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Abstract

Early in vitro and recent in vivo studies demonstrated that neuronal polarization occurs by the sequential formation of two
oppositely located neurites. This early bipolar phenotype is of crucial relevance in brain organization, determining neuronal
migration and brain layering. It is currently considered that the place of formation of the first neurite is dictated by extrinsic
cues, through the induction of localized changes in membrane and cytoskeleton dynamics leading to deformation of the
cells’ curvature followed by the growth of a cylindrical extension (neurite). It is unknown if the appearance of the second
neurite at the opposite pole, thus the formation of a bipolar cell axis and capacity to undergo migration, is defined by the
growth at the first place, therefore intrinsic, or requires external determinants. We addressed this question by using a
mathematical model based on the induction of dynamic changes in one pole of a round cell. The model anticipates that a
second area of growth can spontaneously form at the opposite pole. Hence, through mathematical modeling we prove that
neuronal bipolar axis of growth can be due to an intrinsic mechanism.
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Introduction

During development many cellular processes depend on the

highly polarized distribution of molecules on the cell membrane.

The ability of cells to acquire and maintain a morphological

asymmetry involves localized cytoskeletal changes and polarized

membrane traffic. The generation and maintenance of polarity are

very important for many complex biological activities. Neurons

are among the cell types with the most prominent asymmetry, by

establishing dendritic vs. axonal domains which are different in

function and morphology. The correct establishment of polarized

domains in neurons enables their directional migration and

polarized axon-dendrite formation and is thus one of the most

critical steps in brain development. Neuronal polarization starts

with the selection of the site from which the first neurite will grow

[1] before morphological changes are evident [1,2]. Recently, we

demonstrated that the second neurite forms opposite to the first,

not randomly (Fig. 1, [3]). This has important consequences for

neuronal development, since like that initial polarity axis

determines the axis of migration and defines axonal and dendritic

domains [4].

The site from which the first neurite emerges is defined by the

localized accumulation or activation of molecules with the capacity

to directly or indirectly induce a local deformation in the plasma

membrane. Even before the morphological deformation occurs,

newborn neurons display polarized exo- and endocytosis and

cytoskeletal rearrangements [1,3]. Polarized growth however can

be induced by the action of cues inherited from the past division

(G. Pollarolo and C.G. Dotti personal communication). However,

it is not clear whether the formation of the second neurite also

requires ‘‘external’’ triggering mechanisms or is the consequence

of a ‘‘passive’’ mechanism, derived from the first one, similar to the

trailing edge of a motile cell, which only requires the determina-

tion of a ligand-induced leading edge.

To test this hypothesis we used a mathematical model. We

based our model on those proposed by Altschuler et al. [5] and

Turing [6]. Our model assumes an activator-inhibitor dynamics

and diffusion-driven instabilities. Different from other models

describing polarity establishment [5,7–11], we include membrane

growth. We study spontaneous symmetry breaking and how

polarity domains are affected by membrane growth. To

experimentally validate predictions of our model we compare

results of our simulations with intensity distributions of Sec8. Sec8

is a exocyst subunit localized in multiple endocytic compartments.

Its intensity is a measure of endocytic and exocytic traffic which is

correlated with protein accumulation on the plasma membrane

due to dynamic maintenance. Our approach suggests that

localized membrane growth enhances polarity and it predicts

second bud localization.

Results

The Model
Before the formation of the first neurite, a polarized distribution

of molecules has to be generated. This can occur by different

mechanisms in a tight temporal sequence. One such mechanism is
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asymmetric endocytosis and exocytosis, which normally play an

important role in maintaining a dynamic equilibrium of protein

concentrations on the cell membrane through constant recycling

[12]. Asymmetric endo-exocytosis triggers changes in lateral

diffusion, which can contribute to a further increase in the

asymmetry or to its stabilization. Membrane protein asymmetry

can also be achieved through localized changes in cytoskeleton

dynamics, which not only regulate mechanical forces but also

control the formation of membrane extensions and local protein

concentration. In fact, the polarized distribution of membrane

proteins, including receptors, transporters and adhesion molecules

is due to such dynamic asymmetries. However, in order to exert

asymmetric function, these proteins require the contribution of

different types of functional ‘‘adaptors’’, such as lipids, scaffolding

proteins, small GTPases and kinases and phosphatases.

We formulated a model assuming two variables of asymmetric

distribution: traffic to and from the plasma membrane and lateral

diffusion. We considered two different model molecules, the first,

named MP, represents a typical integral membrane protein

endocytosed by a canonical clathrin-mediated process (e.g.,

cadherin); and the second one, named ME, representing a

modulator of MP-endocytosis (e.g., p120-catenin). Therefore, we

supposed that ME regulates internalization of MP and considered

the following biological events, (shown schematically in Fig. 2A):

1. Spontaneous membrane association: Membrane proteins are tethered

spontaneously to the cell membrane [13,14]. We consider it

occurs with a constant rate k1.

2. Membrane association through recruitment: A positive feedback circuit

recruits membrane proteins to the places in which they are

already localized [5,15]. The characteristic rate of this process

is considered proportional to the amount of membrane

proteins at that place with a proportionality constant r1k1, (in

this work, membrane association through recruitment is also

referred as positive feedback).

3. Endocytosis: The endocytosis pathway is regulated by the

amount of modulators of endocytosis [16,17]. In our model

the endocytosis rate is proportional to the concentration of

modulators of endocytosis, with a constant k2, and follows a

Michaelis-Menten kinetic for membrane proteins with a

maximum carrying capacity: 1=r2.

4. Spontaneous activation: Modulators of endocytosis are activated

spontaneously [18]. We assume this happens with a constant

rate k3.

5. Deactivation: Modulators of endocytosis can be deactivated [18].

We consider a deactivation rate proportional to its concentra-

tion with k4 as proportionality constant.

6. Activation through recruitment: In order to regulate the concentra-

tion of proteins on the cell membrane, the activation of

modulators of endocytosis is also induced by membrane

proteins [19]. In our model this occurs with a rate proportional

to membrane protein concentration and a proportionality

constant r3k3.

7. Lateral Diffusion: membrane proteins and modulators of

endocytosis diffuse on the cell membrane. Diffusion coefficients

are correlated with molecule size being smaller (slow diffusion)

for larger particles [20].

These rules were mainly based on dynamic trafficking

membrane, being exocytosis (membrane addition) represented by

1 and 2, while 3 reflects endocytosis whose dynamics is regulated

through 4–6. To differentiate between ‘‘membrane association

through recruitment’’, (point 2), and ‘‘activation through recruit-

ment’’, (point 6), we called them positive feedback and recruitment,

respectively. The first three biological events regulate the dynamic

temporal variation of the membrane protein concentration on the

cell membrane, while the following three drive the dynamic

temporal variation of the modulator of endocytosis concentration

on the cell membrane. We represented these rules by a classic

scheme for an activator-inhibitor system [15,21] (Fig. 2B). In these

systems the activator induces its own production as well as the

production of the inhibitor; and the inhibitor inhibits both

production (here, production describes processes which increase

the local availability of molecules). In our model, the activator is

represented by membrane proteins and the inhibitor is character-

ized by modulators of endocytosis.

Mathematical Formulation and Analysis of the nonlinear
system

Our model can be written as the following partial differential

equation system:

LcMP

Lt
~DMP+2cMPzk1(1zr1cMP){k2

cMEcMP

1zr2cMP

,

LcME

Lt
~DME+2cMEzk3(1zr3cMP){k4cME ,

ð1Þ

where cMP and cME are the concentrations on the cell membrane

of membrane proteins and modulators of endocytosis, respectively;

and +2 represents the Laplace-Beltrami operator. The upper

equation in Eq. (1) indicates the temporal evolution of the

membrane protein concentration. On the right-hand side, the first

term corresponds to diffusion of membrane protein with diffusion

coefficient DMP, the second term has contributions due to

spontaneous membrane association and positive feedback, and

the last term describes endocytosis with a Michaelis-Menten

kinetics for cMP. The lower equation in Eq. (1) describes the

temporal evolution of the concentration of modulators of

endocytosis. On the right-hand side, the first term corresponds

to diffusion of modulators of endocytosis with diffusion coefficient

DME , the second term represents the spontaneous activation and

Figure 1. Establishment of bipolar cell axis in hippocampal neurons. Development of an individual hippocampal neuron grown in vitro was
followed by time lapse microscopy. Scale bar 5 mm, (neurons in similar developmental stages immunolabeled with a neuron-specific antibody are
shown in Fig. S1).
doi:10.1371/journal.pone.0024190.g001
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the activation through recruitment, and the last term represents

the inhibitor deactivation.

This system has Turing-instabilities if the homogeneous

equilibrium point is stable in the absence of spatial variation but

unstable to small perturbations if diffusion is present. Since

neuronal polarity does occur in two dimensions reflected by the

fact that it occurs in cell adhered to a substratum in vitro, we chose

to work using a two-dimensional system. In order to have a

complete analysis, it is convenient to work with a dimensionless

system. Defining t~tDMP=L2, with L the characteristic length of

the system, u~r1cMP and v~r1cME we arrived to the following

non-dimensional system

Lu

Lt
~+2uzc((1zu){a1

uv

1zb1u
),

Lv

Lt
~d+2vzc(a2(1zb2u){a3v),

ð2Þ

where d~DME=DMP, a1~
k2

k1r2
1

, a2~
k3
k1

, a3~
k4

k1r1
, b1~r2=r1,

b2~r3=r1 and c~r1k1L2=DMP. The parameter c is defined as the

ratio of membrane protein diffusion characteristic time to the

positive feedback characteristic time and d is the ratio of the

diffusion coefficient of modulators of endocytosis to the diffusion

coefficient of membrane proteins. By definition u and v should be

non-negative numbers. Defining the following functions

f (u,v)~(1zu){a1
uv

1zb1u
and g(u,v)~a2(1zb2u){a3v, ð3Þ

our system can be written as:

Lu

Lt
~+2uzcf (u,v),

Lv

Lt
~d+2vzcg(u,v),

ð4Þ

which is equivalent to the system (2.7) presented in Murray [21].

From now on, +2 represents the non-dimensional Laplace-

Beltrami operator. Choosing polar coordinates (r,w) for the spatial

distribution and using the transformation w~2ps; +2 becomes
L2

Ls2
,

with s[½0,1�, (we consider L~2pR with R the cell radius).

Relevant homogeneous steady states (u0,v0) of Eq. (2) are

positive solutions of f (u0,v0)~g(u0,v0)~0. These equilibrium

values reflect a balance between the production and the loss of

membrane proteins and modulators of endocytosis. In other

words, equilibrium points satisfy:

b2r(k{b)u2
0z(b2rkzk{br)u0zk ~ 0,

a2(1zb2u0) ~ a3v0:
ð5Þ

where k~r1k1=(k2=r2), b~a2b2=a3 and r~b1=b2~r2=r3. The

parameter k is proportional to the local positive feedback rate and

inversely proportional to the maximum local endocytosis rate.

Instabilities due to diffusion should be spatially dependent and

in the presence of non-spatial variation steady states should be

stable. Proceeding as Murray [21], linear stability without

considering spatial variation is guaranteed if

fuzgvv0 and fugv{fvguw0, ð6Þ

where fu, fv, gu and gv are the partial derivatives of f and g

evaluated at the steady state. For our model:

fu ~ 1{(br=k)
1zb2u0

(1zrb2u0)2
,

fv ~ {
b2ru0

k(1zrb2u0)
,

gu ~ a2b2,

gv ~ {a3:

ð7Þ

On the other hand, diffusion-driven instabilities are present in

presence of spatial variation if

dfuzgvw0 and (dfuzgv)2{4d(fugv{fvgu)w0: ð8Þ

Figure 2. Schematic representation of our model. (A) Blue circles represent membrane proteins and green circles represent modulators of
endocytosis. Membrane proteins and modulators of endocytosis can diffuse along the cell membrane. Arrows indicate biological events: magenta,
spontaneous membrane association; red, positive feedback; black, endocytosis; ocher, spontaneous activation; cyan, deactivation; green, activation
through recruitment; blue, lateral diffusion for membrane proteins and modulators of endocytosis. The solid line represents the cell membrane (total
length, L). (B) activator-inhibitor scheme. In our model, membrane proteins and modulators of endocytosis play the roles of activator and inhibitor,
respectively. For polarity domain formation modulators of endocytosis have to diffuse faster than membrane proteins.
doi:10.1371/journal.pone.0024190.g002

Neuronal Polarization as a Self-Organized Process

PLoS ONE | www.plosone.org 3 September 2011 | Volume 6 | Issue 9 | e24190



Previous equations define a critical value dcw1. If the inhibitor

diffuses more than dc times faster than the activator (dwdc), the

system may have diffusion-driven instability. The wave-numbers

of unstable modes, k’s, depend on the dynamics of f and g, and

the values of c and d as well, (see Murray [21] for an extensive

mathematical formulation). Our non-dimensional system can be

described with seven parameters, k, a2, a3, b2, r, d and c, the first

five are related with the interactions between membrane proteins

and modulators of endocytosis and the last two are the only ones

including diffusion.

Relevant steady states were calculated from Eq. (5). Depending

on the system dynamic, we defined three different cases:

(a) kvb. Only one positive solution.

(b) k~b. Only one positive solution if b2rkzk{brv0.

(c) kwb. Two positive solutions if b2rkzk{brv0 and

(b2rkzk{br)2{4b2rk(k{b)w0.

The relationship k~b can be expressed as (r1k1)=(k2=r2)~
(r3k3)=k4, which indicates a balance between the production and

loss rates of both kinds of molecules. The conditions expressed by

Eq. (6) and Eq. (8) can be analyzed for each case. If a3w1 (i.e.

k4wr1k1) the first condition in Eq. (6) is guaranteed for all the

cases; this defines a maximum for the local feedback rate.

However, the second condition is never satisfied for the highest

root in the case ( c). For fixed a2~90, a3~1:5 and b2~0:1 we

drew a phase diagram k vs. r which is shown in Fig. 3A. The

parameter k increases if the local feedback rate increases or if the

maximum local endocytosis rate decreases. On the other hand, r
increases if r3 or 1=r2 decrease, when 1=r2 decreases the local

endocytosis rate has higher values for the same local concentration

of membrane proteins. Polarity domains can be formed in systems

whose parameters are inside the shaded regions or on the solid

line. The blue and red areas indicate the parameters which can

generate patterns for the cases ( a) and ( c), respectively. The solid

line represents the parameters which can generate polarity

domains for the case ( b). Kinetic parameters in agreement with

Eq. (6) and Eq. (8), which are represented en Fig. 3A, are needed

but are not sufficient for polarity domain formation. The final

pattern depends on the relationship between c and d . For each

point in the shaded areas or on the solid line in Fig. 3A there is a

diagram as the one that is shown in Fig. 3B for k~5:33 and

r~0:4. For dƒdc Turing instabilities are not present and polarity

domains could not emerge as the time increases. For dwdc the

number of polarity domains, n, depends on the unstable mode

wave-numbers. In Fig. 3B, the wave-number related with n~1 is

unstable in the region between the solid lines; in the region

between the dashed lines the unstable wavenumber is the one

associated with n~2, (the area between the dash-dotted lines

represents the region with unstable wavenumber corresponding to

n~3). In the intersection area between these regions the final

pattern depends on the dominant solution which is that with the

highest eigenvalue (see Fig. S2). For simplicity, we only marked the

regions with a single unstable wavenumber characterized by n~1
or n~2, which are the green and orange shaded areas,

respectively, in Fig. 3B, (see Fig. S3 for equivalent bifurcation

diagrams).

Conceptual Interpretation of Polarity Domain Formation
Our model assumes that polarity domains can be established by

three basic mechanisms acting at the same time. First, an

autocatalytic mechanism which is local and self-reinforcing and

is due to variations in protein concentration on the membrane.

The variations can be the consequence of an intrinsic fluctuation

Figure 3. Phase and bifurcation diagrams for pattern formation. (A) Phase diagram for a2~90, a3~1:5 and b2~0:1. The blue and red shaded
areas and the solid line represent the regions in which the system may form polarity domains. The final number of polarity domains depends on the
relationship between c and d . Bifurcation diagram for k~5:33 and r~0:4 is shown in (B). In the region on the left of the dotted line, cells can not
polarize. The green and orange shaded areas display conditions under which one or two polarity domains can be formed. (C) A schematic
representation of the intensity of the biological processes involved, color code is the same as Fig. 1B. In regions ii and iii, black arrows have more
particles attached indicating that endocytic vesicles saturate for smaller membrane protein concentration. Polarity domains can be formed only in the
regions i and iii. These regions were remarked with a frame whose color was assigned according to the shaded areas in (A).
doi:10.1371/journal.pone.0024190.g003
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or the presence of asymmetric external cues. Although the cause

of the variation is irrelevant for this model, a good example

of localized protein variation in neurons is N-cadherin (G.

Pollarolo and C.G. Dotti personal communication). Second, a

local amplification of the concentration change through the

production or recruitment of modulator of endocytosis (e.g. p120-

catenin [22]). An example of this is illustrated by the increased

concentration of endocytosis at the pole from which later the

first neurite will grow [1]. Third, a long range inhibition via a

slow-acting and fast-diffusing inhibitor, to ensure that inhibition

occurs after activation so to maintain the local activating process

in a confined region of the plasma membrane [15,21]. In our

model these conditions can be satisfied if modulators of endocy-

tosis diffuse faster than membrane proteins, (d~DME=DMPw1),

and if there is a balance between endocytosis and exocytosis,

which can also be seen as a balance between the carrying capacity

of endocytosis, (1=r2), and the local concentration of membrane

proteins which equalizes the local activation through recruitment

rate to the local spontaneous activation rate, (1=r3). The phase

diagram (Fig. 3A), shows that polarity domains can be formed

if the parameters are inside the shaded regions or on the solid

line. Therefore, polarized domains could emerge suddenly on

the cell membrane after perturbations of the equilibrium state.

In the non-shaded regions, very low local positive feedback rates

are not sufficient to form an initial cluster of membrane proteins

or very high local positive feedback rates enhance all the clusters

on the entire cell membrane leading to an homogeneous state

without polarization. Then, local perturbations vanish with the

time and can not be stabilized. On the other hand, variations

in k can also be due to variations in k2. An increase in k2

is correlated with a decrease in k and a decrease in k2 is

correlated with an increase in k. Thus, our model suggests

that mutant phenotypes with a very low or very high endocytosis

rates are not able to form polarity domains. Other kinds of

mutant phenotypes may have different ME activation rates,

k3, which can be seen as a variation in the parameter a2.

Our approach suggests that for higher k3, a higher feedback

is needed in order to maintain polarity domains, (see Figs. S4

and S5). In Fig. 3C we show a schematic representation of the

contribution of the involved biological processes in the four

regions defined in (A). In regions i and iv endocytic vesicles

saturate after the local activation through recruitment rate

becomes higher than the local spontaneous activation rate.

Therefore, membrane proteins stay longer on the cell membrane

and lower local feedback rates are needed to generate polarity. On

the other hand, in regions ii and iii endocytic vesicles saturate

before the local activation through recruitment rate becomes

higher than the local spontaneous activation rate. Thus, there is a

higher internalization of membrane proteins and higher local

feedback rates are needed to generate polarity. If endocytic vesicles

saturate at a concentration around the concentration in which the

local activation through recruitment rate becomes similar to the

local spontaneous activation rate, (r*1), it is not possible to

establish asymmetries for any feedback rate. The final polarized

state and the number of polarity domains (caps) depend on the

ratio of the diffusion coefficient of modulators of endocytosis to the

diffusion coefficient of membrane proteins (Fig. 3B). If modulators

of endocytosis diffuse slowly (on the left of the dotted line) cells can

not polarize. Faster diffusing modulators of endocytosis allow the

establishment of polarity domains and the number of them

depends on the parameter c, increasing for faster positive

feedback. For a same value of d, solutions with n~2 have a

higher local feedback rate or less mobile membrane proteins than

solutions with n~1.

Symmetry breaking
Polarity domains can be established spontaneously even in a

homogeneous environment suggesting that the cell can be seen as

a self-organized system which can break the initial symmetry

generating an asymmetric pattern from small fluctuations around

the homogeneous state. We used our model to study the formation

of stable polarity domains on the cell membrane from a quasi-

uniform state. In particular, we solved the nonlinear system

numerically considering an initial condition near the steady state

given by u(t~0,s)~u0(1ze(s)) where e(s) are random numbers

between +0:1; i.e., we selected as initial condition a random

perturbation about the steady state value, u0, smaller than +10%.

Some of the parameters used in our simulations were estimated

from experimental data. According to Michelson et al. and Jilkine

et al. the effective total concentration of the modulator of

endocytosis can be considered as 2000 nM [23,24], being its

10% on the membrane [25–27]. The diffusion coefficient of the

modulators of endocytosis and its rate of deactivation were set to

0:13 mm2=s [28] and 0:15 s{1 [5], respectively. On the other

hand, the diffusion coefficient for membrane proteins and its

concentration on equilibrium were assumed at values 0:03mm2=s

[29,30] and 30 nM [31], respectively. The parameters used in the

simulations were based on these data and taking into account that

the size of a cell is around 10 mm in diameter. Table 1 summarizes

the values of the kinetics parameters which also correspond with

our previous selection for Fig. 3.

In order to compare our simulation with experimental results

we analyzed the distribution of the Sec8 subunit of the

multiprotein exocyst complex. The exocyst is accumulated at sites

which display high exo- and endocytosis rates and due to its

vesicle-membrane tethering activity [32] it is important for the

local accumulation of membrane proteins and the activation of

modulators of endocytosis. Moreover the exocyst is important for

polarized exocytosis [32] and membrane addition [33] and will

therefore mark regions of polarizing domains which will lead to

membrane expansion such as neurite growth [34] and to

membrane turnover [35], which is also important in order to

maintain polarized domains. We determined the intensity of Sec8

in morphological unpolarized round hippocampal neurons

developing in an homogeneous environment and found that

Sec8 concentrates at one maximum in agreement with simulations

performed using our model (Figs. 4A and 4B). Although only one

representative cell is shown, the majority of round neurons express

this pattern of monopolar Sec8 accumulation, (see Fig. S6). A

snapshot of the temporal evolution of the spatial patterns for u

starting from a random configuration is shown in Fig. 4C. The

uniform solution becomes unstable and Turing patterns appear

remaining very stable as a state of dynamic equilibrium while time

increases. From an initial random configuration, places where a

stable maximum appears, are also random. However, since we

used periodic boundary conditions, we chose the central position

for the maximum in order to have a nicer plot.

Table 1. Numerical values of kinetics parameters.

k1 k2 k3 k4 r1 r2 r3

nMs{1 nM{1s{1 nMs{1 s{1 nM{1 nM{1 nM{1

0:025 0:003 2:25 0:15 4 0:16 0:4

doi:10.1371/journal.pone.0024190.t001

Neuronal Polarization as a Self-Organized Process

PLoS ONE | www.plosone.org 5 September 2011 | Volume 6 | Issue 9 | e24190



Pattern formation on a growing membrane
The previous analyses were performed for a system evolving on

a circular non-growing membrane. However, we also wanted to

analyze the system behavior while a neurite starts growing. In this

case, the Laplace-Beltrami operator in Eq. (1) has to be modified

for taking into account the effect of growing membrane and

changes in geometry. In order to get the appropriate differential

equation system we proceeded as Plaza et al. [36]. We represented

the cell membrane growing by a one-dimensional function X (s,t).
For describing a neurite growing we used the following explicit

form:

X (s,t)~r(s,t)
cos(2p(s{1=2))

sin(2p(s{1=2))

� �
, ð9Þ

with s[½0,1� and

r(s,t)~

R if
j2s{1j
2s0{1

§1,

(t{t0)a’Rexp
{(2s0{1)

szs0{1

� �
exp

2s0{1

s{s0

� �
zR otherwise,

8>><
>>: ð10Þ

where s0~
w0

2p
z1=2, +w0 are the polar angles in which the bud

starts and ends, t0 is the time in which the bud starts growing and

a’ is the rate of growth which is considered constant. This function

satisfies the required conditions by Plaza et al. [36]. A schematic

plot of this curve is shown in Fig. S7 at three different times.

Defining the arc length function s(s,t)~

ðs

0

jXs(s’,t)jds’ and

keeping the same notation as Plaza et al. [36], the reaction diffusion

system in Eq. (1) on a growing membrane takes the following non-

dimensional form

Lu

Lt
~

2pR

ss

� �2

uss{
sss

ss

us

� �
{

sst

ss

uzcf (u,v),

Lv

Lt
~ d

2pR

ss

� �2

vss{
sss

ss

vs

� �
{

sst

ss

vzcg(u,v),

ð11Þ

where subindexes indicate partial derivative, (i.e. ut~Lu=Lt,

uss~L2u=Ls2), and the explicit form for ss, sss and sst are given

by:

Figure 4. Symmetry breaking. (A) Hippocampal neurons were fixed shortly after plating and immunolabeled with a neuron-specific anti-b tubulin
antibody (red), an anti Sec8 antibody (green) and a nuclear marker (blue). The right panel shows a pseudocolor image of the Sec8 only. Scale bar
5 mm. (B) Experimental results, Sec8, (open circles) compared with numerical simulations, cMP, (red line) for the round neuron shown in the inset.
Initial profile (random perturbations) in black. In this case k~5:33, a2~90, a3~1:5, b2~0:1, r~0:4, c~408 and d~4:3. (C) Temporal evolution of the
simulation shown in (B) (y axis, membrane position; x axis, time; color scale, normalized u values). Results are normalized to the final maximum value
of u.
doi:10.1371/journal.pone.0024190.g004
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ss~
Ls

Ls
~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(t{t0)aR

dy

ds

� �2

z4p2 (t{t0)aRy(s)zRð Þ2
s

sss~
L2s

Ls2
~

(t{t0)aR

ss

dy

ds
(t{t0)aR

d2y

ds2
z4p2 (t{t0)aRy(s)zRð Þ

� �
,

sst~
L2s

LsLt
~

1

ss

(t{t0) aR
dy

ds

� �2

z4p2 (t{t0)aRy(s)zRð ÞaRy(s)

 !
,

if j2s{1j=(2s0{1)v1, where a:a’L2=DMP is the dimensionless

parameter associated with a’ and

y(s)~ exp
{(2s0{1)

szs0{1

� �
exp

2s0{1

s{s0

� �
,

dy

ds
~ y(s)

2s0{1

(szs0{1)2
{

(2s0{1)

(s{s0)2

� �
,

d2y

ds2
~2y(s)

2s0{1

(s{s0)
3
{

(2s0{1)

(szs0{1)3

� �
z

dy

ds

2s0{1

(szs0{1)2
{

(2s0{1)

(s{s0)2

� �
:

For j2s{1j=(2s0{1)§1 the explicit expressions are: ss~2pR,

sss~0 and sst~0. If there is no growing, the dimensionless

parameter a is equal to zero. Therefore, sst~sss~0 and ss~2pR
for all s, and as we expected, the system of Eq. (11) becomes the

one in Eq. (4).

Growing membrane and bipolarity
Irrespective of the mechanism by which an asymmetric

accumulation of membrane proteins occurs, it activates a series

of events, i.e. cytoskeletal changes, which result in the production

of a localized membrane deformation followed by the generation

of the cylindrical neurite. Therefore, a consequence of local

molecular asymmetry is a change in the membrane geometry and

curvature. Due to this, the lateral diffusion of molecules is

modified. Since, the generation of the first neurite is followed by

the appearance of a second one at the opposite pole, we next asked

if the existence of localized growth in one pole had a influence on

the establishment of a membrane asymmetry in the opposite pole.

For this, we performed simulations considering a neurite growing

as Eq. (9). We did not model the relationship between inhibitor/

activator and cytoskeleton, we just took into account that the cell

membrane starts growing at the place where the accumulation of

membrane proteins is located. In order to perform our

simulations, we proceeded as in Section ‘‘Symmetry Breaking’’

for tvt0 and we solved the Eq. (11) numerically for t§t0. Thus,

growth starts after the pattern with one maximum has become

stable. In Fig. 5 the temporal evolution of a simulation and the

profiles for different membrane growth speeds at the same time are

shown. Immediately after starting growth, only one maximum is

still present; which is thinner than the one at t~t0. At later times,

a stable pattern with two maxima appears. One maximum is

located at the same place in which symmetry breaking occurred,

but it is thinner, while the second is located at the opposite site.

Thus, starting with a small perturbation from the homogeneous

state a stable polarity domain can be formed. This polarity domain

changes by adding a localized growth. The system evolves by

reinforcing protein accumulation of particles at the place of growth

and a second maximum is generated at the opposite side defining

the axial orientation (see Movie S1). When the second maximum

becomes stable its intensity is comparable with the intensity of the

first one. At a given time, different profiles can be obtained

depending on the growth speed which affects the relative strength

between maxima. For a high speed of neurite outgrowth both

maxima could already have a similar intensity, while for very slow

growth the second maximum could have not appeared yet.

Experimental data, obtained by analyzing the membrane

distribution of Sec8, in neurons with one neurite showed the

presence of a second oppositely localized accumulation of Sec8. Its

intensity for one sample neuron with one neurite is shown in

Figs. 5A and 5B (open circles). As the model predicted (Fig. 5B,

solid line), we found a maximal accumulation of Sec8 at the pole of

the first bud growth but also a second maximum at the opposite

site. Simulations and experiments are qualitatively in agreement.

Discussion

In this work, we developed a mathematical model to analyze

cell polarity considering dynamic traffic to and from the plasma

membrane, positive feedback, diffusion, curvature and membrane

growth. The model presented here can be considered as a

conceptual model to study early stages of neuronal polarity.

However, it can also be used to explain polarity in other cell types

in which an interaction between dynamic recycling and exchange

of membrane proteins and lateral diffusion are present.

Our approach was based on an activator-inhibitor system which

includes a local self-reinforcing process and a global inhibition.

Polarity domains arise from the interplay between activator-

inhibitor when there is a dynamic balance between diffusion and

membrane traffic, turning noise or local signals into asymmetries

which remain stable in time. The local activating process, which is

a positive feedback loop, is necessary for polarity domain

formation. However, very high or low positive feedback rates

lead to symmetric states. Our model defines optimal regions for

positive feedback rates which mainly depends on internalization

rate values (Fig. 3). We included asymmetric membrane growth to

analyze how that would affect the next step in polarity

establishment and maintenance. We induced a growing mem-

brane at the place in which the symmetry breaking event had

occurred. Our simulations indicated that the original accumula-

tion becomes even more localized and it allows the generation of a

new polarity domain at the side opposite to that of growth,

identical to how it happens in ‘‘real life’’ [3]. As a matter of fact,

bipolarity is an essential differentiation event in vivo, utilized first to

assure proper radial migration of the young neuron and later to

confer/fix axonal and dendritic properties to the, respectively,

apical and basal neurites. Similar results can be obtained if growth

starts at a place where an accumulation of proteins has been

induced. We provide biological data showing that our simulations

data are in total agreement with molecular organization and

distribution in cells.

It is worth clarifying, that even if the neuron was treated as what

it is, a three-dimensional object, still the phase and bifurcation

diagrams would be equivalent. In three dimensions, the reaction

terms are not modified. Considering a cell as a sphere without

growing, the Eq. (4) is still valid, but with a different Laplacian

operator that is convenient to be written in spherical coordinates.

Since we are modeling the cell membrane, we are interested in the

sphere surface for a given radio, R. The eigenfunctions of the

spherical Laplacian, (which are the functions we have to look at for

describing the spatial distribution for the linear approximation),

are the spherical harmonics, Y m
l (h,w), with eigenvalues {l(lz1),

(while in two-dimensions the eigenfunctions of the Laplacian were

cos(kx) with eigenvalues {k2). The phase diagram and all the
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analyses are similar to those in the two-dimension case considering

now k~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l(lz1)

p
instead of k~n=(2p) [21]. The spherical

harmonics associated with l~1, are the functions characterized by

positive values in one hemisphere and negative values in the

opposite. Since the scenarios are equivalent, we can speculate what

will happen after adding growth. There is a scale change when the

surface is expanded by allowing growth. Since the behavior in two-

and three-dimensional systems without growing is the same, we

can expect the same qualitative change due to an increase of the

domain. The qualitative change is the shift to the phenotype

characterized with the solution of the following eigenvalue.

Making the bud growth in the center of the accumulation and

considering the spherical harmonic associated with l~2, we

hypothesize that the phenotype with more likelihood to appear is

the one correlated with the spherical harmonic Y 0
2 (h,w), that is

characterized by two maxima at the opposite poles.

Although our model is based on interactions between

exocytosis, endocytosis and lateral diffusion, other participating

events in cell morphogenesis, such as interactions between growth

factor receptors and the cytoskeleton, have been neglected for

simplicity and because they are, as shown here, not crucial to the

effects we have described. In any case, the model presented here

could be adapted to evaluate their influence in neurite outgrowth.

In summary, our model is consistent with the following scenario:

first, intrinsic or extrinsic determinants (eg. mitotic-inherited signal

or cell-cell/matrix contact, respectively) induce a change in

protein concentrations in a focal point of the plasma membrane.

This change derives in the stabilization of the newly formed

accumulation which can favor growth. Upon growth, a second

accumulation appears spontaneously at the pole opposite to the

site of growth, in turn leading to bipolar shape. Hence, in

mathematical terms, bipolar neuronal morphology requires the

Figure 5. Polarity domain formation in neurons with one neurite. (A) Hippocampal neurons were fixed shortly after plating and
immunolabeled with a neuron-specific anti-b tubulin antibody (red), an anti Sec8 antibody (green) and a nuclear marker (blue). The right panel shows
a pseudocolor image of Sec8 only. Scale bar 5 mm. (B) Experimental results, Sec8, compared with numerical simulation, cMP. The normalized Sec8
intensity of a single neuron is represented by open circles. The base of the first neurite is located in the center (0 degree) of the graph. The red line
shows the normalized numerical results for a membrane growing with speed a~25 at t~tDMP=L2~11:325. Initial profile (orange) as well as profiles
at t~11:325 for different speeds (a~10, black; a~25, red; a~50, blue) are shown in (C). Profiles are normalized with respect to the maximum value
of the red line. In (D) the temporal evolution of the normalized concentration of membrane proteins for a cell with a growing membrane is presented,
growth starts at t~10 and a~25, (y axis, angular membrane position; x axis, time; color scale, normalized concentration values). For a dynamic
representation see Movie S1. For all the simulations kinetics parameters are as in Fig. 4.
doi:10.1371/journal.pone.0024190.g005
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occurrence of a single, monopolar, active event, responsible for the

first deformation. Once this occurred, the second deformation

takes place passively. Although we can not rule out that the second

neurite may form in vivo through an active process, our results

indicate that the second pole is, minimally, predisposed by the

occurrence of the first. These changes, combined with our model

solutions, are illustrated in Fig. 6. Hence, our mathematical

approach captures the most important characteristics of neuronal

polarity at the early stages, explaining that a localized membrane

growth at the place where an intrinsic or extrinsic signal

determined accumulation not only favors polarization but also

predicts and determines that the second neurite would localize at

the opposite site. This is exactly how cortical neurons start

migration.

Materials and Methods

Numerical calculations
In order to construct numerical solutions to our model we

approximate u to a discrete solution defined in a one dimensional

spatial grid of 200 points at a given discrete time, u(si,tn). The

solution has to be periodic in the space since we consider the cell as

a circle. For simplicity we only show the discrete equations for u.

The Eq. (11) can be written considering different operators as

du

dt
~FD(u)zFA(u)zFDi(u)zFR(u,v) ð12Þ

where FD, FA, FDi and FR represent diffusion, advection, dilution

and reaction operators, respectively. The expression for Eq (4) is

similar, but advection and dilution operators are not present. The

solution from tn to tnz1~tnzDt can be generated using splitting

operator methods. In order to avoid spurious modes we choose the

temporal step according to stability criteria [37–39]. For the

spatial derivative we use a first-order approximation and for the

time derivative the explicit Euler discretization.

Primary cultures
Rat embryonic hippocampal neurons were prepared [40] and

plated at a density of 2,500 cells per cm2 on poly-L-lysine (PLL)

coated coverslips.

Immunocytochemistry
Neurons were fixed after 1 to 5 hours with 4% PFA (with

1:44M sucrose, 1MMgCl2, 100mM EGTA) at 370C for 10min.

Cells were permeabilized for 3min in 0:1% Triton X-100/PBS.

After blocking in 2% FBS, 2% BSA, and 0:2% fish gelatine in PBS,

neurons were incubated with the primary antibody for 1h at room

temperature or at 40C overnight. Secondary Alexa conjugated

antibodies (Invitrogen) were added for 45min after washing in

PBS.

The following primary antibodies were used: anti Sec8 (kind gift

from Shu-Chan Hsu, Rutgers University, NJ) and anti b III-

Tubulin from rabbit (Covance).

Quantification of Sec8
Quantification of the intensity of membrane Sec8-labeling was

performed using the open source ImageJ software (Rasband, W.S.,

ImageJ, NIH, USA). Neurons were identified by the neuron-

specific marker b III-tubulin. A band with constant pixel width

along the perimeter of the neuron was selected and radial sums of

fluorescent intensities were measured. Data were plotted according

the angle position of the radial line. The neurite itself was not

considered in the analysis.
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Supporting Information

Figure S1 Neuron developmental stages. Hippocampal

neurons were fixed at different times after plating and immuno-

labeled with the neuron-specific anti-b tubulin antibody (red, upper

three panels) or, after longer differentiation time (lower panel) with

an antibody which is specific for a dendritic protein (Map2 in red)

and one specific for an axonal protein (anti Tau-1 in green).

(TIFF)

Figure S2 Unstable eigenvalues. The eigenvalue, l, for the

solution obtained linearizing Eq. (4) about the steady state (u0,v0)
versus c for d~4:3, (A), and d~5, (B). Solid, dashed and dash-

dotted lines represent eigenvalues for the unstable modes n~1,

n~2 and n~3, respectively. In the regions where more than one

unstable mode is present, the final number of polarity domains is

defined by the highest one. For this figure k~5:33, a2~90,

a3~1:5, b2~0:1 and r~0:4.

(TIFF)

Figure S3 Bifurcation diagrams (I). Different bifurcation

diagrams for a system characterized by Fig. 3A. On the left,

k~6:4 and r~1:5; and on the right k~b~6 and r~1:25.

(TIFF)

Figure S4 Phase and bifurcation diagrams (II). A phase

diagram for a mutant phenotype with a lower modulator of

endocytosis activation rate is shown in the upper left corner.

Bifurcation diagrams for the indicated values are also shown. In

this picture, a2~9, a3~1:5 and b2~0:1, (thus, b~0:6).

(TIFF)

Figure S5 Phase and bifurcation diagrams. A phase

diagram for a mutant phenotype with a higher modulator of

endocytosis activation rate is shown in the upper left corner.

Bifurcation diagrams for the indicated values are also shown. In

this picture, a2~180, a3~1:5 and b2~0:1, (thus, b~12).

(TIFF)

Figure S6 Quantification of Sec8 accumulation. Hippo-

campal neurons were fixed shortly after plating and immunola-

beled with a neuron-specific anti-b tubulin antibody and an anti

Sec8 antibody. The fluorescence of Sec8 along the membrane was

quantified. The signal was normalized and maxima of different

cells aligned with each other respect the quarter with the highest

intensity. The curve shows the mean value of 38 round neurons

and the inset the analysis of the mean fluorescence of each quarter.

(TIFF)

Figure 6. Schematic representation of neuronal (bi)polarity. Whether because of spontaneous or exogenous changes in the immediate post-
mitotic neuron (initial conditions), a stable accumulation develops (red crescent, upper cell in temporal evolution panel). This maximum favors
growth (middle cell), in turn favoring, the generation of a second maximum at the opposite pole and the occurrence of neuronal bipolar phenotype
(lower cell). Representations of our model solutions are also shown at different stages.
doi:10.1371/journal.pone.0024190.g006
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Figure S7 Growing domain. The curves represent the cell

surface with a growing bud between the polar angles +w0. At

t~t0 the cell boundary is a perfect circle.

(TIFF)

Movie S1 Polarity domain formation and membrane
growth. Dynamic representation of the membrane protein

concentration shown in Fig. 5D, (color scale, normalize concen-

tration values).

(AVI)
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