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Abstract

Previous reports on the functional effects (i.e., gain or loss of function), and phenotypic outcomes (e.g., changes in addiction
vulnerability and stress response) of a commonly occurring functional single nucleotide polymorphism (SNP) of the mu-
opioid receptor (OPRM1 A118G) have been inconsistent. Here we examine the effect of this polymorphism on implicit
reward learning. We used a probabilistic signal detection task to determine whether this polymorphism impacts response
bias to monetary reward in 63 healthy adult subjects: 51 AA homozygotes and 12 G allele carriers. OPRM1 AA homozygotes
exhibited typical responding to the rewarded response—that is, their bias to the rewarded stimulus increased over time.
However, OPRM1 G allele carriers exhibited a decline in response to the rewarded stimulus compared to the AA
homozygotes. These results extend previous reports on the heritability of performance on this task by implicating a specific
polymorphism. Through comparison with other studies using this task, we suggest a possible mechanism by which the
OPRM1 polymorphism may confer reduced response to natural reward through a dopamine-mediated decrease during
positive reinforcement learning.
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Introduction

Mu-opioid receptors are located throughout extended brain
circuits involved in positive reinforcement and are critical in
processing reward, analgesia, and stress responses, reviewed in [1].
Given the important role of this receptor in motivational states,
natural reward, and the development of addiction [2], there has
been interest in identifying variations in the mu-opioid receptor
gene that predict individual differences in reward processes and
potentially addiction vulnerability [3].

A commonly occurring non-synonymous SNP (rs1799971;
OPRM1 A118G) results in an amino-acid substitution (Asn40Asp
or N40D) in the N-terminal region of the mu-opioid receptor. The
polymorphism was originally shown to confer a 3-fold increase in
affinity for the endogenous ligand, 3-Endorphin [4], although more
recent studies have shown the effects of the G allele on affinity for B-
Endorphin to be cell-line dependent, and further, that variant, G-
allele, receptors exhibit significantly lower cell-surface receptor
binding site availability compared with the prototype 118A receptor
[4-6]. Further, using a knock-in mouse model of the human A118G
SNP, Mague et al. [7] found decreased mRNA expression and
receptor protein levels in mice heterozygous for the G allele.
Similarly, a human post-mortem study [8] also found decreased
mRNA in G118 allele carriers. Taken together, the precise
functional consequence of this variant in humans remains unclear.
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Although much of the work on the effects of the OPRM1
polymorphism has been in the addiction field, particularly
alcohol-induced euphoria, dependence, and treatment response
[2], more recent studies suggest that functional OPRM1 genotypes
may have been under evolutionary selection [9] and that, in
addition to drug-induced reward, they may also moderate
responses to natural rewards [10,11]. For example, a similar
functional polymorphism of the OPRMI gene in nonhuman
primates [12-14] increases mother-infant attachment after
separation [10], potentially reflecting increased genotype-mediat-
ed reward sensitivity. Studies in humans have also extended this
polymorphism’s potential role in processing physical and emo-
tional pain. Specifically, carriers of the G allele have been shown
to be more sensitive to the pain of social rejection [11] and to the
experience of physical pain [15]. Whereas many other studies have
examined the effect of genetic variations related to dopaminergic
transmission (e.g., COMT and DAT) or of dopamine receptors
(e.g., DRD2 and DRD4) [16—20] on reward processing, studies of
OPRMI1 Al18G suggest that, perhaps through upstream modu-
lation of dopamine, variations in the opioid system may also play a
role in moderating responses to natural reward and punishment
[2]. To date, however, no studies have directly examined
behavioral measures of sensitivity to natural reward in humans
as a function of OPRMI genotype. Assessing the effects of
OPRMI1 genotype on probabilistic reward learning may yield an
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intermediate phenotype from which inferences can be drawn
about the role of this polymorphism in human reward processing.
Accordingly, we used a signal detection task [21] to assess the
effects of OPRM1 A118G genotype on reward sensitivity.

Methods

Participants

Sixty-three participants were chosen from a nonclinical, diverse
group of healthy subjects participating in a larger study involving
genotyping and brain imaging. Participants gave written informed
consent approved by the National Institute on Drug Abuse-IRP
Institutional Review Board. Subjects had no current Axis I diagnoses
as measured by the computerized Structured Clinical Interview for
DSM-1V; substance dependence was confirmed by clinical interview
using DSM-IV criteria. All participants tested negative for illicit drugs
and alcohol before completing the probabilistic reward task. See
Table 1 for detailed subject demographics.

Procedures

Response Bias Task. A line discrimination task was modeled
after that reported by Pizzagalli et al. [25]. In this signal detection task,
participants tend to become biased to respond to a more frequently
rewarded stimulus over time [25]. The task consisted of 300 trials
divided into 3 blocks of 100 trials each, with blocks separated by a 1-
2 minute break. Subjects were instructed to win as much money as
possible. At the start of each trial, participants viewed an asterisk in the
middle of the screen that served as a fixation point. A mouth-less
cartoon face was then presented in the center of the screen for 500 ms
and, after a delay, either a short or a long (9 vs. 11 mm) mouth was
presented on the screen for 100 ms. The face (without the mouth) then
remained on the screen until a response was made by the participant,
who was asked to identify which type of mouth was presented (long or
short) by pressing one of two keys on a response-box.

For each block, the long and short mouths were presented equally
in randomized sequences. For each block, 40 correct trials were
followed by reward feedback (i.e., “Correct!! You won 25 cents.”),
which was presented for 1750 msec immediately after the correct
response. For trials without feedback, participants saw a blank
screen for 1750 msec before the next trial. Participants were
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mstructed that not all correct responses would receive feedback. An
asymmetrical reinforcer ratio was used for the task feedback in
which a certain mouth (e.g., long or short) was given more frequent
positive feedback on correct responses than the other. For half of the
participants, correct identification of the short mouth was associated
with three times more positive feedback (i.e., 30 of 40) than the
correct identification of the long mouth (i.e., 10 of 40). For the other
half of the participants, the contingencies were reversed.

Genetic Analysis. Participants were recruited to participate
in this study regardless of genotype and genotyping was completed
after enrollment in the study. DNA was extracted from blood using
standard protocols. The OPRM1 rs1799971 missense polymor-
phism, Asn40Asp (A118G), was genotyped using the Illumina
GoldenGate platform as previously described [22]. The genotype
distribution was as follows: 51 AA homozygotes, 11 AG heterozy-
gotes, I GG homozygote. Because of the limited sample size, G
allele carriers (AG and GG) were grouped together. This approach
is in keeping with precedent in the field [11]. As allele frequencies
for A118G differs among human populations, ancestry was
determined. A total of 186 ancestry-informative markers (AIMs)
[22] were genotyped in our sample and in the HGDP-CEPH
Human Genome Diversity Cell Line Panel (1051 individuals from
51 worldwide populations) (http://www.cephb.fr/HGDP-CEPH-
Panel). PHASE  Structure 2.2 (http://pritch.bsd.uchicago.edu/
software.html) was run simultaneously using the AIMs data from
our sample and the 51 CEPH populations to identify population
substructure and compute individual ethnic factor scores.

Analysis of Behavioral Data. Outcome measures included
discriminability and response bias. Discriminability, calculated by log
D=" log [(RjChcorrect * Leancorrect)/ (RiChincorrect* Leanincorrect)]a
where “Richoyee” represents the number of correct responses after
presentation of the rich, or more frequently rewarded, stimulus etc.
[25], was defined as the ability to discriminate the difference between
the two stimuli, a measure of attention and task difficulty. Response
bias, calculated by the following formula: log RB = % log [(Richeorrect *
Lean;yoprect)/ (Richincorrect™ Lean omreer)] [25],was defined as a preference
for the more frequently rewarded stimulus. High response bias scores
corresponded to more correct responses for the more frequently
rewarded stimulus (“rich” stimulus) and/or more incorrect responses
for the less frequently rewarded stimulus (“lean” stimulus). These

Table 1. Comparison of demographic variables between genotype groups.

A Allele Homozygotes

G Allele Carriers

N

Age (mean * SD)

Gender (F/M)

WASI Vocabulary (mean * SD)

Drug use (user/nonuser)

BDI (mean * SD)’

African ethnic factor score (mean *+ SD)?
European ethnic factor score (mean =+ sD)?
American ethnic factor score (mean = SD)
Asian ethnic factor score (mean = SD)

Far East Asian (mean * SD)

Middle Eastern (mean * SD)

Oceanic (mean = SD)

51 12
31.82+9.05 33.67£9.59
29/22 6/6
55.51£7.67 59.5+9.44
19/32 3/9
2.76*+4.58 4.36+5.50
0.55+0.40 0.06+0.18
0.25+0.36 0.67+0.40
0.01+0.01 0.01+0.02
0.09+0.18 0.07*0.17
0.04%0.19 0.09+0.28
0.05*0.05 0.09%0.14
0.00*0.01 0.02+0.03

doi:10.1371/journal.pone.0024203.t001
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There were no genotype group differences between groups in all demographic variables except African and European ethnic factor scores (?P<<0.001; 3P =0.001). Also
note that Ns for BDI scores’ were 49 and 11 for A allele homozygotes and G allele carriers, respectively.
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measures were assessed in 100-trial increments, forming three blocks
from which changes in responding over time could be assessed.

In general, participants tend to ‘drift’ to the rewarded response
across time (as assessed by increased in response bias scores in later
blocks compared to carlier blocks). As seen in the calculation?,
participants can increase response bias over time by increasing
correct identification of the rewarded (rich) stimulus and/or
increasing misclassification of the non-rewarded (lean stimulus) as
the rich stimulus. Secondary analyses examined genotype group
differences in hit rate responses (percent correct) for lean and rich
stimuli across the three task blocks.

Results

Subject Characteristics

OPRMI1 genotype groups did not significantly differ in age,
gender, IQ) as measured by the vocabulary subscale of the
Wechsler Abbreviated Scale of Intelligence (WASI) [23], depres-
sive symptoms as measured by the Beck Depression Inventory
(BDI) [24], or drug use (Table 1). Participants were categorized as
‘users’ if they were daily smokers, dependent on cocaine, or used
marijuana (daily use or dependence). There were 4 cocaine
dependent subjects, 16 daily smokers, and 2 marijuana users (4
cocaine users, 2 marijuana users and 13 smokers in the AA
homozygote group). On the day of the study session, smokers used
nicotine in their usual pattern, cocaine users were 4 days abstinent
(range 4-20), and marijuana users were 9 and 30 days abstinent.
African and European ethnic factor scores were, however,
significantly different between genotype groups (Table 1). Thus,
African and European ethnic factor scores were used as covariates
in all subsequent analyses comparing genotype groups.

Discriminability

A repeated measures ANCOVA with factors of block (within-
subjects) and genotype group (between-subjects) showed a
significant main effect of block (/2,118)=5.63, p=0.005). Post-
hoc analyses revealed that this effect was due to greater
discriminability in block 2 (0.73%0.52) than block 1 (0.59%0.38;
p=0.021). There was neither a main effect of genotype group
(F1,59)=0.34, p=0.55) nor blockxgenotype group interaction
(F2,118)=2.27, p=0.12) (Figure 1A).

Response Bias

The ANCOVA of block and genotype group showed no main effect
of block (2,118)=0.48, p=0.62). There was, however, a trend
toward a main effect of genotype group (/{1,59) = 3.73, p= 0.06), with
greater response bias in AA homozygotes compared to G allele
carriers. There was also a significant block Xgenotype group interaction
([2,118)=5.30, p=0.006) (Figure 1B). Specifically, in AA homozy-
gotes, response bias increased from block 1 to block 2 (= 0.003) with
no further increase between blocks 2 and 3 (p =0.28). However, in G
allele carriers, response bias did not significantly change from block 1 to
block 2 (p=0.35), and decreased in block 3 relative to block 1 (»=0.01)
and block 2 (p=0.01). An analysis of response bias separate by block
revealed that this interaction was driven by genotype group differences
in response bias in block 3 only (/1,59) = 8.533, p = 0.005), while there
were no genotype group differences in response bias in block 1
([{1,59)=0.07, p=0.79) or block 2 (F{1,59)=1.88, p=0.18).

Consideration of Potential Confounding Factors

Ethnic Factor Scores. Correlations between all subjects’
response bias scores (separately by block) and European and
African ethnic factor scores revealed no significant associations
between these variables (p range 0.1 to 0.98). Separate correlations
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Figure 1. Mean discriminability and response bias across
blocks for AA homozygotes and G allele carriers. AA homozy-
gotes (black bars) did not differ from G allele carriers (gray bars) in
measures of discriminability (A). There was, however, a genotype
group xblock interaction for response bias (B), in which AA homozy-
gotes had increased response bias over time, while G allele carriers had
decreased response bias over time. Error bars represent standard errors.
doi:10.1371/journal.pone.0024203.g001

by genotype group revealed no significant correlations with AA
homozygotes, and one significant negative correlation between
European ethnic factor score and response bias in block 1 for G
allele carriers (1{11)=—0.59, p=0.04). Despite this significant
association between ethnic factor scores and response bias, it is
unlikely that this correlation influenced our results, as genotype
group differences in response bias were seen in block 3 only and
this relationship was observed in block 1.

Participant User Status. Although there was not a
significant difference in the distribution of users and nonusers
between the genotype groups (Fisher’s exact test, p=0.52), it is
possible that we did not have enough power to detect such a
difference (i.e., with only 3 users in G allele carrier group). Thus,
there may be a qualitative difference between genotype groups in
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terms of user status that is driving the response bias behavior. To
ensure this potential confound was not affecting the results, all
ANCOVAs (i.e., discriminability and response bias) were repeated,
controlling for user status both as two groups (user/non-user) and
three groups (user/smoker/non-user). Notably, including these
covariates did not significantly change any results.

Further, drug groups (user/smoker/non-user) were assessed on
their response bias behavior using repeated measures ANOVA across
blocks. There was no interaction between drug group and block
(F4,120)=0.84, p=0.50); however, there was a main effect of drug
group (H2,60)=3.46, p=0.04), in which smokers showed a lower
response bias compared to controls (p=0.016) and tended to also
show lower response bias compared to users (p = 0.064). However, a
follow up comparison of drug groups separately by block revealed
that this effect was due to drug group differences in block 1 only
(F2,60)=6.05, p=0.004), while there were no drug group effects in
block 2 (F2,60)=2.26, p=0.11) or block 3 (F2,60)=0.36, p=0.70).
Thus, it is unlikely that drug group differences in response bias
influenced our results, as differences due to drug group were only
observed in block 1 and our main finding of genotype group
differences were driven by response bias scores in block 3.

Genotype Group Matching. In an effort to further disentangle
the effect of OPRMI1 genotype from the effects of drug use and
ethnicity on response bias, analyses were repeated comparing all G
allele carriers (n=12) to a subgroup of individually matched AA
homozygotes (n = 12). Genotype groups did not significantly differ in
age (p=0.213), WASI vocabulary score (p=0.819), BDI (p=0.419),
gender (p = 0.206), or any ethnic factor score (p range 0.313 to 0.990,
median = 0.625). Further, genotype groups also did not differ in drug
use (3 cigarette smokers and 9 nonusers in each group, p=1.0).

A repeated measures ANOVA of discriminability scores showed
a trend toward a significant main effect of block (M2,44)=2.914,
p=0.065), with discriminability tending to be lower in block 1
(0.631%0.116) than blocks 2 (0.795%0.367, p=0.057) or 3
(0.705%0.236, p=0.082). There were no significant main effects
of genotype group (#{1,22)=0.036, p=0.852) or genotype group X
block interactions (/12,44)=0.656, p=0.524). Note that these
results are similar to those described above.

Importantly, a repeated measures ANOVA of response bias
scores showed a significant genotype group xblock interaction
(F2,44)=6.989, p=0.002), replicating the finding found in the larger
sample of participants. Specifically, G allele carriers showed a
significant decrease in response bias in block 3 (0.011%0.170)
compared to blocks 1 (0.164£0.214, p=10.009) and 2 (0.118%0.204,
»=0.012), while AA homozygotes showed no significant changes in
response bias across blocks (p range 0.137 to 0.382). Further, genotype
group comparisons in each block also confirmed the original findings,
with G allele carriers showing significantly reduced response bias
compared to AA homozygotes only in block 3 of the task (0.011£0.184
vs. 0.259%0.184; F1,22)=11.110, p=0.003), while there were no
genotype group differences in blocks 1 (/{1,22)=0.02, p=0.888) or 2
([{1,22)=1.406, p=0.248). Notably, these results highlight that the
main finding of a reduction in response bias over time in OPRM1 G
allele carriers is also evident in a smaller sample that was matched for
ethnicity and cigarette smoking and excluded cocaine and marijuana
users. Finally, there was also a trend toward a significant main effect of
genotype group (F{1,22)=3.065, p=0.094), with AA homozygotes
tending to have greater response bias than G allele carriers
(0.217%0.166 vs. 0.098%0.166). There was no significant main effect
of block (F2,44)=0.748, p=0.479).

Hit Rates

ANCOVAs of hit rates (percent of correctly identified stimuli)
were completed in a similar fashion to those of discriminability and
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response bias, although separate ANCOVAs were carried out for
lean and rich hit rates across blocks.

Rich Hit Rate. Rich hit rates were calculated with the
formula: Richeorrec/ (RicheomeetRichincorec). The ANCOVA of
block and genotype group for rich hit rates showed no main
effect of block (F2,118)=0.09, p=0.92) or genotype group
(#11,59)=1.30, p=10.26). There was, however, a block xgenotype
group interaction (M2,118)=5.01, p=0.008) (Figure 2A), similar
to that reported for overall response bias scores. Specifically, in AA
homozygotes, rich hit rates increased from block 1 to block 2
(»<<0.001) with no further increase between blocks 2 and 3
(p=0.84). However, in G allele carriers, rich hit rates did not
change from block 1 to block 2 (p=0.33), and also decreased in
block 3 relative to block 1 (»=0.04) and block 2 (p=0.045). An
analysis of rich hit rates separately by block revealed that this
interaction was driven by genotype group differences in rich hit
rates in block 3 only (M1,59)=4.55, p=0.04), while there were no
genotype group differences in rich hit rates in block 1
(#11,59)=0.47, p=10.50) or block 2 (F1,59)=2.19, p=0.15).

Lean Hit Rate. Lean hit rates were calculated with the
formula: Lcancorrect/(LCancorrect+Lcanincorrect)' The ANCOVA of
block and genotype group for lean hit rates showed no main effect
of block (F2,118)=1.19, p=0.31) or genotype group
(#11,59)=0.04, p=0.84) and no interaction between block and
genotype group (£2,118)=0.32, p=0.73) (Figure 2B).

Discussion

We used a probabilistic reward task to determine the effects of
OPRMI1 genotype on response bias (i.e., tendency to drift to a
rewarded response over time as a result of positive reinforcement
learning). We found that, while AA homozygotes displayed typical
reward sensitivity by drifting to the rewarded response, carriers of
the OPRMI1 G allele exhibited aberrant reward responding by
showing a significant decline in response bias over time. These
findings were not due to group differences in task performance,
such as the ability to discriminate between the two stimuli in the
task. We further examined the way in which subjects developed
response bias on this task: correct classification of the rich (more
frequently rewarded) stimulus and/or misclassification of the lean
(less frequently rewarded) stimulus. We found that the deficit in
response bias in G allele carriers was solely due to decreased
accuracy in identifying the rich stimulus during the third block of
the task rather than increased accuracy identifying the lean
stimulus. In other words, in G allele carriers, there was a reduced
response specifically to the more rewarded stimulus on the final
block of the task rather than a global decrease in performance. In
addition to providing the first demonstration for the effects of this
polymorphism on reward learning, our results may suggest a
putative mechanism by which OPRMI1 Al18G confers its
functional effects.

Previous work using this probabilistic reward task in clinical as
well as nonclinical populations has shown that reduced reward
responsiveness 1is associated with and predictive of anhedonia in a
nonclinical population [25], diagnosis of depression in a clinical
population [26], elevated perceived stress [27], and pharmacolog-
ically induced reduction of dopaminergic transmission [28]. In the
latter study, Pizzagalli et al. [28] found that low doses of a
dopamine agonist reduced rewarded responding in this task and
that this deficit was due to reduced accuracy for the rewarded
stimulus in later blocks, a similar pattern to what is reported here
for G allele carriers. The authors have further shown (with
computational modeling) that low doses of a dopamine agonist
reduce phasic dopamine bursts through presynaptic inhibition
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Figure 2. Mean rich and lean hit rates across blocks for AA
homozygotes and G allele carriers. There was a genotype
group xblock interaction for rich hit rates (A). AA homozygotes (black
bars) had increased rich hit rates over time while G allele carriers (gray
bars) had decreased rich hit rates over time. There were no effects of
genotype group or interactions for lean hit rates (B). Error bars
represent standard errors.

doi:10.1371/journal.pone.0024203.9g002

[29], which may impair reinforcement learning by reducing the
phasic “Go” signal during positive feedback [28,29]. In contrast,
depressed subjects [26] demonstrate a different pattern of
performance on this task, in which the reduction in response bias
is a consequence of a global response reduction to all stimuli (i.e.,
both a reduced response to the rich stimulus and failure to
misclassify the lean stimulus).

Our study demonstrates that OPRM1 G allele carriers show
aberrant reward responding, similar to that observed with reduced
phasic dopamine signaling, rather than that seen in individuals with
clinical depression. This suggests that the OPRM1 polymorphism
may confer similar functional effects to a low-dose dopamine agonist
by reducing phasic dopamine signaling during positive feedback.
There is a well characterized modulation of dopaminergic signaling
by the endogenous opioid system [30,31]. Specifically, activation of
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mu-opioid receptors on GABA interneurons in the ventral
tegmental area (VTA) leads to decreased firing of GABA neurons
and, thus, decreased GABA release. In turn, activation of GABA
receptors is decreased, which ultimately results in increased
dopamine signaling in the nucleus accumbens (NAc). By extension,
decreased opioid signaling in the VTA results in lower levels of
dopamine cell firing and reduced dopamine release in the NAc.
Further, mu-opioid receptor gene knockout mice exhibit increased
GABAergic input [32] and thus decreased firing frequency of
midbrain dopamine neurons [33]. With respect to natural reward,
opioid peptides and dopamine interact within the VTA-NAc
pathway to regulate various aspects of natural reward, such as
feeding [1] and sexual behavior [34]. Thus, if the diminished
reinforcement learning in G allele carriers reported here is a result
of reduced phasic dopamine signaling, this may be directly caused
by decreased mu-opioid receptor activation in G allele carriers and
increased GABA neuron firing and release in the VTA.

The possibility of decreased opioid receptor activation and
signaling in individuals with the G allele variant may also be
evident in human studies examining the effects of the OPRM1
A118G polymorphism on responses to negatively valenced stimuli,
such as physical pain [15], emotional rejection [11] and stress [33].
Collectively, these studies show augmented behavioral responses to
aversive stimuli in G allele carriers. In pain states, there is an
assoclated release of endogenous opioids in midbrain and cortical
areas, resulting in activation of mu-opioid receptors and reduction
in the subjective experience of pain [36]. Increased sensitivity to
physical and emotional pain in G allele carriers, therefore, may be
related to reduced release of endogenous opioids and activation of
mu-opioid receptors during aversive states.

This study has several limitations. First, the sample size for a
genotyping experiment is small. However, the task probes an
intermediate phenotype and, as such, behavior on this task may be
more closely linked to expression or functional effects of genes than
is observation or behavioral reports. Similarly small samples have
identified other genotype effects using refined intermediate
phenotypes [37,38] and, further, the effect size [39] of the
genotype group differences in response bias in block 3 was large
(Cohen’s d=1.07). Second, this is a narrow laboratory-based task,
and it is unclear how response bias extends to behavior in the “real
world.” Despite these limitations, this study extends previous work
by identifying a specific genetic variant that influences perfor-
mance on this task. Further, the results here add to the literature
on the effects of variations in dopaminergic genes on reward
processing, by suggesting a mechanism through which the opioid
system may also play an important role in moderating similar
processes, through the OPRMI1 All8G substitution. Further
research into the effects of this common nonsynonymous variant
on learning in the context of negative feedback may shed light on
the complex and, in some cases, contradictory findings within the
accumulated behavioral data associated with the OPRMI
polymorphism.
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