disarrayed
chondrocytes (black arrow), and some multinucleated chondrocytes (blue arrow), subchondral bone marrow/fibrous tissue extension in the cartilage
typical of Grade 2 damage (white arrow), and (l) scattered subchondral bone lesions on the femoral condyles and patellar groove in mCT images
(Movie S3); (m, n) MIA21 cartilage exhibiting increased lesions and damage on the condyles (black arrows) and patellar groove and ridges (white
arrow), (o) delamination of surface, full depth cartilage lesions and denuded cartilage layer at some places (black arrow), and (p) increased
subchondral bone lesions on the femoral condyles and patellar groove in mCT images (Movie S4). Each figure shows representative right femur from
separate rats from each group (n = 10). Arrows indicate cartilage damages. The distal ends of femurs showing 360u mCT projection can be found in
Movie files S1 to S4.
doi:10.1371/journal.pone.0024320.g001
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these genes paralleled the chondrocyte proliferation characteris-

tically observed as disoriented clusters of chondrocyte distributed

in the cartilage (Figure 1g).

Despite the presence of cytokines like IL-1b and IL-33, genes for

several ECM proteins involved in cell-matrix attachment were

significantly upregulated in Grade 1 cartilage damage. These

genes included Vcan, Fbln2, and Spon1. Additionally, proteinases

with broad specificity involved in protein/matrix breakdown were

upregulated such as Hpse, Ctsc, Ctss, Arsb, and Plau (Table 2).

Strikingly, asporin, a suppressor of TGF-b/receptor interactions

was more than 9 fold upregulated in Cluster I [25]. Additionally,

genes for growth factors involved in cell division or immune

response such as, Fgf7, Csfrb, the regulators of Wnt signaling Sfrp1

and Sfrp2, were dynamically upregulated in cartilage with Grade 1

damage.

Cartilage with Grade 1 damage (MIA5) exhibits
suppression of genes associated with matrix synthesis
(Cluster IV)

In parallel to marked upregulation of genes in cartilage with

Grade 1 damage (MIA5, Cluster I ), several genes were significantly

downregulated and were assigned to Cluster IV. These genes were

associated with genetic disorders (163 genes, p-value 1.37E-06 –

2.08E-02) and musculoskeletal development and function (95

genes, p-value 2.10E-07 – 1.73E-02), and consisted of relatively

higher proportion of the genes for extracellular matrix and their

regulators (Figures 3D & 5D, Table 3, Table S2). Interestingly,

along with genes that induce cell division (Cluster I ), genes

associated with suppression of cell growth and apoptosis were

downregulated such as Scrg1 and Cidea in this cluster. Among

cytokines, Cytl1 [26], IL23r, and the inhibitor of osteoclastogenesis

Tnfrsf11b (osteoprotegerin), were major molecules suppressed,

along with several proinflammatory mediators Sod3, Alox12, and

Ptgds.

More importantly, a significant number of genes responsible for

proteoglycan synthesis and assembly were dramatically sup-

pressed. These genes included Cilp (292 fold) and Cilp2 (222

fold), Fbln7, Fmod, Hapln3, Sdc4, Flnb, Chst3, Chst11, Acan, Cspg4,

Bgn, Spon2, Slf2, Hs6st2, and Eln. Surprisingly, at Grade 1 cartilage

damage, only collagens suppressed were Col27a1 and Col16a1

involved in calcification of cartilage and cell attachment,

respectively. In parallel, ECM regulatory genes revealed a

significant suppression of peptidase inhibitors and anabolic

enzymes such as Pi15, Serpina3a, and Timp3, likely accelerating

cartilage damage.

The scrutiny of global gene expression in cartilage with Grade 1

damage, also showed that several growth factors required for

cartilage growth/homeostasis were dramatically downregulated,

such as Gdf10, Ig f2, Ig fbp7, Bmp6, Fg frl1, Spock1, and Veg fa. Among

growth factor regulatory proteins the most suppressed genes were

Crim1, Sox9, Ltbp4, and htra, which may cumulatively retard

cartilage repair.

Major genes upregulated in cartilage with Grade 2
damage were associated with chronic inflammation

The Grade 2 cartilage damage showed upregulation of genes in

Cluster II, belonging to family of genes prevalent in genetic

disorders (116 genes, p- value 3.21E-10 – 6.79E-04) and

inflammatory response and immune trafficking (96 genes, p-value

4.81E-12 – 1.15E-03) (Table 1).

Figure 2. Transcriptome-wide microarray analysis of cartilage from Cont, MIA5, MIA9, or MIA21 afflicted joints. (A) PCA analysis showing
reproducible overall gene expression in the articular cartilage from the right knee joint of 3 separate rats from Cont, MIA5, MIA9, or MIA21. (B) Overall
gene expression profiles of articular cartilage from 3 separate rats in each experimental group as compared to Cont. Hierarchical clustering
representing the transcripts that were significantly (p,0.05) and differentially up- or downregulated at one or more time points by more than two-
fold change. Note the maximal changes in overall gene expression occurred in MIA5, followed by MIA 21 and MIA9 as compared to gene expression
in cont cartilage.
doi:10.1371/journal.pone.0024320.g002
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As compared to Grade 1, significantly fewer genes associated

with cell cycle/division were upregulated in Grade 2 cartilage

damage (Figures 3B & 5B, Table 4, Table S3). In fact, a number

of genes involved in the inhibition of cell division, Dapk1 and

Ccng1, were upregulated. The majority of genes significantly

upregulated in Grade 2 (Cluster II) were associated with chronic

inflammation such as chemokines and their receptor Ccl2, Ccl7,

Ccl9, Ccr1, Ccr5, Cx3cr1, and Cxcl16 as well as cytokines involved

in amplification of immune response Lif, Il7, Il18, and Ifngr2.

More notably, cytokines that induce bone resorption such as

Tnfsf11 (RANKL), Tnfrsf11a, Tnfrsf1B were significantly upregu-

lated explaining the initiation of bone damage observed in m-CT

images (Figure 1l). In parallel, genes involved in the regulation of

inflammation were upregulated such as those associated with

clotting cascade, Tfpi2, adherence, Itgam, Itgax, Itga2, and NF-kB

signaling cascades Tank, Ripk2, NFkB2, NFkbie, Map2k3, and

enzymes necessary for the regulation of inflammation Pik3cb,

Dusp4, Ptpre, and Ptpn22.

Interestingly, the expression of genes for two matrix proteins,

Col5a3 and Sdc1 was significantly upregulated. Besides these, the

expression of genes associated with cartilage matrix degradation

was prevalent in the cartilage with Grade 2 damage (MIA9). These

genes were matrix metallopeptidase (MMP)-9, Mmp12, Mmp19,

Adamts4, Adamts7, Adamts12, Hyal1, Hyal3, Arsb, and Adam8.

Simultaneously, genes for inhibitors of proteases such as Timp1

and Serpine2 were also upregulated.

The major growth factors/receptors upregulated in cartilage

with Grade 2 damage were Pdgfb, Csfr1, and Igfbp3, Igfbp4, TGFbr1

and inhba. Additionally, several mediators of Wnt and Notch

signaling involved in bone formation were upregulated including,

Sfrp4, Wnt5a, and Wnt7b. (Table 4, Table S3) [24].

Major genes suppressed in the cartilage with Grade 2
damage were ECM and growth factor associated genes

During the progression of cartilage damage, we also observed

that a significant number of genes were downregulated in the

cartilage with Grade 2 damage (MIA9, Cluster V). Genes in Cluster

V, in parallel to Cluster II, were mainly matrix associated and

demonstrated maximal suppression on day 9, and associated with

genetic disorders (235 genes, p- value 1.87E-12 – 2.88E-02) and

skeletal and muscular disorders (134 genes, p-value 1.31E-10 –

2.88E-02) (Figures 3E &5E, Table 1).

There were several proinflammatory genes suppressed including

IL-7, IL-16 and IL-17b involved in amplification of immune

response, and Nrk in NF-kB signaling cascade (Table 5). Nevertheless,

the most dramatically suppressed gene was matrilin 3, a major

component of ECM, involved in the formation of filamentous

networks [27]. The expression of several collagens integral to cartilage

matrix such as collagens type -IXa1, -IIa1, -IXa2, -IXa3, -XIa1, -

XXIVa1, and -Va3 were significantly downregulated. The expres-

sion of other cartilage matrix components involved in cell-matrix and

Figure 3. Partition clustering of significantly regulated genes. Partition clustering analysis of the genes that showed two fold or greater
changes in their expression at one or more time points (p,0.05). The graphs represent 10 most regulated genes in each cluster. Identification of five
gene clusters that exhibited maximal upregulation on day 5 (Grade 1 damage) followed by their downregulation (Cluster I); upregulation on day 9
(Grade 2 damage) followed by their downregulation (Cluster II); upregulation in a sustained manner showing maximal expression on day 21 (Grade 3–
3.5 damage, Cluster III); downregulation of genes on day 5 followed by their upregulation (Cluster IV); and downregulation of genes on day 9
followed by their upregulation (Cluster V). Detailed description of these genes is given in Tables 1, 2, 3, 4, 5, and 6, and in Tables S1, S2, S3, S4, and S5.
doi:10.1371/journal.pone.0024320.g003
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matrix-matrix adhesion were suppressed such as Chad, Scin, Hapln1,

Vit, Mgp, and Fbln5 (Table 5, Table S4) [24]. Additionally, gene

expression of several molecules involved in collagen, chondroitin and

hyaluran synthesis were suppressed (Adamts3, Adamts6, Chsy3, Has2) as

well as those involved in mineralization (Alpl ).

The growth factors and their receptors and regulatory genes

suppressed in the cartilage with Grade 2 damage (MIA9) were

Omd, Ctg f, Bmp5, Bmp3, Tg fb3, Eg f, Ig fbp5, Fg fr2, Fg fr3, Ghr,

Tg fbr3, Bmpr1a, and Vdr. Strikingly, frizzeled related protein (Frzb)

was 52.7 fold suppressed along with other Wnt signaling molecules

(Wif1, Sfpr5, Fzd9, and Wisp3), and those involved in cartilage/

bone development (Ptch1, Ihh, Sox6, and Dlx5) (Table 5, Table S4)

[24].

Major genes upregulated in cartilage with Grade 3–3.5
damage were associated with immune adaptation and
matrix modeling/remodeling

According to IPA, the specimens exhibiting Grade 3–3.5

cartilage damage (MIA21, Cluster III), were associated with those

generally found in skeletal and muscular disorders (131 genes, p-

value 1.47E-08 – 1.59E-03) and inflammatory diseases (124 genes,

p-value 6.71E-08 – 1.81E-03) and showed sustained and successive

upregulation in cartilage from Grade 1 to Grade 3–3.5 damage

(Figures 3C & 5C, Table 1). Interestingly, at this stage genes that

regulate apoptosis or inhibit cell division were upregulated, such as

Cdkn1a, Ccnd1, Pawr, Bcl2l11, and Klf10 (Table 6, Table S5).

Among the inflammatory genes, those involved in the regulation

of T and B cell functions Cxcl13, IL15, and suppression of

inflammation such as Il10rb, Lilbr4, Nfkbia, Socs3, and Pld2 were

simultaneously upregulated. Additionally, genes involved in LPS

responses and acute inflammation such as Tlr4, Lbp, F3, Alox5, Lpl,

and Ptges were upregulated.

In cartilage with Grade 3–3.5 damage, many ECM proteins

involved in bone repair/remodeling were upregulated such as Tnn,

Postn, and Lum, and collagens frequently associated with soft tissue

and wound repair (collagens type XVIIIa1, -IVa1, -IVa2, -IIIa1,

-XIIa1, -Va1, -VIa3), exhibited increased expression. Addition-

ally, Adam23, Serpine1, Timp2, Mmp14, Mmp11, Mmp2, Ctsd, and

Adamts2 involved in ECM regulation during wound repair were

also significantly upregulated. The growth factors and their

regulators upregulated were Tgfb2, Ogn, Pdgfrb, and Egfr that are

all involved in cell growth and differentiation. Additionally,

signaling molecules associated with Wnt signaling were upregu-

lated such as Wisp2, Notch3, and Acvrl.

Interestingly, we also observed that several of the ECM

associated proteins that were suppressed in Grade 2 cartilage

damage, were relatively upregulated in cartilage with Grade 3–3.5

damage. For example, Col2a1, 50.3-fold downregulated in

cartilage with Grade 2 damage, was only 9.06-fold suppressed in

Grade 3–3.5 damage. Similar upregulation of ECM associated

genes in Grade 3–3.5 damage relative to lesser damaged cartilage

included Matn3, Col10a1, Col9a1, Col9a3, Col11a2, Col11a3, Col5a3,

Figure 4. Confirmation of salient gene expression by rt-PCR. Quantitative rt-PCR analyses of specific transcripts of genes from articular
cartilage obtained from Cont, MIA5, MIA9, or MIA21. Two genes from Cluster I (A; Ctss and Il1b), Custer II (B; Mmp12 and Ccr1), Cluster III (C; Alox5 and
Vcam1), Cluster IV (D; Cilp and Sox9), and Cluster V (E; Col9a1 and Col2a1) were analyzed to verify the data obtained by microarray analysis (n = 5,
* p,0.05 as compared to Cont, ** p,0.01 as compared to Cont, # p,0.05 as compared to MIA5, ## p,0.01 as compared to MIA5, { p,0.05 as
compared to MIA9, {{ p,0.01 as compared to MIA9, { p,0.05 as compared to MIA21, {{ p,0.01 as compared to MIA21).
doi:10.1371/journal.pone.0024320.g004
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Scin, Sdc1, Hapln1, Vit, Prg4, Matn1, and Fbln5. The expression of a

number of growth factors and signaling molecules markedly

suppressed in Grade 2 damage were also relatively upregulated in

cartilage with Grade 3–3.5 damage. These growth factors were

associated with both cartilage and bone damage such as Omd,

Fgfr2, Fgfr3, Ctgf, Bmp5, Bmp3, Igfbp5, Egf, Frzb, Ptch1. Wif1, Sfrp5,

Sox6, Wisp3, and Dlx.

Major molecular networks involved in cartilage damage
during the progression of MIA

We next subjected genes in individual clusters to IPA to

generate major functional molecular networks (Figures 6, 7 and 8).

The significance and specificity of IPA-generated networks were

based on the score of each network. The high score numbers

signified that gene networks are extremely specific to each cluster.

For example, a score of 43 of the molecular network in Cluster I

(Figure 6A) indicates that there is only a 1 in 1043 chance of getting

a network containing the same member of Network Eligible

molecules, when same numbers of molecules are randomly picked

from the IPA knowledge base.

The molecular network maximally upregulated in the speci-

mens with Grade 1 cartilage damage (MIA5) were (i) acute

inflammation and (ii) cell cycle/cell division-related genes in Cluster

I. Genes that typically regulate innate immunity directly or via

activation of other mediators formed this network. For example,

IL-1b, which auto-regulates its own expression, may also

upregulate expression of Ccr2, Trem2 (stimulates production of

cytokines and chemokines in macrophages), IL10ra (receptor of IL-

10), Ptgfr, Cyba and Cybb (phagocytic oxidases that generate

superoxide), and NCF1 and -2 (oxidases that produce superoxides)

(Figure 6A). Strikingly, the genes associated with cell cycle

including Vav1, Emb, Prc1, Kif4A, Kif23, Kif20A, and Dock2 were

also prevalent in this network despite the presence of inflammation

(Figure S1).

Interestingly, in parallel to upregulation of genes associated with

innate immunity and cell cycle in Cluster I, other pathways were

simultaneously suppressed as observed in the major molecular

network for the Cluster IV (score 32, Figure 6B). For example,

asporin, an inhibitor of TGF-b [25] and a member of Cluster I, was

considerably upregulated at this stage of cartilage damage, and

may be responsible for preventing activation of TGF-b complex,

consequently downregulating matrix proteins and growth factors

such as Sox9, alkaline phosphatase, aggrecan, Cilp, Cilp2, and other

proteoglycans/collegens, directly or via activating intermediary

molecules in Cluster IV (Figure 6B).

The IPA of genes upregulated in cartilage with Grade 2

damage, revealed a molecular network (score 34) involved in

chronic inflammation, immune cell trafficking and perpetuation of

inflammatory response (Cluster II, Figure 7A). This network

appeared to be activated by TNF receptor and may invoke the

activities of the NF-kB signaling cascade, RIPK2, a potent

activator of NF-kB and inducer of apoptosis and chemokines. The

activation of NF-kB complex in turn may play a central role in

upregulating the expression of MMPs that cleave matrix proteins,

chemokines that attract immune cells, and Cd44 that mediates cell

adhesion/migration via hyaluronate/matrix attachment. Similar-

ly, based on the existing role of chemokines, their upregulation

may further augment activity/gene expression of chemokines and

their receptors, such as Ccl7, Ccl9, Ccl13, Ccr1, Ccr5 and Pf4 (Cxcl4)

that are important for amplification of immune response and

recruitment of immune cells to the site of inflammation.

Simultaneous with persistent inflammation in the cartilage with

Grade 2 damage, the suppression of genes involving matrix

synthesis in Cluster V was observed (score 39, Figure 7B). IPA

network analysis suggested that the major foci of the molecular

network suppressed were TGF-b complex, Ig fbp, Ctg f and Eg f.

Suppression of these genes may have downregulated matrix

proteins such as collagens (-type II alpha-1, -type X alpha1, -type

XI alpha-1 and -2), and molecules involved in matrix synthesis

such as Adamts3 and Hapln1 (stabilizes cartilage matrix). More

importantly, a significant suppression of TGF-b complex in this

network may have also downregulated many genes associated with

bone formation such as Bglap, Dlx5, Alpl, and Bmpr1. The

downregulation of these genes during chronic inflammation may

result in the failure of matrix repair, thus accelerating the damage.

In the major molecular network in Cluster III (score 29,

Figure 8A), related to pathologies observed in Grade 3–3.5

cartilage damage, many of the genes were associated with immune

suppression and adaptation such as Socs3, Osmr, Gas7 and Il10rb

[28]. Interestingly, at this stage, except for IL-15, the upregu-

lation of other inflammation-associated genes such as NF-kB

complex, IL-1 complex, IFN alpha and IFN beta complex,

MHC complex, and IL-12, was not evident. However, several

genes that are associated with B cell, T cell and macrophage

proliferation, differentiation, and migration, such as complement

cascade (innate immunity and macrophage activation), IL-15

(stimulates T-lymphocyte proliferation), and interferon-induced

Table 1. IPA analysis showing top biological functions of each gene cluster at various stages of cartilage destruction in MIA.

Cartilage damage Cluster Name p-value Genes (#) associated

Grade 1 (MIA5) I Inflammation 9.12E-09 – 1.80E-03 116

Immunological Disease 2.55E-09 – 1.80E-03 103

IV Genetic Disorder 1.37E-06 – 2.08E-02 163

Skeletal and Muscular
Development and Function

2.10E-07 – 1.73E-02 95

Grade 2–2.5 (MIA9) II Genetic Disorder 3.21E-10 – 6.79E-04 116

Inflammatory Response 4.81E-12 – 1.15E-03 96

V Genetic Disorder 1.87E-12 – 2.88E-02 235

Skeletal and Muscular Disorders 1.31E-10 – 2.88E-02 134

Grade 3–3.5 (MIA21) III Skeletal and Muscular Disorders 1.47E-08 – 1.59E-03 131

Inflammatory Disease 6.71E-08 – 1.81E-03 124

doi:10.1371/journal.pone.0024320.t001
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transmembrane protein 3 (Ifitm3, mediates cellular immunity)

were upregulated.

Discussion

To the best of our knowledge, this study documents the first

evidence of temporally controlled global gene regulation and

identifies the major determining molecular networks that likely

control the progression of cartilage damage in a well-established rat

model of MIA. We examined changes in the gene expression

profiles by transcriptome-wide microarray analysis in relation to the

progression of MIA determined by macroscopic, microscopic, and

mCT imaging to assess bone involvement [22,29,30,31]. This model

of experimental OA was considered useful due to its similarities to

the pathogenesis of OA, reproducibility, reasonable duration of the

test period, and ability to induce cartilage damage without

confounding effects of surgical wounding on the joint tissues

[21,22,29]. In this experimental model, the first 3 weeks of MIA

progression showed major changes in the cartilage destruction and

Grade 6 damage is achieved over a period of 8 weeks (56 days) [22].

After 3 weeks of MIA progression, the cartilage loss is slowly

replaced by fibrocartilage and bone. Therefore, we have focused on

the initial period of 3 weeks (21 days) where the cartilage damage

advanced to Grade 3–3.5. Although the progression of MIA in this

model was much faster, it exhibited a sequential progression of

cartilage damage observed over a longer period of time in other

models of OA. Furthermore, as described earlier, less than 2% cell

death was observed due to the monoiodoacetate-induced injury on

day 1 after monoiodoacetate injection [32]. Nevertheless, rodent

models cannot depict arthritis exactly to humans, as the joint

mechanics differ in small quadrupeds [33].

The foremost findings from the transcriptome-wide gene expres-

sion profiles are that the MIA afflicted cartilage showed stage specific

reproducible changes in gene expression, as demonstrated by the

hierarchical and partition clustering analyses. Strikingly, MIA

progression involves up- or downregulation of approximately

7.44% of the transcripts by more than two-fold, at one or more

time points (p,0.05). Furthermore, discrete sets of genes at each stage

of cartilage damage appear to maximally regulate set of genes

associated with inflammation and ECM degradation.

The overall gene expression profiles and the IPA derived from

these profiles suggest that Grade 1 cartilage damage is likely

associated with upregulation of genes required for: (i) acute

inflammation/innate immunity such as superoxides, complement

components, integrins, IL-1/IL-1r, chemokines and their receptors,

and monocyte activating factors; (ii) chondrocyte-matrix interac-

tions, i.e., versican, fibulin and microfibril; (iii) cleavage of matrix

and cell associated proteins such as broad specificity proteases

cathepsins and heparanase [34]; and (iv) cell proliferation such as

cell cycle/proliferation and mitogenic growth factors (FGF7 and

CSF receptor b). The presence of proliferating cells may support

increased cell division in the cartilage with Grade 1 damage

(Figure 1g). In parallel, suppression of genes essential for: (i)

proteoglycan synthesis/assembly, i.e., Cilp and Cilp2, Acan, Bgn, Eln,

Sdc2 and cell-matrix adhesion such as Col XVI 1a, and ColXVII

1a; and (ii) inhibitors of peptidases (Timp3, Serpina3, Pi15), may

further support increased proteolytic breakdown of cartilage matrix.

More importantly, upregulation of asporin that mediates downreg-

Figure 5. Distribution of genes in each cluster according to their functions. Relative distribution of genes in each cluster subdivided
according to their functions. Cell division, genes involved in cell division, proliferation, apoptosis; Growth factors, genes for growth factors and their
receptors; GF reg, growth factor regulatory molecules and transcription factors; Inflammation, cytokines, chemokines and their receptors; Inflam reg,
inflammatory mediators, signaling molecules, transcription factors, and regulators; ECM, extracellular matrix proteins; ECM reg, Proteases, regulators
of ECM synthesis and breakdown; Others genes involved in cell metabolism, transporters and ion channels and genes of unknown function (Tables
S1, S2, S3, S4, and S5).
doi:10.1371/journal.pone.0024320.g005
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ulation of TGF-b activity, and consequently suppression of Sox9

may be responsible for the dramatic suppression of the above

proteoglycan-associated genes. Interestingly, genes such as asporin,

IL-1b, IL-1 receptor-like 1, cathepsin S, PGE receptor (EP4) and

integrins are also upregulated in OA in humans and experimental

animals, suggesting their possible role in the early stages of the

disease progression [35,36,37,38,39,40,41,42].

The most dramatic matrix breakdown and deficit in ECM

synthesis might occur in cartilage with Grade 2 damage. Overall,

the gene regulation in cartilage with Grade 2 damage was focused

around: (i) Chronic inflammation (chemokines and their receptors)

and the NF-kB signaling cascade, which not only regulates

inflammation and apoptosis, but also matrix degradation [43];

and (ii) Matrix breakdown, via increased expression of metallopro-

teases (MMP-9, -12, and -19, ADAMTS4, ADAMTS 7, ADAMTS

12, Hyal1, Hyal3) primarily responsible for cleaving collagens and

proteoglycans. In parallel suppression of genes associated with: (i)

ECM such as matrilin-3 and -1, major collagens (type IIa1, -Xa1,

-IXa1, -IXa2, -IXa3, -XIa1, -XIa2), Chad, Prg4; (ii) matrix

synthesis/assembly (Adamts3, Adamtsl3, Hs3stb1, Hs3st1, Chsy3,

Has2, Arsg, Alpl); (iii) growth factors and their receptors (Omd, Fg fr2,

Fg fr3, Ctg f, Bmp5, Ghr, Bmp3, Bmpr1a, Eg f ); and (iv) signaling

Table 2. Induction of salient genes in cartilage with Grade 1 damage (Cluster I).

Cluster I (421 annotated genes, 267 genes in IPA database) Fold change

Gene Description and Function Group OA5 OA9 OA21

Diap3 Diaphanus homolog 3; cytokinesis CD 4.60 3.36 2.25

Anln Anilin; cytokenesis CD 4.42 3.37 1.76

Emb Embigin; protein tyrosine phosphatase receptor type N CD 4.09 4.00 2.00

Kif4 Kinesin Family member 4; microtubule-based motor proteins involved in cell division CD 3.72 2.08 1.16

Kif23 Kinesin Family member 23; microtubule-based motor proteins involved in cell division CD 3.56 2.09 1.30

Prc1 Protein regulator of cytokinesis 1; cytokinesis CD 3.34 2.43 1.67

Dusp6 dual specificity phosphatase; mitogenic signal transduction via Erk and Map kinases CD 3.28 3.41 2.88

Vav1 Vav Guanine nucleotide exchange factor; cell division and differentiation CD 3.08 2.61 1.69

Ccnb1 Cyclin B1; cell cycle regulation CD 2.95 2.10 21.13

Ccne1 Cyclin E1; cell cycle regulation CD 2.63 1.50 1.02

Il1rl1 IL-1 receptor-like 1 Inf 8.60 3.50 2.11

Tlr7 Toll-like receptor 7; LPS receptor Inf 5.06 2.74 3.23

Irf8 Interferon regulatory factor 8; regulate growth and differentiation Inf 2.49 1.04 21.02

Ccr2 Chemokine (C-C motif) receptor; cell migration Inf 2.30 2.06 1.02

Il1b Interleukin 1 beta; inflammation Inf 2.22 2.0 1.54

Il33 IL-33; neutrophil migration Inf 2.00 21.02 1.15

C3ar1 complement 3a receptor 1; inflammation regulation Inf2 4.92 3.18 3.72

Hla-dmb Major histocompat complex, class II DM-b Inf2 4.65 2.93 2.24

Ptger4 Prostaglandin E receptor 4; level and stability of cyclooxygenase-2 Inf2 4.55 2.81 2.43

Fcgr1a Fc fragment of IgG receptor 1a (CD64); immune response Inf2 4.26 3.03 3.00

Itgb2 Integrin beta 2; cell adhesion Inf2 4.10 4.18 3.43

Itgal Integrin alpha L; cell adhesion Inf2 3.84 3.41 2.29

Vcan Versican; connects cells to ECM, cell motility/division ECM 9.09 7.95 6.35

Fbln2 Fibulin 2; ECM protein cell differentiation ECM 6.55 4.12 2.87

Spon1 Spondin 1; cell adhesion protein ECM 2.92 2.26 2.56

Aspn Asporin; negative regulator of TGF-b ECM2 9.33 5.77 8.38

Hpse Heparanase; cleaves polymeric heparan sulfate molecules ECM2 6.42 3.60 3.30

Ctss Cathepsin S; activates serine proteases ECM2 3.91 3.21 3.68

Arsb Arylsulfatase b; hydrolyzes sulfate groups on chondroitin sulfate and dermatan sulfate ECM2 3.75 3.70 2.62

Ctsc Cathepsin C; cystein proteases/elastase ECM2 3.72 3.66 3.29

Plau Plasminogen activator, urokinase; serine protease, promotes fibrinolysis ECM2 2.87 2.79 1.62

Fgf7 Fibroblast growth factor 7; growth of keratinocytes GF 2.89 21.01 1.14

Csfrb Colony stimulating factor receptor b; hematopiesis, immunological defense, bone metabolism GF 2.76 2.14 1.54

Sfrp2 Secreted Frizzled related protein 2; Wnt signaling GF2 4.04 21.06 3.05

Sfrp1 Secreted Frizzled related protein 1; Wnt signaling GF2 3.59 3.07 1.94

CD, genes involved in cell division, proliferation, apoptosis; Inf, cytokines, chemokines and their receptors; Inf2, inflammatory mediators and their receptors, signaling
molecules, transcription factors, and regulators; ECM, extracellular matrix proteins; ECM2, Proteases, regulators of ECM synthesis and breakdown; GF, genes for growth
factors and their receptors; GF2, growth factor signaling molecules, transcription factors. A full list of these genes is given in Table S1.
doi:10.1371/journal.pone.0024320.t002
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molecules (Frzb, Lect1, Sfrp5, Fzd9, Sox6, Wisp3, Dlx5, Mad3, Smad9)

may further suppress cartilage and bone formation in these

advanced lesions. Our findings further confirm earlier studies

where significant upregulation of MMPs, ADAMTS4, arachido-

nate-5-lipoxygenase, and IL-18 was observed in both human and

experimental OA [10,12,13,15,39,44,45,46,47,48,49,50].

Interestingly, cartilage with Grade 3–3.5 damage showed

successive upregulation of genes from Grade 1 to Grade 3–3.5,

and those genes were involved in: (i) inflammation and immune

adaptation via relative downregulation of proinflammatory

molecules IL-1, TNF, NF-kB signaling; (ii) suppression of

inflammation (Socs3, Il10rb, Lilbr4, C1s, Nfkbia); (iii) LPS/

Table 3. Suppression of salient genes in cartilage with Grade 1 damage (Cluster IV).

Cluster IV (312 annotated genes, 203 genes in IPA database) Fold change

Gene Description and Function Group OA 5 OA 9 OA 21

Scrg1 stimulator of chondrogenesis 1; suppresses cell growth but induces chondrogenic differentiation CD 261.6 253.8 212.2

Cidea cell death-inducing DFFA-like effector a; activates apotptosis CD 22.66 21.76 22.01

Cytl1 cytokine-like 1; likely involved in proteoglycan synthesis Inf 253.6 247.5 249.8

Tnfrsf11b TNFr superfamily, member 11b (OPG); inhibits osteoclastogenesis Inf 29.03 28.75 24.40

Il23r interleukin 23 receptor; JAK-STAT signaling Inf 22.56 22.12 21.46

Sod3 superoxide dismutase 3, extracellular; antioxident enzymes Inf2 27.41 23.89 22.42

Alox12 arachidonate 12-lipoxygenase; proliferative, antiapoptotic and proangiogenic Inf2 22.53 22.27 22.77

Ptgds PGD2 synthase;, smooth muscle contraction/relaxation, inhibition of platelet aggregation Inf2 22.09 22.07 22.00

Cilp cartilage intermediate layer protein; cartilage matrix protein ECM 292.3 266.2 223.2

Cilp2 cartilage intermediate layer protein 2; cartilage matrix protein ECM 221.9 219.2 23.31

Fbln7 fibulin 7; takes part in cell binding ECM 213.3 29.92 23.71

Fmod Fibromodulin; ECM assembly ECM 213.1 211.9 21.75

Hapln3 Hyaluronan-proteoglycan link protein 3; proteoglycan link protein 3 ECM 26.50 26.13 26.03

Col27a1 collagen, type XXVII, alpha 1; involved in calcification of cartilage ECM 24.57 23.24 23.30

Acan aggrecan; major cartilage matrix protein ECM 24.12 23.30 22.05

Cspg4 chondroitin sulfate proteoglycan 4; cartilage matrix protein ECM 23.07 22.73 21.71

Spon2 spondin 2; extracellular matrix protein ECM 22.89 2.23 1.73

Col16a1 collagen, type XVI, alpha 1; cell attachment ECM 22.69 21.53 21.29

Eln Elastin; part of ECM ECM 22.59 1.05 1.51

Sdc4 syndecan 4; proteoglycan cell interactions ECM 22.27 21.01 21.36

Bgn biglycan; cartilage matrix protein ECM 22.12 21.69 1.07

Col14a1 collagen, type XIV, alpha 1; fibrillar collagen ECM 22.07 21.19 3.92

Pi15 peptidase inhibitor 15; serine protease inhibitor ECM2 218.0 217.9 24.74

Chst3 chondroitin 6 sulfotransferase 3; chondroitin sulfate biosynthesis ECM2 210.8 27.17 24.65

Serpina3 serpin peptidase inhibitor, clade A mem 3; anti-trypsin activity ECM2 210.8 21.85 21.62

Chst11 Chondroitin-4 sulfotransferase 11; chondroitin sulfation ECM2 24.71 24.25 24.88

Timp3 TIMP metallopeptidase inhibitor 3; inactivates MMPs ECM2 22.87 1.14 1.31

Sulf2 sulfatase 2; sulfation of proteoglycans ECM2 22.44 1.06 1.45

Hs6st2 heparan sulfate 6-O-sulfotransferase 2; heparan sulfate synthesis ECM2 22.07 21.91 22.02

Gdf10 growth differentiation factor 10; Growth and differentiation GF 222.6 216.6 24.89

Igf2 insulin-like growth factor 2; mitogenic GF 27.05 26.48 24.87

Bmp6 bone morphogenetic protein 6; cartilage and bone formation GF 25.96 25.40 23.56

Fgfrl1 fibroblast growth factor receptor-like 1; cell proliferation GF 25.06 24.63 23.44

Spock1 sparc/osteonectin; inhibits cell-cycle and influences ECM synthesis GF 23.01 22.76 23.02

Vegfa vascular endothelial growth factor A; angiogenesis GF 22.57 21.13 21.09

Crim1 cys rich transmembrane BMP regulator 1; BMP regulator 1 GF2 212.7 210.8 28.59

Sox9 SRY-box 9; transcription factor for chondrogenesis GF2 210.2 29.70 25.59

Htra4 HtrA serine peptidase 4; suppresses IGF and TGF-b signaling GF2 210.0 24.49 2.18

Igfbp7 IGF binding protein 7; stimulates PGI2 secretion, and cell adhesion GF2 23.19 22.15 21.10

Fzd8 frizzled homolog 8 (Drosophila); Wnt signaling GF2 23.15 22.15 1.10

Ltbp4 latent TGFb binding protein 4; TGF-b regulation GF2 22.86 21.68 1.22

Please see Table 2 for group description. A full list of these genes is given in Table S2.
doi:10.1371/journal.pone.0024320.t003
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Table 4. Induction of salient genes in cartilage with Grade 2 damage (Cluster II).

Cluster II (430 annotated genes, 305 genes in IPA database) Fold change

Gene Description and Function Group OA 5 OA 9 OA 21

Dapk1 death-associated protein kinase 1; programmed cell death CD 2.95 4.06 3.13

Ccng1 cyclin G1; cell cycle CD 1.84 2.23 1.67

Ccl9 chemokine (C-C motif) ligand 9; bone resorption inf 4.65 14.7 5.41

Ccr1 chemokine (C-C motif) receptor 1; immune cell recruitment inf 4.53 10.7 5.43

Tnfsf11 TNF superfamily, memb 11 (RANKL); bone resorption inf 1.98 9.52 6.04

Ccl7 chemokine (C-C motif) ligand 7; immune cell recruitment inf 4.08 6.88 2.30

Lif leukemia inhibitory factor; acute phase protein synthesis inf 3.06 5.87 2.84

Ccl2 chemokine (C-C motif) ligand 2; chemoattraction migration of cells inf 3.09 4.89 3.21

Il18 interleukin 18 (IFNg-inducing factor); macrophage activation inf 3.63 4.23 3.69

Tnfrsf11a TNF receptor mem 11a; NFkB activator, osteoclastogenesis inf 3.01 3.73 2.71

Ccr5 chemokine (C-C motif) receptor 5; migration of immune cells inf 3.27 3.59 2.60

Tnfrsf1b TNF rec fam mem1B; ligand for OPG/RANKL, osteoclastogenesis inf 2.81 3.30 2.37

Il7 Interleukin-7; amplification of immune response inf 1.9 2.35 2.00

Ifngr2 Interfero receptor 2; amplification of immune response inf 1.8 2.25 1.71

Tfpi2 tissue factor pathway inhibitor 2; inhibits blood coagulation inf2 5.68 8.02 3.27

Pik3cb phosphoinositide-3-kinase, b-polypep; immune cell activation inf2 4.36 7.04 5.29

Dusp4 dual specificity phosphatase 4; negative regulator of cell prolif. inf2 3.43 6.99 3.27

Itgam integrin, alpha M (C3 receptor 3); C3 receptor 3 inf2 5.47 5.92 3.82

Itgax integrin aX (C 3 receptor 4 subunit); C3 receptor4 inf2 3.45 5.68 3.22

Ptpre Protein tyrosine phosphatase, receptor E; cell growth and different. inf2 2.39 5.59 2.80

Ptpn22 Protein tyr phosphate; T cell regulation Inf2 2.51 4.07 2.91

Cx3cr1 chemokine (C-X3-C motif) recept ‘1; immune cell regulation inf2 2.85 3.84 2.92

Tank TRAF family member,;NFkB activator inf2 2.50 3.79 3.03

Cxcl16 chemokine (C-X-C motif) ligand 16; immune response inf2 3.15 3.69 3.01

Ripk3 receptor-interact ser-thr kinase 3; NFkB signaling inf2 3.33 3.58 2.51

Itga2 Integrin a2; receptor for collagens, fibronectin and cadherin inf2 1.74 3.19 2.41

Nfkbie NFkB polypeptide e; negative regulator of NFkB signaling inf2 1.83 2.64 1.87

Map2k3 Map Kinase kinase kinase; MAP kinase signaling Inf2 2.00 2.64 2.00

Nfkb2 NFkB polypeptid 2 (p49/p100); NFkB signaling inf2 1.32 2.40 1.60

Col5a3 collagen, type V, alpha 3; fibrillar collagen ECM 4.42 8.40 5.25

Sdc1 syndecan 1; heparan sulfate proteoglycan ECM 3.54 5.79 3.19

Mmp12 matrix metallopeptidase 12; elastase ECM2 13.6 33.4 18.2

Mmp19 matrix metallopeptidase 19; degrades aggrecan and COMP ECM2 5.03 12.9 8.00

Adamts4 ADAMTS 4; degrades proteoglycans ECM2 2.37 6.21 4.31

Timp1 TIMP metallopeptidase inhibitor 1; known to inhibit MMPs ECM2 3.58 4.53 3.04

Adamts12 ADAMTS 12; degrades COMP and aggrecan ECM2 3.14 4.24 3.64

Hyal1 hyaluronoglucosaminidase 1; cleaves hyaluronoglucosamines ECM2 2.24 3.66 2.37

Arsb arylsulfatase B; degrades glycosaminoglycan ECM2 2.82 3.57 2.44

Adamts7 ADAM metallopeptidase; degrades COMP ECM2 2.46 3.22 2.86

Mmp9 matrix metallopeptidase 9; cleaves Collagen IV and V, fibronectin ECM2 1.42 3.16 2.50

Adam8 ADAM metallopeptidase domain 8; may cleave extracellular matrix ECM2 1.95 2.45 1.35

Hyal3 hyaluronoglucosaminidase 3; hyaluronidase ECM2 1.38 2.23 1.55

Serpine2 serpin peptidase inhibitor, clade E2; inhibits thrombin, trypsin and urokinase ECM2 1.52 2.01 1.55

Pdgfb PDGFb polypeptide; chondrogenesis GF 2.15 4.11 2.92

Csf1r CSF 1 receptor; for CSF and IL-34, macrophage differentiation GF 2.94 4.09 2.94

Tgfbr1 TGF b receptor 1; activates SMAD signaling for bone formation GF 2.45 3.48 2.56

Sfrp4 secreted frizzled-related protein 4; Wnt signaling GF2 5.50 8.96 6.26

Wnt5a Wnt family, member 5A; Wnt signaling GF2 3.65 8.15 6.47

Inhba inhibin, beta A; TGF-b signaling GF2 4.43 7.00 4.56
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pathogen/antigen recognition/clearance (Lbp, Tlr4, Cd14)

[51,52,53]; (iv) ECM for bone formation (Postn, Ogn, Tnn) likely

associated with repair/formation of osteophyte; and (v) anti-

angiogenic collagens (Col XVIIIa1, -IVa1 -IVa2) and collagens

associated with soft tissue and collagen type 1 (Col XII1a1, -IIIa1,

-Va1), suggesting that these genes may be important in the

replacing damaged cartilage with bone and fibrous tissue in OA

(Figure 1o). In fact, collective upregulation of many of these genes

(Tnn, Postn, Vegf, Vcam1) has also been reported in later stages of

experimental and human OA [10,54,55,56,57,58]. However, it

should be noted that these attempts to remodel seemed to occur

under the influences of damage-associated molecular patterns

(DAMPs) since sustained overexpression of DAMP-related ligand

(Vcan), mediators (Cd14 and Ly96), and signaling receptors (Tlr4

and Tlr7) was observed [59].

Interestingly, the expression of many genes for ECM proteins

(Col2a1, Col10a1, Col9a1, Col9a2, Col9a3, Col27a1, Matn3, Chad, Prelp,

Hapln1, Fbln5, Fbln7, Prg4, Acan, Sdc1, Cilp, Cilp2, Ntn1, Spon2, Eln, Bgn,

Sdc4) was relatively increased in the cartilage with Grade 3–3.5

damage as compared to cartilage with less damage (Grade 1 and 2).

At the same time, gene expression of peptidases involved in matrix

breakdown (Pi15, Chst3, Chst3, Mmp12, Mmp19, Adamts4, Adamts12,

Mmp9, Hyal1, Hyal3, Arsb, Gusb) was relatively downregulated in this

stage as compared to earlier stages. In this respect, earlier studies have

shown that cartilage from later stages of human OA show increased

synthesis of certain matrix proteins in comparison to cartilage from

early OA [10,11,60]. The basis for this increased expression of matrix

associated genes in late stage cartilage degradation (Grade 3–3.5) is as

yet not clear. However, it is likely that lesser suppression of TGF-b1,

Ctgf, and Sox9 as well as antiinflammatory molecules, may support

matrix induction. Additionally, upregulation of gene expression of

bone formation related molecules (Tgfb2, Pdgfc, Pdgfrb, Ogn, Egfr, Ctgf,

Igfbp,Bmp5, Bmpr1a, Fgfr2, Fgfr3, and molecules of Wnt signaling

cascade) in Grade 3–3.5 cartilage damage may also play a role

in the upregulation of matrix genes. Many of these molecules are

also upregulated in cartilage from human OA [11,13,39,41,56,

61,62,63].

In summary, the present study provides evidences that the

progression of cartilage damage is driven by complex but precise

regulation of gene clusters that are induced or suppressed during a

specific stage of cartilage damage (Figure 9). Cartilage with close to

Grade 1 damage exhibited upregulation of genes associated with

acute inflammation and innate immunity, broad specificity

proteases, and cell cycle/division and suppression of genes for

proteoglycan synthesis. Gene expression in cartilage with Grade 2

damage was associated with dynamic upregulation of genes driven

by NF-kB such as inflammatory mediators/cytokines, metallo-

peptidases, and immune trafficking. Chronic inflammation was

paralleled by suppression of growth factors and collagens.

Cartilage with Grade 3–3.5 damage exhibited an adaptive

response evidenced by upregulation of anti-inflammatory genes.

Simultaneously, there is a significant reduction in the suppression

of matrix-associated proteins and growth factors as compared to

cartilage with Grade 1 or Grade 2 damage. Collectively, the

precise modulation of sequential up and down regulation of these

genes may support the cartilage damage observed during the

progression of MIA. Further elucidation of the key molecules that

regulate the expression of catabolic as well as anabolic genes is

critical in understanding the mechanisms of cartilage damage in

experimental and human OA.

Materials and Methods

Monoiodoacetate-induced arthritis
The work was performed under the protocol number

2009A0138 approved by the Institutional Animal Care and Use

Committee, The Ohio State University. Female Sprague-Dawley

rats, 12–14 weeks old (Harlan Labs, IN) were randomly assigned

to 4 groups (15 rats/group). The right knees of rats were given

intra-articular injection of 50 ml saline in sham controls (Cont,

n = 15), or monoiodoacetate (2 mg/50 ml saline) in experimental

animals to induce MIA (n = 45). Following administration of

monoiodoacetate, the cartilage exhibited Grade 1, Grade 2, or

Grade 3–3.5 on days 5, 9, and 21, respectively. Therefore,

progression of cartilage damage and changes in gene expression

profiles were carried out on day 5 (MIA5; n = 15), day 9 (MIA9;

n = 15), or day 21 (MIA21; n = 15) post-monoiodoacetate injection.

Among them, 5 femurs from each group were snap-frozen in

liquid nitrogen for microarray and real time-Polymerase Chain

Reaction (rt-PCR) analyses (n = 5), and the remaining 10 femurs

were immediately examined macroscopically using a stereomicro-

scope and then fixed in 10% buffered formalin for microscopic

examination of the cartilage and bone, or mCT imaging to assess

the overall subchondral bone loss.

Macroscopic and microscopic examination
Gross morphologies of femurs were recorded photographically

under a stereomicroscope. The microscopic examination was

performed in paraffin embedded and Hematoxylin-Eosin (H&E)

stained femurs. The cartilage damage was graded according to

Pritzker et al. [9].

MicroCT analysis
To assess the involvement of subchondral bone in MIA, the

femurs were scanned at approximately 19.4 mm resolution on an

Inveon microCT from Siemens Preclinical (Knoxville, TN). The

scans were run as 220 degree half scans with a theta of 0.5 degrees,

with 500 ms exposure, and 700 projections/360 degrees. The

source for the acquisition was run at 80 kV and 500 mA with

Table 4. Cont.

Cluster II (430 annotated genes, 305 genes in IPA database) Fold change

Gene Description and Function Group OA 5 OA 9 OA 21

Igfbp4 IGF binding protein 4; IGF regulation GF2 4.15 5.34 4.23

Wnt7b Wnt family, member 7B; Wnt signaling GF2 1.76 2.77 1.38

Igfbp3 IGF binding protein 3; IGF regulation GF2 2.33 2.44 2.16

Please see Table 2 for group description. A full list of these genes is given in Table S3.
doi:10.1371/journal.pone.0024320.t004
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Table 5. Suppression of salient genes in cartilage with Grade 2 damage (Cluster V).

Cluster V (417 annotated genes, 274 genes in IPA database) Fold change

Gene Description and Function Group OA 5 OA 9 OA 21

Cdkn1c CDK inhibitor 1C (p57); negative regulator of cell proliferation CD 24.94 25.79 23.44

Pdcd4 programmed cell death 4; inhibits proliferation CD 22.19 22.90 21.74

Il7 interleukin 7; B and T cell development Inf 24.40 25.85 24.53

Il16 IL 16; chemoattarctant for immune cells inf 23.78 24.52 21.68

Il17b interleukin 17B; Induces TNF-a and IL-1b from monocytic cells inf 22.84 23.32 22.93

Nrk Nik related kinase; NF-kB sgnaling inf2 216.4 218.7 216.2

Matn3 matrilin 3; development and homeostasis of cartilage and bone ECM 226.3 298.1 274.6

Col10a1 collagen, type X, alpha 1; matrix in hypertrophic cartilage ECM 229.0 283.3 245.5

Col9a1 collagen, type IX, alpha 1; major cartilage matrix protein ECM 215.3 277.0 246.1

Col2a1 collagen, type II, alpha 1; major cartilage matrix protein ECM 214.9 250.3 29.06

Chad Chondroadherin; chondro & osteoblasts integrin a2b1 ECM 218.3 232.6 27.10

Col9a2 collagen, type IX, alpha 2; major cartilage matrix protein ECM 213.5 227.6 222.4

Scin scinderin; cellular protein involved in exocytosis ECM 222.2 224.4 211.7

Hapln1 hyaluronan and proteoglycan link prot 1; binds to aggregates of proteoglycan
monomers with hyaluronic acid

ECM 211.0 219.0 27.54

Col9a3 collagen, type IX, alpha 3; major cartilage matrix protein ECM 29.38 218.9 212.6

Col11a2 collagen, type XI, alpha 2; major cartilage matrix protein ECM 26.29 216.9 29.94

Vit vitrin; promotes matrix assembly and cell adhesiveness ECM 213.4 215.1 210.9

Prg4 proteoglycan 4; major cartilage matrix protein ECM 27.61 27.65 23.52

Col11a1 collagen, type XI, alpha 1; major cartilage matrix protein ECM 23.77 25.71 22.98

Mgp matrix Gla protein; associated with cartilage and bone matrix ECM 24.72 25.63 23.28

Matn1 matrilin 1; major cartilage matrix protein ECM 23.86 24.00 23.97

Fbln5 fibulin 5; promote adhesion of endothelial cells ECM 22.54 23.08 21.66

Col24a1 collagen, type XXIV, alpha 1; regulate Col type I ECM 21.97 22.51 21.51

Col5a3 collagen, type V, alpha 3; fibrillar collagen ECM 21.82 22.34 21.79

Hs3st1 heparan sulfate 3-O-sulfotransferase 1;heparin sulfate synthesis ECM 2 26.09 26.25 27.69

Adamts3 ADAMTS 3; cleavage of propeptide of type II collagen ECM 2 23.32 23.91 24.69

Adamts6 ADAMTS 6; likely a metallopeptidase ECM 2 22.15 23.05 22.36

Alpl alkaline phosphatase; matrix mineralization ECM 2 22.80 22.83 21.26

Chsy3 chondroitin sulfate synthase 3; chondroitin synthesis ECM 2 22.58 22.61 22.06

Has2 hyaluronan synthase 2; hyaluran synthesis ECM 2 21.66 22.29 23.28

Mmp16 matrix metallopeptidase 16; membrane type MMP-3 ECM 2 21.38 22.20 21.13

Omd osteomodulin; likely role in mineralization GF 211.5 213.0 23.35

Fgfr3 fibroblast growth factor receptor 3; cell growth in wound healing GF 25.67 27.94 25.77

Fgfr2 fibroblast growth factor receptor 2; cell growth in wound healing GF 22.77 25.61 23.06

Ctgf connective tissue growth factor; chondrocyte prolifer and differentia GF 22.79 25.24 21.68

Bmp5 bone morphogenetic protein 5; cartilage and bone formation GF 22.50 24.75 22.60

Ghr growth hormone receptor; bone growth GF 23.19 24.24 22.37

Tgfbr3 transforming growth factor, b receptor III; Smad activation GF 22.32 23.55 21.74

Bmp3 BMP 3; antagonizes BMPs in bone formation GF 21.12 23.34 21.36

Igfbp5 insulin-like growth factor binding prot 5; promote growth by IGF GF 22.29 23.04 21.33

Vdr vitamin D3 recp; Ca++ homeostasis GF 21.21 22.72 22.78

Tgfb3 TGFb3; chondrocyte div and differentiation GF 21.75 22.65 21.25

Bmpr1a BMP receptor, type IA; Smad transcriptional activation GF 22.01 22.46 21.53

Egf epidermal growth factor (b-urogastrone); mitogenic involved in cell GF 22.11 22.37 22.04

Frzb frizzled-related protein; cartilage and bone development GF2 247.4 252.7 249.6

Ptch1 patched homolog 1; receptor for Ihh GF2 29.85 216.1 27.60

Wif1 WNT inhibitory factor 1; inhibits Wnt proteins GF2 213.0 215.2 26.43
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0.5 mm of Al filtration for beam hardening. Analysis of images

was conducted on an Inveon Research Workstation.

RNA extraction and microarray analysis
The cartilage from the distal end of individual femur (10–

15 mg/femur) was examined under a stereomicroscope (Zeiss,

Germany). Superficial articular cartilage on the patellar and

condylar surfaces of the distal ends of femur was chipped off in a

frozen state, avoiding the areas immediately around lesions. The

cartilage chips from each knee were collected separately, and

pulverized into 1 mm fragments in a Mikrodismembrator S

(Sartorious, France) at 2500 rpm for 30 seconds [32]. RNA was

extracted with Trizol reagent (Invitrogen, CA), and each sample of

RNA was analyzed in a 2100 Bioanalyzer (Agilent, CA) to ensure

optimal quality of RNA [64].

A total of 300 ng of RNA was used for cDNA synthesis and

labeling using Whole Transcript (WT) cDNA Synthesis and

Amplification Kit, and WT Terminal Labeling Kit (Affymetrix,

CA). The labeled samples were hybridized on Affymetrix

GeneChip Rat Gene 1.0 ST Array and scanned at the Microarray

Shared Resource Facility at the OSU Comprehensive Cancer

Center.

The intensity scans from three biologically independent arrays

per treatment were subjected to gene expression analysis using

Partek Genomic Suite version 6.4 (Partek Inc., MO). The

significance of differences among the conditions was calculated

by the analysis of variance (ANOVA) and only significantly

regulated transcripts (p,0.05) were considered for further

analyses. Variations among the samples in each condition were

examined by principal components analysis (PCA), and subjected

to both hierarchical and partition clustering by Partek Genomic

Suite. All data is MIAME compliant and the raw data has been

deposited in a MIAME compliant database GEO (accession

number GSE28958).

Functional gene network analysis
The gene expression data derived from microarray analysis

was used to generate functional and molecular networks

through the use of IPA (Ingenuity Systems, CA). A fold-change

cutoff of 2.0 was set to identify and assign the molecules to the

Ingenuity’s Knowledge Base. In these analyses, gene expression

changes were considered in the context of physical, transcrip-

tional or enzymatic interactions of the gene/gene products, and

then grouped according to interacting gene networks at a

particular point. The score assigned to any given gene network

took into account the total number of molecules in the data set,

the size of the network and the number of assigned network

eligible genes/molecules in the data set at a given time point.

The significance value and network score were based on the

hypergeometric distribution and calculated with the right-tailed

Fisher’s exact test. The network score was the negative log of

the p value.

Validation of salient genes differentially expressed in
cluster analysis

Expression of selected genes from clustering analysis was confirmed

by rt-PCR as previously described [65]. Briefly, extracted RNA was

subjected to first strand cDNA synthesis using the Superscript III

Reverse Transcriptase Kit (Invitrogen, CA). Gene expression was

assessed by amplifying the cDNA with custom-designed primers in the

iCycler iQ Real-Time PCR System (Bio-Rad, CA). The primers used

were: Rps18-sense 59-GCGGCGGAAAATAGCCTTCG-39, anti-

sense 59-GGCCAGTGGTCTTGGTGTGCTG-39; Ctss-sense 59-

AAATCGAGCTGCCACGTGTT-39, anti-sense 59-TGGCCACT-

GCTTCTTTCAGAG-39; Il-1b-sense 59-TATGTCTTGCCCGT-

GGAGCTT-39, anti-sense 59-TAGCAGGTCGTCATCATCCCA-

39; Mmp12-sense 59-CCAGGAAATGCAGCAGTTCTTT-39; anti-

sense 59-GCTGTACATCAGGCACTCCACAT-39; Ccr1-sense 59-

TCAGTGTGAGCAGAGCAAGCA-39, anti-sense 59-CCGCTCA-

CCCACAAAGACATA-39; Alox5-sense 59-TTCTCCGCACACAT-

CTGGTGT-39, anti-sense 59-GGCAATGGTGAACCTCACATG-

39; Vcam1-sense 59-GCCGGTCATGGTCAAGTGTTT-39, anti-

sense 59-CATGAGACGGTCACCCTTGAA-39; Cilp-sense 59-TG-

TGAAGTCCAAGGTCACCCA-39, anti-sense 59-GTAGAAGGA-

GTTGGTGGCATTCTG-39; Sox9-sense 59-ATCTGAAGAAGGA-

GAGCGAG-39; anti-sense 59-CAAGCTCTGGAGACTGCTGA-

39; Col9a1-sense 59-TGATGGCTTTGCTGTGCTG-39, anti-sense

59-TGACTGGCAGTTCATGGCA-39; Col2a1-sense 59-ATGAGG-

GCCGAGGGCAACAG-39, anti-sense 59-GATGTCCATGGGT-

GCAATGTCAA-39.

Statistical Analysis
All time dependent analyses were performed on 15 animals

per group. Microarray analyses were performed on cartilage

extracted from three separate animals. The significance among

the conditions in the microarray data was tested by Partek

Genomic suite by ANOVA to render significantly regulated

genes (p,0.05) during the progression of MIA at each time

point. ANOVA with Tukey’s HSD post hoc test by SPSS v 17

was used to determine the significance levels of rt-PCR data that

include two additional independent samples per group to

microarray-examined specimens (n = 5). p,0.05 was regarded

as significant.

Cluster V (417 annotated genes, 274 genes in IPA database) Fold change

Gene Description and Function Group OA 5 OA 9 OA 21

Sfrp5 secreted frizzled-related protein 5; Wnts regulation, growth GF2 29.76 211.8 211.4

Fzd9 frizzled homolog 9; receptor for Wnts regulates bcatenin pathway GF2 28.61 28.90 26.65

Sox6 SRY (sex determining region Y)-box 6; role in skeleton formation GF2 23.91 25.87 23.02

Ihh Indian hedgehog; endochondral ossification bone growth ossificatic GF2 24.63 25.24 24.05

Wisp3 WNT1 inducible signal protein 3; Wnt regulation growth & different GF2 23.69 23.91 23.73

Dlx5 distal-less homeobox 5; chondrogenesis and osteoblastogenesis GF2 22.52 23.73 22.46

Please see Table 2 for group description. A full list of these genes is given in Table S4.
doi:10.1371/journal.pone.0024320.t005
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Table 6. Induction of salient genes in cartilage with Grade 3–3.5 damage (Cluster III).

Cluster III (391 annotated genes, 271 genes in IPA database) Fold change

Gene Description and Function Group OA 5 OA 9 OA 21

Ccnd1 cyclin D1; cell cycle control CD 2.28 2.22 2.72

Cdkn1a cyclin-dependent kinase inhibitor 1A; inhibits cell division CD 1.10 1.95 2.56

Pawr PRKC, apoptosis, WT1, regulator; proapoptotic CD 1.71 1.98 2.44

Klf10 Kruppel-like factor 10; transcriptional repressor of cell growth CD 1.36 2.60 2.42

Cxcl13 chemokine (C-X-C motif) ligand 13; chemotactic for B-lymphocytes Inf 1.64 2.10 2.98

Il10rb interleukin 10 receptor, beta; anti-inflamamtory Inf 2.14 2.40 2.81

Il15 interleukin 15; proliferation of T-lymphocytes Inf 1.26 1.48 2.01

Cdh13 cadherin 13, H-cadherin (heart); cell-cell adhesion glycoprotein Inf2 1.46 4.63 8.59

Lilbr4 leukocyte IgG-like receptor, subfam B, mem4; controls inflammation Inf2 7.33 6.00 7.00

Lbp LPS binding protein; binds LPS to present it to TLR4 and CD14 Inf2 1.66 3.65 4.45

F3 coagulation factor III; initiates coagulation cascade with Factor VII Inf2 2.05 2.56 3.14

Lpl lipoprotein lipase; cleaves triglycerides Inf2 1.36 1.58 2.91

Alox5 arachidonate 5-lipoxygenase; catalyzes leukotriene synthesis Inf2 1.82 1.61 2.86

Tlr4 toll-like receptor 4; LPS receptor Inf2 2.14 1.83 2.85

Vcam1 vascular cell adhesion molecule 1; immune response Inf2 2.69 1.82 2.61

Ptges prostaglandin E synthase; prostaglandin synthesis, inflammatory responses, pain
perception

Inf2 1.40 2.34 2.60

Pld2 phospholipase D2; cleaves phosphatidyl choline Inf2 1.72 2.32 2.49

Socs3 suppressor of cytokine signaling 3; negative regulator of inflammatory response Inf2 1.69 2.09 2.47

Nfkbia NF-kB inhibitor, alpha; inhibitor of NF-kB- IkBa Inf2 1.42 2.45 2.17

Tnn tenascin N; cartilage and bone formation ECM 15.5 18.8 20.9

Postn periostin; osteoblast specific factor; cell adhesion, mineralization ECM 5.88 5.05 7.23

Lum lumican; collagen fibril organization ECM 4.09 5.03 5.90

Col18a1 collagen type XVIII a1; a potent antiangiogenic ECM 2.71 3.92 5.66

Col4a1 collagen type IV a1; inhibits endothelial proliferation/angiogenesis ECM 1.80 3.03 4.33

Col3a1 collagen type III a1; soft tissue associated with Collagen type 1 ECM 2.02 3.19 3.88

Col12a1 collagen type XII, a1; fibrillar collagen ECM 2.10 3.11 3.42

Col4a2 collagen type IV a2; inhibits endothelial proliferation/angiogenesis ECM 1.39 2.12 3.13

Col6a3 collagen, type VI, alpha 3; linkage of matrix/cell ECM 1.30 2.42 2.71

Col5a1 collagen, type V, alpha 1; fibrillar collagen ECM 1.10 1.73 2.12

Adam23 ADAM metallopeptidase domain 23; nonproteolytic metalloprotease, cell-cell
adhesion

ECM2 3.97 3.56 5.50

Serpine1 serpin peptidase inhibitor, clade E1; inhibits plasminogen activator ECM2 3.27 3.88 4.81

Timp2 TIMP metallopeptidase inhibitor 2; inhibitor of several MMPs ECM2 1.38 2.19 3.07

Mmp14 matrix metallopeptidase 14; activates progelatinase ECM2 1.95 3.29 3.01

Mmp2 MMP 2; ECM breakdown in normal physiologic processes ECM2 1.01 1.99 2.84

Mmp11 matrix metallopeptidase 11; matrix remodeling, vascular invasion ECM2 1.11 1.47 2.39

Adamts2 ADAMTS 2; cleaves tissue propeptides of collagen type I and II ECM2 1.28 1.62 2.37

Ctsd cathepsin D; intracellular proteinase inhibitor ECM2 1.61 2.3 2.25

Tgfb2 TGF beta 2; cell division and growth differentiation GF 1.26 2.67 2.63

Pdgfrb PDGF receptor, b polypeptide; angiogenesis, cell proliferation and differentiation GF 1.18 1.77 2.46

Osmr oncostatin M receptor; increases cartilage degradation GF 1.85 2.41 2.45

Pdgfc PDGF C; wound healing, proliferation and remodeling GF 1.04 2.22 2.15

Ogn osteoglycin; Induces bone formation with TGF-beta-1 or TGF-beta-2 GF 1.22 1.19 2.06

Egfr epidermal growth factor receptor; cell growth/differentiation GF 1.29 1.17 2.05

Wisp2 WNT1 inducible signaling protein 2; bone turnover GF2 2.65 5.71 6.08

Please see Table 2 for group description. A full list of these genes is given in Table S5.
doi:10.1371/journal.pone.0024320.t006
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Figure 6. Molecular networks generated from the genes in each cluster by Ingenuity Pathways Analysis. The molecular networks
generated from genes in: (A) Cartilage with Grade 1 damage (Cluster I) – Immunological disease network, showing upregulation of genes associated
with acute/innate immune response; (B) Cartilage with Grade 1 damage (Clusters IV) - Skeletal & muscular development and function network,
showing downregulation of transcription factors and growth factors associated with matrix synthesis. The symbols under individual mediators are
defined in Figure 8B. Red, green, and white colors represent upregulation, downregulation and no regulation as compared to cont cartilage,
respectively. The shading of each color represents fold change in gene expression; dark, higher changes and light lower changes.
doi:10.1371/journal.pone.0024320.g006

Figure 7. Molecular networks generated from the genes in each cluster by Ingenuity Pathways Analysis. The molecular networks
generated from genes in: (A) Cartilage with Grade 2 damage (Cluster II) – Inflammatory response/Immune cell trafficking network, showing
upregulation of genes associated with chronic inflammation and immune cell trafficking; (B) Cartilage with Grade 2 damage (Clusters V) – Skeletal and
muscular disease network showing suppression of genes for growth factors and major matrix proteins. The symbols under individual mediators are
defined in Figure 8B. Red, green, and white colors represent upregulation, downregulation and no regulation as compared to cont cartilage,
respectively. The shading of each color represents fold change in gene expression; dark, higher changes and light lower changes.
doi:10.1371/journal.pone.0024320.g007
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Figure 8. Molecular networks generated from the genes in each cluster by Ingenuity Pathways Analysis. The molecular networks
generated from genes in: (A) Cartilage with Grade 3–3.5 damage (Cluster III) - Inflammatory disease network showing upregulation of many genes
involved in immune suppression and adaptation. Each cluster is based on the genes that were significantly up or downregulated (p,0.05, over 62-
fold change) in articular cartilage from Cont, MIA5, MIA9, and MIA21 specimens. The symbols under individual mediators are defined in (B). Red, green,
and white colors represent upregulation, downregulation and no regulation as compared to cont cartilage, respectively. The shading of each color
represents fold change in gene expression; dark, higher changes and light lower changes.
doi:10.1371/journal.pone.0024320.g008

Figure 9. Schematic presentation of collective catabolic and anabolic gene regulation during the progression of MIA. Grade 1
damage in the cartilage was associated with induction of genes required for acute inflammation and innate immunity, broad specificity proteases,
and cell cycle/division and suppression of genes for proteoglycan synthesis. Grade 2 damage in the cartilage was associated with induction of gene
for NF-kB signaling cascade, inflammatory mediators/cytokines, metallopeptidases, and immune trafficking, and suppression of growth factors and
collagens. Grade 3–3.5 damage in the cartilage exhibited upregulation of anti-inflammatory genes, and simultaneous reduction in the suppression of
matrix-associated proteins and growth factors as compared to cartilage with Grade 1 or Grade 2 damage. Collective and sequential up and down
regulation of these gens may be important in the cartilage damage during the progression of MIA.
doi:10.1371/journal.pone.0024320.g009

Gene Regulation during MIA Progression

PLoS ONE | www.plosone.org 17 September 2011 | Volume 6 | Issue 9 | e24320



Supporting Information

Figure S1 Cell division associated molecular network in
Cluster I by IPA. The molecular network in Cluster I showing

expression of significant number of genes associated with cell

division in the cartilage with Grade 1 damage.

(TIF)

Table S1 Changes in the expression of genes in Cluster
I. CD, genes involved in cell division, proliferation, apoptosis;

ECM, extracellular matrix proteins; ECM2, Proteases, regulators

of ECM synthesis and breakdown; GF, genes for growth factors

and their receptors; GF2, growth factor signaling molecules,

transcription factors; Inf, cytokines, chemokines and their

receptors; Inf2, inflammatory mediators and their receptors,

signaling molecules, transcription factors, and regulators; Meta,

genes for metabolism; Others, genes with unknown functions;

Transporter, genes involved in transportation of metabolites and

ions.

(DOC)

Table S2 Changes in the expression of genes in Cluster
IV. Please see Table S1 for group description.

(DOC)

Table S3 Changes in the expression of genes in Cluster
II. Please see Table S1 for group description.

(DOC)

Table S4 Changes in the expression of genes in Cluster
V. Please see Table S1 for group description.

(DOC)

Table S5 Changes in the expression of genes in Cluster
III. Please see Table S1 for group description.

(DOC)

Movie S1 3606 mCT projection of the knee of Cont.
(MPG)

Movie S2 3606 mCT projection of the knee of MIA5.
(MPG)

Movie S3 3606 mCT projection of the knee of MIA9.
(MPG)

Movie S4 3606 mCT projection of the knee of MIA21.
(MPG)
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