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Abstract

Pain often exists in the absence of observable injury; therefore, the gold standard for pain assessment has long been self-
report. Because the inability to verbally communicate can prevent effective pain management, research efforts have
focused on the development of a tool that accurately assesses pain without depending on self-report. Those previous
efforts have not proven successful at substituting self-report with a clinically valid, physiology-based measure of pain.
Recent neuroimaging data suggest that functional magnetic resonance imaging (fMRI) and support vector machine (SVM)
learning can be jointly used to accurately assess cognitive states. Therefore, we hypothesized that an SVM trained on fMRI
data can assess pain in the absence of self-report. In fMRI experiments, 24 individuals were presented painful and
nonpainful thermal stimuli. Using eight individuals, we trained a linear SVM to distinguish these stimuli using whole-brain
patterns of activity. We assessed the performance of this trained SVM model by testing it on 16 individuals whose data were
not used for training. The whole-brain SVM was 81% accurate at distinguishing painful from non-painful stimuli
(p,0.0000001). Using distance from the SVM hyperplane as a confidence measure, accuracy was further increased to 84%,
albeit at the expense of excluding 15% of the stimuli that were the most difficult to classify. Overall performance of the SVM
was primarily affected by activity in pain-processing regions of the brain including the primary somatosensory cortex,
secondary somatosensory cortex, insular cortex, primary motor cortex, and cingulate cortex. Region of interest (ROI)
analyses revealed that whole-brain patterns of activity led to more accurate classification than localized activity from
individual brain regions. Our findings demonstrate that fMRI with SVM learning can assess pain without requiring any
communication from the person being tested. We outline tasks that should be completed to advance this approach toward
use in clinical settings.
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Introduction

Pain is commonly accepted to be a subjective experience [1], for

which the gold standard of measurement is self-report. While self-

reported pain provides useful clinical information and proves to be

an effective assessment approach in most situations, it can fail

certain vulnerable populations. Individuals with major cognitive or

communicative impairments, such as intensive care unit patients

or older adults with dementia, may not be able to provide valid

self-reports of pain [2,3]. For those individuals, there are few

methods for determining the presence or absence of pain. While

behavioral tools exist (such as those assessing facial expressions,

vocalizations, and body movements) [4–6], they too may fail

individuals with paralyses or other disorders affecting motor

behavior. There is, therefore, a need to develop a pain assessment

tool that is based on physiology, and requires no communication

on the part of patients.

Researchers have long sought to develop a physiology-based

pain assessment that does not depend on patient volitional

behaviors [7]. Those efforts have focused on various biosignals,

such as heart rate [8,9], skin conductance [10], and electroen-

cephalography [11]. While several physiologic variables have

shown statistically significant correlations with the presence of

pain, or with pain intensity, no measure has provided a sufficiently

high relationship with pain to be used as a valid surrogate for self-

reports [12–14]. Therefore, despite many years of research, there

is currently no accepted technique for the physiologic assessment

of pain in humans.

Recent advances in neuroimaging have provided possibilities for

pain assessment that have not traditionally been available to

researchers [15]. By measuring physiologic events that are closely

associated with neural activity, noninvasive neuroimaging methods

such as functional magnetic resonance imaging (fMRI) gain an

advantage over previously employed methods of physiologic pain

assessment. The use of fMRI in detecting the presence of pain may

be particularly strengthened by incorporating machine learning

algorithms. Machine learning algorithms, such as the support

vector machine (SVM), can allow predictive models to be trained
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with a known set of stimuli, and then used to classify novel stimuli.

An SVM can be trained on patterns of whole-brain activity, in

order to find the linear combinations of regional brain activity that

best distinguishes two experiential states. Using this approach,

machine learning algorithms have recently been used, in

conjunction with fMRI data, to determine what a person is seeing

or hearing [16,17]. Properly developed, the union of fMRI and

SVM may provide a valid, physiology-based proxy for self-

reported pain.

Marquand and colleagues (2010) were the first to apply fMRI

and machine learning algorithms to the problem of pain

measurement [18]. In their study, healthy individuals were

exposed to thermal stimuli presented at heat perception threshold,

pain perception threshold, and pain tolerance. Machine learning

algorithms were trained on fMRI data and used to predict self-

reported pain for each participant individually (i.e., one model per

participant). Each individual’s model was then used to classify

subsequent stimuli in that same individual. The SVM model was

reported to have a classification accuracy that ranged from

68.34% (distinguishing pain detection from pain tolerance) to

91.67% (distinguishing heat threshold from pain tolerance). This

study provided an important advancement in pain measurement,

demonstrating that machine learning algorithms could be used to

assess an individual’s pain, if trained using fMRI data from that

same individual.

An important extension of the work of Marquand et al. would

be to demonstrate that physiology-based pain assessment, using

fMRI data and machine learning algorithms, can classify pain

accurately without relying on self-report data from the individual

tested. If, for example, an SVM model could be trained on one set

of individuals, and used to accurately classify pain in different

individuals, then its performance would not depend on the test

subjects’ self-report.

In this study, we attempted to develop an SVM model that

accurately determines the presence or absence of pain, even when

tested on individuals whose self-reported data were not included in

the model’s training. Towards this aim, we investigated the task of

distinguishing non-painful heat stimuli from painful heat stimuli.

The major goal of the study was to determine whether blood-

oxygen-level dependent (BOLD) signal change is sufficiently

consistent between individuals to potentially train a physiology-

based pain classifier that performs accurately when trained on one

group of subjects and tested on another. An SVM model was

trained on a group of eight individuals, and used to classify pain in

a separate group of eight individuals. When tested on this separate

group of eight individual, the SVM was significantly more

accurate than chance. In a second study, the same SVM model

was further validated through test-retest reliability in an additional

group of eight individuals. When tested on this additional group of

eight individuals, the SVM was again significantly more accurate

than chance.

Methods

Study 1: Training and Initial Validation of the SVM Model
Participants. Nineteen participants were recruited via

advertisements posted on and around the Stanford University

campus. All participants were healthy and none reported having a

chronic pain condition. Procedures were approved by the Stanford

University School of Medicine Institutional Review Board, and all

participants provided written informed consent. Due to technical

difficulties with the temperature thresholding or scan procedures,

complete data were not collected for three participants; therefore,

they were excluded from all analyses. The remaining 16

participants were an average age of 22.7 years (SD = 3.6), with

10 men and 6 women.

Protocol. Before starting the fMRI scanning session,

participants were thresholded with a thermal stimulator in order

to determine individual temperatures for painful heat. Thermal

stimuli were delivered to the left volar forearm via a 363 cm

Peltier-type thermode (Medoc, North Carolina). A range of

temperatures was presented, each for 30 seconds. Following

each temperature presentation, the participant provided a self-

report of pain on a 0–10 numerical rating scale with the following

anchors: 0 (no pain), 3 (minor pain), 5 (moderate pain), 7 (intense

pain that you can bear without moving), and 10 (unbearable pain).

The thresholding procedures used here have been previously

described in greater detail [19]. The temperature that consistently

elicited a 7 out of 10 pain score was used as the painful stimulus

temperature in the fMRI scanning session. The average

temperature selected for painful stimulation was 46.3uC
(SD = 1.1).

During the fMRI sessions, heat stimuli were again presented to

the left volar forearm in a block design, with 40 seconds of baseline

temperature (at 26uC), followed by 30 seconds of heat stimulation.

All participants completed four functional runs. In two runs,

participants received hot but non-painful heat stimulation (38uC).

In the other two runs, participants received painful heat

stimulation (individually calibrated to elicit a pain score of seven).

Each participant received a total of 14 nonpainful stimuli and 14

painful stimuli. Following each functional run, participants

reported whether the stimuli presented were painful or non-

painful.

MRI Data Collection and Standard Pre-Processing. FMRI

data were collected on a 3.0 Tesla, whole-body scanner (GE

Healthcare Discovery 750), using an 8-channel receive-only phased-

array head coil. A T1-weighted fast spoiled gradient-recall scan was

acquired for anatomical reference (TE = 2.0 ms, 156 slices at 1.3 mm

thickness). High-order shimming [20] was then performed, followed

by the functional runs. Functional imaging used a T2*-sensitive

gradient spiral in/out pulse sequence [21], with a TR of 2000 ms,

TE = 20 ms, flip angle = 77u, 64664 acquisition matrix, and 30,

4 mm interleaved slices parallel to the intercommissural line.

Images were corrected for cardiac and respiratory noise using

RETROICOR [22]. SPM5 (Wellcome Trust Centre) was used for

functional image realignment and motion correction, coregistration

to the structural images, and normalization to the Montreal

Neurologic Institute (MNI) stereotactic template. As a final

processing step, functional images were spatially smoothed with a

3D Gaussian kernel (4 mm full-width half-maximum).

SVM Model Pre-Processing. SVM model pre-processing

was conducted in MATLAB (Mathworks) using SPM5 and custom

software. A whole-brain pattern of the activity induced by each

heat stimulus was computed as map of percent BOLD signal

change. For each heat stimulus, the average percent BOLD

change was calculated with the following formula: ((average

stimulus signal – average baseline signal)/average baseline signal).

The baseline signal consisted of the 20 seconds before each heat

stimulus. The stimulus signal consisted of the final 24 seconds of

each heat block, excluding the initial 6 seconds to allow for the

BOLD signal to reach its peak intensity. Each of the maps of

percent BOLD signal change constitutes an example to be used for

training and testing the SVM. In this way, by treating each heat

stimulus as a single example, the SVM preprocessing resulted in

448 examples: 28 heat stimuli 616 subjects. Each of these

examples was a map of percent BOLD change containing

18,124,575 features (voxels).

Towards an Objective Measure of Pain
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Feature reduction (to avoid over-fitting of the model) was

achieved by applying a gray matter mask to exclude areas that did

not containing neuron cell bodies. Typically, the magnitude of

pain-induced BOLD signal change is less than 1% [23–27]. Thus,

an additional and liberal feature reduction step was achieved by

excluding any voxel exhibiting percent signal change greater than

3%, on the grounds that large changes are likely artifactual. The

feature reduction steps reduced the number of features in each

example from 18,124,575 to 65,839, with each feature corre-

sponding to average percent BOLD change in a single gray-matter

voxel.

SVM Model Training. Eight of the sixteen participants were

randomly assigned to the model training group. Randomization

was performed using a computer-based list randomizer. As

described previously [28], the SVM model training was

performed using a multi-voxel pattern analysis approach,

conducted in MATLAB using an SVM toolbox written by

Anton Schwaighofer (mail to: anton.schwaighofer@gmx.net).

Using examples of painful and non-painful heat stimuli from the

eight training group participants, a linear SVM was trained to

classify heat stimuli as painful or non-painful (the regularization

parameter, C, was set at 10 prior to training). Using a linear

combination of the features (the magnitude of percent BOLD

change in each voxel), the SVM determined a function to best

predict whether each example (each heat stimulus) in the training

set was painful or non-painful. Numerically, this function is of the

form: Y = W1X1+W2X2 …+WNXN+Z, where for each example, N

is the number of features (number of voxels), W is the weighting of

each feature, X is the value of each feature (the percent BOLD

signal change), and Z is a constant. If Y is positive, then the

example is classified as painful, and if Y is negative, then the

example is classified as nonpainful. The function used for SVM

classification is often described visually: each example (each map

of BOLD signal) can be thought of as a point in space, and the

SVM can be thought of as determining the separating hyperplane

which best separates those points in space associated with painful

stimulation from those associated with nonpainful stimulation. For

a more detailed discussion of the mathematical method, see C.

Cortes and V. Vapnik (1995) [29].

SVM Model Testing. The trained SVM model was then

used to classify pain in the eight individuals who were randomly

assigned to the testing group. For each heat stimulus presented to

participants in the testing group, the SVM model assigned a

classification of painful or non-painful. The SVM also calculated a

measure of confidence in the accuracy of each assignment. This

measure of confidence was derived from the distance of each

example (each map of percent BOLD change) from the separating

hyperplane. The percent of accurate classifications was calculated

for each participant in the testing group, as well as positive

predictive value (PPV) and negative predictive value (NPV). PPV

is the percent of stimuli predicted to be painful which were actually

painful, while NPV is the percent of stimuli predicted to be non-

painful which were actually non-painful.

Permutation Testing. To identify which brain regions

significantly influenced the SVM classifier’s accuracy, we

conducted a permutation test as previously described [28]. In

brief, we tested the null hypothesis that patterns of brain activity

did not influence the performance of the SVM classifier. To derive

the null distribution by permutation, the class labels (painful

or non-painful) were randomized 750 times. With each

randomization, a linear SVM was trained to distinguish the

examples (the maps of percent BOLD change) that were randomly

labeled painful from the examples that were randomly labeled

non-painful. To determine statistical significance, the model

resulting from accurate class labeling was compared to the

empirically derived null distribution. By randomly rearranging

the training data, this permutation test reveals which brain regions

significantly affected the training of the SVM, and thus

contributed to the SVM classifier’s performance at distinguishing

painful from non-painful stimulation.

Region of Interest Analysis. To test whether any regions

might independently distinguish painful and non-painful stimuli,

we conducted individual SVM classifications using small regions of

interest (ROIs). Based on a meta-analysis of 68 studies, Apkarian

et al. (2005) have proposed that there is a brain network for acute

pain which is composed of 6 brain regions: the primary and

secondary somatosensory cortices, the insular cortex, the anterior

cingulate cortex, the prefrontal cortex, and the thalamus [30]. In

separate SVM analyses, we investigated each of those six areas.

Each ROI was functionally defined as an 8 mm sphere centered

on previously reported coordinates which were identified in a

study of pain processing [31]. For each ROI, the average percent

BOLD signal change was computed for each heat stimulus. These

measurements of percent BOLD signal change constitute the

examples used to train and test an SVM for each ROI. As with the

whole-brain SVM analysis, each ROI classifier was trained on

fMRI data from the training group (N = 8) and tested on fMRI

data from the testing group (N = 8).

Study 2: Confirmatory Validation of the SVM Model
In order to provide an additional validation of the SVM model

by test-retest reliability, an additional nine participants were

recruited and assigned to an independent retesting group. As with

the previous groups, participants were recruited from Stanford and

from the surrounding area. Due to technical difficulties with the

temperature thresholding procedures, complete data were not

collected for one participant; therefore, this participant’s data were

excluded from all analyses. The remaining eight participants were

an average age of 25.9 years (SD = 3.3), with 5 men and 3 women.

Participants in Study 2 followed the same procedures as those

participants in Study 1 (with the exception that no randomization

was conducted because all participants were assigned to a single

retest group). The average temperature for the painful stimulation

was 46.0uC (SD = 1.0). The SVM model trained in Study 1 was

used to classify painful and non-painful stimuli in the participants

recruited to Study 2.

Results

Study 1: Training and Initial Validation of the SVM Model
As a validity check on the effectiveness of the chosen

temperatures to elicit painful and non-painful sensations, we first

examined self-reported pain. All included participants reported

that the experimental temperature that was thresholded to a 7 out

of 10 pain score elicited pain, and that the 38uC temperature did

not.

The SVM model, which was trained on data from participants

in the training group, performed significantly better than chance

when distinguishing painful from non-painful stimuli in partici-

pants from the independent testing group (t (7) = 9.9, p = 0.00002).

Average accuracy was 86.6%. As seen in Table 1, accuracy ranged

from 71.4% to 100% across the eight testing individuals. Average

PPV (stimuli classified as painful which were actually painful) was

90.3%, and NPV (stimuli classified as non-painful which were

actually non-painful) was 85.4%.

We next examined whether classification accuracy could be

improved by incorporating a confidence threshold, measured as

distance from the separating hyperplane. BOLD maps not

Towards an Objective Measure of Pain
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meeting the confidence threshold were excluded on the basis of

insufficient evidence to make a confident classification. Overall

accuracy of the SVM classifier increased monotonically with the

number of stimuli excluded (Figure 1). When excluding the 15%

of stimuli that were nearest to the hyperplane, the best balance

was achieved between maximizing the accuracy of the SVM

classifier and minimizing the number of excluded stimuli.

Specifically, when excluding the 15% of stimuli that were

nearest to the hyperplane, overall accuracy was increased to

91.8%, PPV was increased to 93.8% and NPV was increased to

92.7% (Figure 1).

Next, a permutation test was used to determine which brain

regions were most involved in driving the whole-brain SVM

classifier’s performance. The classification of a stimulus as painful

was significantly influenced (p,0.01) by greater BOLD signal in

the bilateral mid-insular cortices (MNI: 236, 0, 12 and 36, 4, 12),

bilateral secondary somatosensory cortices (234, 218, 16 and 38,

218, 20), contralateral posterior insular cortex (36, 216, 14),

contralateral primary somatosensory cortex (22, 226, 54 and 24,

246, 6), and contralateral primary motor cortex (36, 214, 48).

The classification of a stimulus as nonpainful was significantly

influenced (p,0.01) by greater BOLD signal in the bilateral

primary motor cortices (244, 212, 36 and 52, 214, 48), and

ipsilateral pregenual cingulate cortex (210, 42, 2). Those brain

regions, which significantly affected the whole-brain SVM

classification, are illustrated in Figure 2.

Because using information from a single ROI to assess pain

would be simpler than employing a whole-brain SVM, we next

tested whether BOLD signal from individual ROI’s could

distinguish painful and non-painful stimuli as accurately as the

whole-brain SVM model. Activity in the secondary somatosensory

cortex classified painful stimuli significantly better than chance

(t (7) = 5.0, p = 0.0016), as did activity in the mid-insular cortex

(t (7) = 4.0, p = 0.0052). As seen in Table 2, for the other regions

tested, overall accuracy did not reach the p,0.05 level of

significance for classifying stimuli as painful or non-painful.

Classification based on activity in the secondary somatosensory

cortex (71.9%) and mid-insular cortex (64.3%), did not reach the

same level of accuracy as classification based on whole-brain

patterns of activity (86.6%).

Study 2: Confirmatory Validation of the SVM Model
An additional group of eight participants was investigated to

determine test-retest reliability of the SVM model in classifying

painful stimuli. As seen in Table 3, accuracy in this second group

was 74.6% (t (7) = 5.5, p = 0.0009). Average PPV was 83.6% and

average NPV was 74.4%. We again examined whether accuracy

could be improved by incorporating a confidence threshold based

on distance from the separating hyperplane. In the retest group, as

with the initial test group, when excluding the 15% of stimuli that

were nearest to the hyperplane, the performance of the SVM

classifier improved. The exact value of the confidence threshold

differed between test groups, so that in both analyses, 15% of the

stimuli were excluded. When excluding 15% of stimuli from the

retest group, the overall accuracy was increased to 76.9%, PPV

was increased to 85.8%, and NPV was increased to 76.7%.

Discussion

In this study, we establish the feasibility of physiology-based

pain detection using BOLD fMRI data and supervised machine

learning algorithms. An SVM model, trained on 8 individuals, was

80.6% accurate at distinguishing painful from non-painful stimuli

when tested on 16 individuals whose self-report data were not used

in training.

BOLD activity in five brain regions was principally responsible

for the SVM classifier’s performance at distinguishing painful from

non-painful stimulation. Increased activity in the primary

somatosensory cortex, secondary somatosensory cortex, insular

cortex, and primary motor cortex was predictive of painful

stimulation. Increased activity in other areas of the primary motor

cortex and in the pregenual anterior cingulate cortex was

predicative of nonpainful stimulation. These five areas are

consistent with prior literature that identifies critical pain

processing regions of the human brain [30,32,33]. The primary

sensory cortex, secondary sensory cortex, and insular cortex have

been implicated in sensory aspects of pain perception, the insular

cortex has been implicated in emotional aspects of pain

perception, and the primary motor cortex may play a role in the

inhibition of reflexive withdraw from pain. Increased activity in

the pregenual anterior cingulate cortex has been implicated in

happiness [34]; we speculate that pain may have caused a state of

unhappiness leading to decreased activity in this region.

Because the SVM model was powered by a relatively small set

of brain regions, we were interested to know if activity in any one

brain region could classify pain equally as well as the whole-brain

approach. When tested, we found that an SVM, using recordings

of activity in the secondary somatosensory cortex, performed

significantly greater than chance at classifying pain and better than

any of the other regions tested. Our findings are consistent with

the secondary somatosensory cortex being the region which is

most often reported to activate during painful stimulation

[30,33,35]. Our findings are also consistent with the theory that

one primary role of the secondary somatosensory cortex in pain

perception is to discern whether stimuli are painful or non-painful

[36–38]. However, accuracy of the SVM which was trained using

only data from the secondary somatosensory cortex was below that

of the whole-brain approach. Therefore, we find that pain

assessment based on whole-brain BOLD patterns of activity

performs better than assessment based on the activity in individual

brain regions.

We further found that the accuracy of the SVM classifier could

be enhanced by employing distance from the separating

hyperplane as a measure of the classifier’s confidence. Greater

distance from the separating hyperplane was indicative of greater

Table 1. Performance of the Whole-Brain SVM Classifier.

Participant Accuracy (%) Positive PV (%) Negative PV (%)

1 75.0 100 66.7

2 85.7 91.7 81.2

3 82.1 80.0 84.6

4 100.0 100.0 100

5 71.4 71.4 71.4

6 96.4 93.3 100

7 85.7 85.7 85.7

8 96.4 100 93.3

Average 86.6610.4* 90.3610.5* 85.4612.3*

For each participant in the testing group, the SVM was used to distinguish the
painful stimuli from the nonpainful stimuli. For each participant in the testing
group, and for their group average, this table displays the SVM’s overall
accuracy, and positive and negative predictive value (PV). Error is reported as 1
standard deviation. An asterisk indicates performance measures that are
significantly greater than chance (p,0.05).
doi:10.1371/journal.pone.0024124.t001
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confidence in the SVM classification. By taking this information

into account, each classification was associated with a probability

of its accuracy, and the SVM classifier’s overall accuracy was

increased, at the cost of excluding some stimuli on the basis of

ambiguity.

While this study was designed to probe the use of physiology-

based pain detection, the results also more largely suggest that the

brain’s neural representation of pain is robust and replicable across

individuals. We found that the SVM classifier performed more

accurately than chance when applied to study participants in both

the test group and the retest group. This finding shows that across

individuals, pain-induced BOLD signal changes are considerably

similar with regard to both spatial location and absolute

magnitude, measured in units of percent BOLD signal change.

Therefore, while there may be considerable individual differences

in the experience of pain and in patterns of brain activity induced

by pain, there are nonetheless a core set of pain-induced responses

in the brain that may be universal, at least when considering

discreet thermal pain stimuli.

We are still very far from a physiology-based pain assessment

tool that could be used in clinical, forensic, and other applied

settings. However, we see the goal of an accurate, valid surrogate

for self-reported pain as both attainable and worthy of effort.

There are several areas where the method reported here for

detecting pain can be improved. We outline five specific tasks

below.

First, supervised machine learning algorithms should be used in

conjunction with fMRI to extend the approach reported here by

investigating pain intensity, and by distinguishing brain activity

related to stimulus intensity from brain activity related to pain

intensity. The potential of using fMRI and machine learning

algorithms to measure pain intensity has been demonstrated using

a within-person analysis [18], yet it remains unknown whether the

approach can provide accurate measurements when data from the

test subject are not included in training. At minimum, using an

approach similar to the one used here, classifiers should be able to

distinguish between low, moderate, and high levels of pain.

Second, using fMRI and machine learning algorithms, future

experiments should develop physiology-based pain assessments

that perform accurately across sensory modalities. While recent

work has demonstrated that a major component of the brain

regions activated by pain are also activated by non-painful

somatosensory stimuli [39], we show here that painful stimuli

can be distinguished from non-painful stimuli by the magnitude of

activation; others have shown that painful stimuli can be

distinguished from nonpainful stimuli by the time course of

activation [40,41]. Taking into account the spatial location of

brain activity, its magnitude, and its change over time, future

studies should identify patterns of brain activity that distinguish

pain regardless of the causal stimulus (for example, thermal,

electrical, and mechanical stimuli should be tested). Doing so

would further elucidate neural mechanisms that distinguish pain

processing from sense modality-specific processing. The stimuli

would also need to be tested in various locations on the body, to

avoid developing models that are only accurate at assessing pain

evoked in a specific body region.

Figure 1. Performance of the Whole-Brain SVM Classifier is Increased by a Distance Threshold. The classifier’s performance was assessed
at increasing distance thresholds. As the distance threshold increased, an increasing number of stimuli were excluded on the grounds that stimuli
nearest the separating hyperplane were most likely misclassified. In this figure, performance is plotted as a function of the percentage of stimuli that
have been excluded from classification. Dotted lines display the performance computed at each distance threshold. Solid lines display a third degree
polynomial fit to those data.
doi:10.1371/journal.pone.0024124.g001

Towards an Objective Measure of Pain
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Third, supervised machine learning algorithms should be

developed that can distinguish pain from affective conditions that

induce patterns of brain activity that are similar to those induced

by pain. While previous research suggests that many of the brain

regions that were most involved in driving the SVM’s performance

are associated with the sensory dimensions of pain such as pain

intensity and localization [30,33,35], it is necessary to ensure that

the approach used here is both sensitive and specific to pain.

Therefore, a series of experiments should be conducted to

determine whether SVM models can accurately distinguish

physical pain from related affective experiences such as anticipa-

tion of pain [42], pain empathy [43], imagined pain [44], and

social exclusion [45]. These experiments would further validate

the use of fMRI and machine learning algorithms as an approach

which is not only accurate in controlled experimental settings, but

in applied settings as well.

Fourth, SVM accuracy at classifying pain should be increased

Figure 2. Brain Regions that Most Influenced the Whole-Brain SVM Classifier. A permutation test was run to determine which brain regions
significantly affected the whole-brain SVM classification. This figure illustrates brain regions that fall within the 90th percentile of the null distribution
that was determined by permutation. Regions in the 99th percentile (p,0.01) are noted in the results section. Shades of red indicate regions where
greater BOLD signal influenced the SVM to classify a stimulus as painful. Shades of blue indicate regions where greater BOLD signal influenced the
SVM to classify a stimulus as non-painful.
doi:10.1371/journal.pone.0024124.g002

Table 2. Performance of the ROI SVM Classifiers.

Region Accuracy (%) Positive PV (%) Negative PV (%)

ACC 56.7612.1 57.7617.5 57.1611.1

Insula 64.3610.1* 66.2611.8* 63.369.1*

PFC 50.0612.2 46.2616.9 53.2612.7

S1 54.0615.7 46.2630.7 556.3616.2

S2 71.9612.4* 75.2613.9* 71.2613.1*

Thalamus 59.8611.9 58.0614.7 61.8612.1*

Using the activity from six regions of interest (ROIs), SVMs were used to
distinguish the painful stimuli from the nonpainful stimuli. For each ROI, this
table displays the SVM’s average accuracy, and positive and negative predictive
value (PV) when tested on participants in the testing group (N = 8). Error is
reported as 1 standard deviation. An asterisk indicates performance measures
that are significantly greater than chance (p,0.05). Anterior cingulate cortex
(ACC). Primary somatosensory cortex (S1). Secondary somatosensory cortex
(S2). Prefrontal cortex (PFC).
doi:10.1371/journal.pone.0024124.t002

Table 3. Retest Validation of Performance of the Whole-Brain
SVM Classifier.

Participant Accuracy (%) Positive PV (%) Negative PV (%)

1 64.3 66.7 62.5

2 85.7 77.8 100.0

3 64.3 70.0 61.1

4 71.4 100.0 63.6

5 67.9 66.7 69.2

6 92.9 87.5 100.0

7 60.7 100.0 56.0

8 89.3 100.0 82.4

Average 74.6612.7* 83.6615.2* 74.4617.6*

For each participant in the re-testing group, the SVM from study 1 was used to
distinguish the painful stimuli from the nonpainful stimuli. For each participant
in the retesting group, and for their group average, this table displays the SVM’s
overall accuracy, and positive and negative predictive value (PV). Error is
reported as 1 standard deviation. An asterisk indicates performance measures
that are significantly greater than chance (p,0.05).
doi:10.1371/journal.pone.0024124.t003
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by incorporating various physiological and trait-based measure-

ments. Sources of physiologic information such as skin conduc-

tance [10], heart rate [8], and pupil dilation [46] have been shown

to correlate with measurements of pain. Similarly, trait differences

such as gender [47,48], genotype [49], fear of pain [50], and pain

catastrophizing [51] have also been shown to correlate with

measurements of pain. SVM and related machine learning

algorithms are versatile tools that can learn complex relationships

between multiple inputs; therefore, they are well suited for

integrating varied measurements to make classifications which

are more accurate than would result from the investigation of one

data source in isolation. The goal in utilizing diverse data streams

would be to yield accuracy levels as close to 100% as possible.

Fifth, future experiments should develop fMRI-based machine

learning algorithms that can measure chronic pain. We have

shown here that it is feasible to classify transient pain experiences

by comparing the period of stimulation to a preceding pain-free

rest period. While this is a major development, the method does

not easily translate to chronic pain assessment because in patients

with chronic pain, it is difficult to obtain a pain-free rest condition.

More complex measurements of brain activity, for example,

temporal covariance of the activity between regions, have been

shown to correlate with pain perception [52]. These methods

should be used in conjunction with supervised machine learning

algorithms to provide greater information and to generate

physiology-based models that perform accurately at detecting

chronic pain.

There are many machine learning algorithms and thus, many

alternatives to SVM classification when using multi voxel pattern

analysis and fMRI data to assess pain. As we have done here, other

groups have used linear classifiers, such as SVMs and Fisher’s

linear discriminant, to distinguish two or more cognitive states

using patterns of brain activity [18,28,53]. In the case of fMRI

data, there are typically many more features than examples, and

therefore, one advantage of linear classifiers is a reduced risk of

over-fitting. Furthermore, the direct comparison of linear and

nonlinear classifiers of fMRI data has not demonstrated any

advantage in accuracy when using a nonlinear classifier [53]. Thus

the greater model simplicity makes linear classifiers an attractive

option. One alternative to SVM classification is the use of

Gaussian process models, which are well suited for probabilistic

classification, in which a machine learning algorithm not only

classifies but also provides a measure of probability for each

example belonging to a particular class. Marquand et al. have

compared this method to SVM classification and find that

accuracies are similar [18]. Other approaches such as Gaussian

process regression may be useful for measuring continuous

variables such as pain intensity [18].

In conclusion, without relying on self-report from tested

subjects, we demonstrate that in a controlled experimental setting,

whole-brain patterns of brain activity can be used to assess

whether a heat stimulus is painful. The results suggest that to

advance the development of a physiology-based pain measure,

neuroimaging methods can benefit from incorporating machine

learning techniques, and from deeper investigation of the complex

interplay of brain regions in mediating the experience of pain.
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