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Abstract

The recent appearance and spread of novel infectious pathogens provide motivation for using models as tools to guide
public health decision-making. Here we describe a modeling approach for developing dynamic health policies that allow for
adaptive decision-making as new data become available during an epidemic. In contrast to static health policies which have
generally been selected by comparing the performance of a limited number of pre-determined sequences of interventions
within simulation or mathematical models, dynamic health policies produce ‘‘real-time’’ recommendations for the choice of
the best current intervention based on the observable state of the epidemic. Using cumulative real-time data for disease
spread coupled with current information about resource availability, these policies provide recommendations for
interventions that optimally utilize available resources to preserve the overall health of the population. We illustrate the
design and implementation of a dynamic health policy for the control of a novel strain of influenza, where we assume that
two types of intervention may be available during the epidemic: (1) vaccines and antiviral drugs, and (2) transmission
reducing measures, such as social distancing or mask use, that may be turned ‘‘on’’ or ‘‘off’’ repeatedly during the course of
epidemic. In this example, the optimal dynamic health policy maximizes the overall population’s health during the epidemic
by specifying at any point of time, based on observable conditions, (1) the number of individuals to vaccinate if vaccines are
available, and (2) whether the transmission-reducing intervention should be either employed or removed.
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Introduction

The recent appearance of novel human pathogens such as

H1N1 and H5N1 influenza, and SARS has stimulated efforts to

develop methods to determine health policies that allow for the

rapid modification of public health interventions in response to

varying epidemiological situations and changing availability of

information [1,2]. In this paper, we examine the potential utility of

dynamic health policies for controlling the spread of an emerging

infectious disease. Dynamic health policies make real-time recom-

mendations, in response to changing disease characteristics (e.g.

infectivity, antimicrobial resistance levels), population characteris-

tics (e.g. disease prevalence, proportion of individuals that are

immune), and resource constraints (e.g. vaccines, antimicrobial

drugs, personnel, and budget).

Most existing approaches for identifying optimal strategies for

infectious disease control use simulation or mathematical models

of disease spread to compare the performance of a limited number

of pre-determined health policies. A number of these studies aim to

identify optimal health policies for vaccine allocation before the start

of an epidemic without explicitly considering interventions which

can be employed during the epidemic [3–6]. A larger number of

studies investigate the effect of both initial immunization and the

use of controlling interventions during epidemics, such as use of

antiviral for treatment, case isolation, school closure, and internal

travel and border restrictions [7–13].

Although these approaches can provide insight into which

baseline strategies may best reduce the impact of epidemics, they

are not generally structured to assist real-time decision making

through the dynamic change of health recommendations as new

data become available over the course of epidemic. In this paper,

we focus on developing optimal dynamic health policies for

controlling an emerging human pathogen. These policies allow

decision-makers to use cumulative real-time data from the

epidemic and current information about resource availability to

guide their selection of possible interventions at any particular

point in time.

We use a simplified model of influenza spread to illustrate the

development and the employment of dynamic health policies.

Control of influenza epidemics may involve: (1) reducing the

susceptibility of uninfected individuals either before or during the

epidemic (through vaccination or antiviral prophylaxis), (2)

reducing contact rates in the population (through social distancing

such as isolation of diagnosed cases, quarantine of households of

diagnosed cases, closing of schools), and (3) reducing the infectious-

ness of infected individuals (through treatment or isolation).
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While vaccines provide protection from seasonal influenza, the

emergence of a novel strain would likely mean the absence (or

shortage) of an effective vaccine for at least the first several months

of the epidemic [14,15]. During this period, control strategies

would largely rely on social distancing and potentially on stockpiles

of antiviral drugs used for treatment and/or prophylaxis.

Therefore, efforts to control an emerging influenza epidemic

would be bounded by (1) the availability of effective vaccines and

antiviral drugs, and/or (2) the availability of money and resources

for vaccine procurement, diagnosis and treatment of new cases,

and the actual implementation of transmission reducing interven-

tions during the epidemic. Under such resource constraints, we

define the optimality of a dynamic health policy as the efficient use

of available resources (e.g. budget and medical system capacity) to

maximize the overall health of the population (e.g. minimizing the

number of deaths or hospitalizations, or maximizing other

measures such as quality-adjusted life years).

In this paper, we define several broad types of interventions for

controlling the spread of an emerging influenza virus. We use

these crudely classified interventions and a simplified model of

influenza transmission to illustrate the use of a dynamic

optimization methodology (namely, Markov Decision Process

[16]) to specify dynamic health policies. Here, rather than focusing

on developing a comprehensive model of influenza spread, we

demonstrate how these dynamic policies allow real-time decision

making under different resource constraints. We also discuss how

future research in this area can help make the implementation of

these policies possible.

Method

In this section, we first discuss the set of possible interventions

that can be used for controlling an influenza epidemic. We

describe the effect of these interventions on disease spread as well

as on the overall health-related and monetary consequences of the

epidemic. We then define dynamic health policies for controlling

the epidemic and characterize their optimality. We finally propose

a methodology to identify the optimal dynamic health policies for

controlling the epidemic.

A Model for Controlling the Spread of Influenza
Influenza Epidemic State and Decision Sets. An influenza

epidemic is usually described by a SIR (Susceptible-Infective-

Recovered) model, in which the individuals recovered from

infection are assumed to acquire permanent immunity to that

viral strain [7,17]. Let XS(t) denote the number of susceptibles,

XI (t) denote the number of infectives, and XR(t) denote the

number of recovered at time t. Since influenza epidemics usually

last for several months and the number of deaths is generally small

relative to population size, it is reasonable to assume that the

population size does not change over the course of epidemic. For a

population of a fixed size N, the state of the disease spread at any

given time t can be identified by st~(XS(t),XI (t)). Let V denote

the state space defined as V~f(xS,xI )[ 2jxSzxIƒNg.
Decisions are made at points of time referred to as decision epochs.

It is more convenient to assume that the decisions are made at

discrete points of time, rather than continuously over time; hence,

we assume that the set of decision epochs, T , is discrete; that is

T~ft0,t1,t2, . . . ,THg, where TH denotes the decision horizon

length. We classify the possible interventions to control the spread

of influenza into two categories: (1) ‘‘irreversible’’ interventions

such as vaccination employed either before or during the epidemic

which reduce the number of susceptibles, and (2) ‘‘reversible’’

interventions which can be turned on and off during the course of

epidemic to reduce the transmission of infection to susceptibles,

such as hygienic interventions, social distancing, and treatment.

We implement these two types of decisions in our model as follows:

1. Vaccination: At any decision epoch, conditional on the

availability of vaccine, the decision maker will specify the

number of susceptibles to vaccinate. If effective vaccines are

abundant and vaccination has zero cost, this decision is trivial:

vaccinate all susceptibles. However, throughout this paper we

assume that vaccine, if available, is acquired at a price. We

denote this decision by zt[AI , where AI is the set of possible

values for the decision variable zt. For cases where vaccine

availability exceeds need, we may assume that AI~½0,N�. For

simplicity, we assume that vaccination at decision epoch t
results in immunization by the next decision epoch. Hence, a

decision to vaccinate zt portion of susceptibles at time t results

in the reduction of susceptibles to XS(t){zt by the next

decision epoch.

2. Transmission-reducing intervention: These interventions may

be either employed or lifted over the course of epidemic to

reduce the transmission of infection to remaining susceptibles.

These measures will include social distancing (e.g. school or

public place closure), hygienic interventions (e.g. mask use), and

treatment or isolation of cases. Let AT~f0,1,2 . . . ,Mg denote

the set of such interventions, where 0 represents ‘‘no

intervention.’’ We denote the transmission-reducing decision

made at time t by at[AT .

We categorize ‘‘treatment’’ as a transmission-reducing inter-

vention which can be turned on or off during the epidemic. Of

course, when sufficient antivirals are available, all new cases

receive appropriate treatment, in which case ‘‘treatment’’ will not

be included as a decision in the model. However, under conditions

of antiviral limitation, one may include ‘‘treatment’’ as an

intervention which can be turned on or off during the epidemic;

this situation may occur when the use of antiviral must be

prioritized among population subgroups [3,4].

To control the epidemic, a policy maker will continue to make

decisions until the prevalence of the disease is sufficiently low. The

stochastic nature of transmission (which is especially important

during emergence or eradication), prevents accurate identification

of the time when the disease will be eradicated; hence, we consider

an infinite decision horizon: T~ft0,t1,t2, . . .g [16]. Although the

decision horizon is infinity, we assume the decision making process

stops when there are no more infectious individuals in the

population.

Rewards and Transition Probabilities. As the result of

vaccination employed at time t~f0,1,2, . . .g, the number of

susceptibles is reduced from XS(t) to XS(t){zt by the next

decision epoch, and the policy maker receives a reward

r(st,zt)~{pzt, where p is the unit price of vaccine.

As the result of a transmission-reducing intervention employed

at time t~f1,2, . . .g, i.e. at[AT , the spread of disease at the next

decision epoch is determined by the probability distribution

P(:jst,at), and the policy maker receives a reward r(st,at).

The reward r(st,at) can be characterized in several ways and the

choice of reward structure should reflect the policy maker’s set of

priorities. For example, if the policy maker wants to minimize the

total number of individuals infected over the course of epidemic,

then reward r(st,at) can be simply defined as r(st,at)~E½I(t)j
st,at�, where I(t) is the number of new infections during the period

t. However, efforts to control epidemics may be bounded by the

availability of medical resources, such as vaccines, medical

personnel, and antiviral drugs, and monetary resources for vaccine

Dynamic Health Policies
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procurement, diagnosis and treatment, and implementation of

interventions. In these situations, where both health-related

outcomes and the resource consumption level are essential for

determining the optimality of a health policy, a more compre-

hensive reward function is needed. A common approach for

defining optimality in these situations is to assume that the policy

maker’s objective is to maximize the population’s net monetary

benefit [18]. To characterize the reward r(st,at) accordingly, we

must define several additional parameters:

N l: policy maker’s willingness-to-pay (WTP) for health.

N c: cost incurred for each incident infection (this may include

diagnosis, treatment and other indirect costs).

N cT (at): cost of implementing the intervention at[AT for period

t; we assume cT (0)~0.

N u(st,at): expected costs incurred during the period t if the

disease spread at time t is at state st and the policy maker

implements the intervention at[AT at decision epoch t;
u(st,at)~cE½I(t)jst,at�zcT (at).

N w: loss in health (quantified by quality-adjusted life years) due

to infections.

N q(st,at): expected loss in population’s health during the period

t if the disease spread at time t is at state st and the policy

maker uses intervention at[AT at decision epoch t;

q(st,at)~wE½I(t)jst,at�.

Now, the reward r(st,at), defined as the expected net monetary

benefit during the period ½t,tzDt� if the disease spread at time t is

at state st and the policy maker chooses intervention at[AT at

decision epoch t, is calculated by r(st,at)~{lq(st,at){u(st,at).
Decision Rules, Health Policies and Optimality. A

decision rule prescribes an action for each state for a specified

decision epoch. For decision epoch t~0, a decision rule is a

function d0 : V?AI , which specifies the number zI[AI of

susceptibles to vaccinate given the initial disease state

(XS(0),XI (0))[V. For decisions that must be made during the

course of the epidemic (t~f1,2, . . .g), we focus on a Markovian

decision rule because this is the most convenient to implement and

evaluate. Such decision rules are functions dt : V?AT|AI ,

which for each state of the disease spread, assign a transmission-

reducing intervention at[AT and a proportion zt[AI of

susceptibles to vaccinate. This decision rule is said to be

Markovian (memoryless) because it depends on previous disease

states and previously utilized interventions only through the

current state of the disease spread.

A policy specifies a decision rule to be used at all decision epochs.

In other words, a policy p is a sequence of decision rules

p~(d0,d1,d2, . . . ). We call a policy stationary if dt~d for

t[f1,2, . . .g; that is, the policy prescribes the same decision for

the given state s regardless of the time period in which this state is

reached. In this paper, we are only interested in characterizing

stationary health policies since they are the most feasible to

implement in practice and their optimality can be proven [16].

Assuming that the influenza spread is at state s1 at decision

epoch t~1, the expected total discounted reward induced by

policy p~(d0,d,d, . . . ) over the course of epidemic is calculated

as:

vp(s1)~Ep
X?

t~1
ct{1r(st,d(st))js1

h i
, ð1Þ

where c[½0,1� is the discount factor to account for the time value of

the future rewards.

Now, assuming that at decision epoch t~0, the state of the

disease spread is s0, the expected total reward induced by policy

p~(d0,d,d, . . . ) is:

Vp(s0)~r(s0,d0(s0))zcvp(s1)

~{pd0(s0)zcvp(XS(0){d0(s0),XI (1)):
ð2Þ

Let P denote the set of all possible stationary policies

p~(d0,d,d, . . . ). We say that a policy p�[P is optimal whenever:

Vp� (s0)§Vp(s0) for each s0[V and all p[P: ð3Þ

Define v�(s):vp� (s), where vp� (s) is calculated by Eq. (1) for

p~p�.
Implicit in the definition of stationary policies is the assumption

that model parameters are known and do not change over time.

This assumption allows the existence of an optimal stationary

policy p~(d0,d,d, . . . ), where the function d(:) is time indepen-

dent. Undoubtedly, this assumption may be violated for emergent

influenza epidemics, and the model parameters may need to be

updated as new data accrues over time. We return to this issue in

later sections and discuss how stationary policies can be

determined in this setting. But, for clarity of presentation, we first

assume that the parameters of the influenza model are constant

and estimable from the initial spread of the epidemic.

A Markov Decision Process Formulation for Influenza
Spread

There are several dynamic optimization methodologies that can

be used to find the policy p� defined in inequality (3). The most

appropriate optimization method depends on the complexity of

the underlying epidemic model, the observability of the epidemic

state, and the desired level of computational efficiency. As a rule of

thumb, finding the exact optimal policy p� becomes more

challenging (and sometimes impossible) as (1) the complexity of

epidemic model increases or (2) the uncertainty around the true

state of the disease spread arises. Several methodologies can help

identify the approximate optimal policy p� even when the epidemic

model is relatively complex and only some probabilistic knowledge

about the current state of the epidemic can be obtained. We

discuss the challenges of optimal decision-making under uncer-

tainty at further length in the Discussion section.

If the disease dynamics can be modeled by a discrete-time

Markov chain and the state of the epidemic is observable over the

course of epidemic, then the stationary optimal health policy p� in

inequality (3) can be efficiently obtained through Markov Decision

Process (MDP) [16]. In our illustrative example of a novel influenza

epidemic, we make several simplifying assumptions about the

spread of influenza to be able to use MDP. We enumerate these

assumptions in the following subsections; we then discuss how these

simplifying assumptions can be relaxed in further work.

We describe epidemic influenza with a SIR model, in which

individuals acquire permanent immunity through infection or

vaccination. We do not consider the possibility of changes in the

population size due to birth, immigration, or death in order to

simplify the analysis. Let Dt denote the time interval between two

consecutive decision epochs. We assume that individuals become

infected only through contact with other infectious members of the

population, and that contacts during the interval ½t,tzDt� occur

according to a homogenous Poisson process, with rate mDt.

Dynamic Health Policies
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We assume that a susceptible who is infected during period

½t{Dt,t� becomes infectious and symptomatic at time t and

interacts with the rest of the population during period ½t,tzDt�;
the individual is then removed from the population (or recovered)

at time tzDt. As we will describe later, these simplifying

assumptions allow the use of Markov decision process to identify

the optimal decision at each decision epoch. In the Discussion

section, we explain how these assumptions can be relaxed.

Let t denote probability that a susceptible person becomes

infected upon contact with an infectious individual and b(t) denote

probability that the next interaction of a random susceptible

person is with an infectious person. When social distancing has not

been used and mixing is homogenous, b(t) is equal to

b(t)~XI (t)=N . Variables t and b(t) can be respectively modified

by ‘‘hygienic interventions’’ (reducing the chance of transmission

given contact between infectious and susceptible individuals) and

‘‘social distancing’’ (reducing the likelihood of contact between

susceptible and infectious individuals). Let Q(t) denote overall

probability that a susceptible person becomes infected. This

probability is calculated in [19] as:

Q(t)~1{e{mDtb(t)t: ð4Þ

Hence, given the state of the disease spread, i.e.

st~(XS(t),XI (t)), the number of new infections during period

½t,tzDt�, denoted by I(t), will have a binomial distribution with

number of trials XS(t) and the probability of success Q(t):

PI(t)(ijXS(t),XI (t))~

XS(t)

i

� �
w(t)i(1{w(t))XS (t){i,

for 0ƒiƒXS(t),

0,otherwise:

8>>>>><
>>>>>:

ð5Þ

The transition probabilities of the Markov chain

f(XS(t),XI (t)) : t~0,1, . . .g can then be calculated by (refer to

Text S1 for detailed steps):

Prf(XS(tzDt),XI (tzDt))~(xS,xI )jXS(t),XI (t)g

~

PI(t)(xI jXS(t),XI (t)),

for xSzxI~XS(t),0ƒxSƒXS(t),0ƒxIƒXS(t),

0,otherwise:

8>><
>>:

ð6Þ

We consider two types of interventions: (1) vaccination and (2)

transmission-reducing interventions. First, we assume that no

vaccines will become available any time during the epidemic;

therefore, the health policy p~(d,d, . . . ) only specifies the optimal

transmission-reducing intervention a�t [AT to implement at decision

epoch t[f1,2, . . .g. We will show later how optimal vaccination

decisions can be made once vaccine becomes available. Also, for

simplicity, we assume that only one transmission-reducing interven-

tion is available; hence AT~

f0,1g. Selecting intervention 1 at decision epoch t, i.e. at~1, reduces

probability Q(t) in Eq. (4) to Q(t)~1{e{(1{aT )mDtb(t)t(t), where

aT[½0,1� is the fractional reduction in the infection transmission rate.

Let P(s’js,a) denote the probability that the influenza epidemic

will be in state s’ at decision epoch tzDt, given that that the state

is s at decision epoch t and the policy maker implements

intervention a[f0,1g at decision epoch t. This probability is

calculated by transition probability (6).

Since we first assume that no vaccine is available during the

course of the epidemic (we relax this assumption below), the policy

maker can only select decisions from set AT~f0,1g. Given this

assumption, the optimal solution to the policy maker’s problem

during the course of epidemic (i.e. maximizing Eq. (1)) is obtained

by solving the following set of recursive equations [16]:

v�(s)~ max
a[f0,1g

fr(s,a)zc
X
s’[V

P(s’js,a)v�(s’)g,for s[V: ð7Þ

By definition, function v�(s) returns the expected total

discounted reward induced by the optimal policy over the

remaining course of epidemic if the current state of epidemic is

s. Therefore, having found the function v�(s),s[V, by solving the

set of equations (7), we can then determine the optimal

transmission-reducing decision for a given state s by:

a�(s)~ argmax
a[f0,1g

fr(s,a)zc
X
s’[V

P(s’js,a)v�(s’)g: ð8Þ

Results

To illustrate the use of the proposed methodology, we consider

the case of an influenza outbreak in an English boarding school

reported in [20] and recently used by [2] and [21]. The population

consisted of N~763 students and the infection was believed to be

introduced by one student returning from Asia. The situation

satisfies many requirements of a simple SIR model, particularly

since no specific intervention was employed during the outbreak.

For a population of size N, the transition probability matrix of

the Markov chain f(XS(t),XI (t)) : t~0,1, . . .g is of size

0:5(Nz1)2, which causes computational problems for our effort

to identify optimal health policies. To overcome this computa-

tional difficulty, several effective alternative solutions have been

proposed in the literature of dynamic optimization; the reader is

referred to [22] for comprehensive discussion. One approach to

reduce the state space of the Markov chain f(XS(t),XI

(t)) : t~0,1, . . .g is ‘‘state aggregation’’, in which the Markov

chain f(XS(t),XI (t)) : t~0,1, . . .g is approximated by the Markov

chain f(HS(t),HI (t)) : t~0,1, . . .g, where HC(t), C[fS,Ig, is the

proportion of population in class C[fS,Ig at time t. Detailed steps

for how one can make these approximations are provided in the

attached Text S1. Note that although we consider a relatively

small population here, however, the approximation method briefly

described above can also be used for larger populations.

The influenza spread model described previously has two

parameters, m and t, which should be estimated from the data.

Using maximum likelihood estimation, we estimate m~20 per day

and t~13:7%. Figure 1 shows each day’s expected number of new

infections calculated by the model versus the observed data. Note

that in Figure 1, the observations on days 1 and 2 are not shown.

The reason is as follows: since in the approximate Markov chain

f(HS(t),HI (t)) : t~0,1, . . .g, the states of influenza spread are

aggregated, the model is not able to accurately capture the state of

the epidemic when the number of infections is very low. For the

observations presented in Figure 1, the number of new cases in

days 1 and 2 are respectively 1 and 6, which are too low to be

captured by the approximate Markov chain f(HS(t),HI

(t)) : t~0,1, . . .g. For detailed discussion, refer to Text S1 and

[19].

To determine optimal dynamic health policies for this

population, we use the following arbitrary settings. We consider

one transmission-reducing intervention which reduces the rate of

Dynamic Health Policies
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infection transmission by 20%, i.e. aT~0:2, and costs cT~

$.,2000 per day. One such transmission-reducing intervention

might be ‘‘having all students wash their hands twice a day’’. The

vaccine price is set to p~$25; each incident infection costs

c~$100 to diagnose and treat and results in a health loss of

0.00342 QALY (assuming that the treatment period lasts 5 days

during which the health quality of the patient is reduced by 25%:

5|0:25=365~0:00342).

Optimal policies during the epidemic are obtained by solving the

set of equations (7) for v�(:) and then using Eq. (8) to find the optimal

decision a�(s) for each state s[V. We use a policy iteration algorithm

[16] with a discount factor c~0:99 to solve the set of equations (7).

Figure 2 displays the optimal health policies for WTP for health

equal to $.,25000/QALY. The conditions for recommending the

use of the transmission-reducing intervention are presented as the

grey regions within the triangle in the upper part of each figure.

For example, the transmission-reducing intervention should be

implemented if the state of the disease is (hS,hI )~(0:5,0:2), and

should not be used when the state of the disease is

(hS,hI )~(0:15,0:4). Text S1 includes additional health polices

corresponding to different levels of WTP.

As discussed previously, we must also identify the optimal number

of susceptibles to vaccinate when an effective vaccine becomes

available. Let us assume that the entire population is susceptible

before the start of epidemic, i.e. XS(0)~x0
S~N , among which x1

I

susceptibles become infectious by time t~1. If we assume that

effective vaccines become available at time t~0 at a market price p,

then the policy maker determines the number the suscpetibles to

immunize, z0, by solving the following optimization problem:

V (x0
S)~ max

0ƒz0ƒx0
S

{x1
I

v� x0
S{z0{x1

I ,x1
I

� �
{pz0, ð9Þ

in which, the variable z0 only takes integer values over the interval

½0,x0
S{x1

I �.

The rectangle in bottom of Figure 2, labeled as ‘‘% of

susceptibles to immunize at t~0,’’ represents the optimal health

policies for immunization before the start of epidemic; again, if

vaccine is not yet available, it may not be possible to achieve these

levels of immunization. These recommendations are obtained by

solving problem (9).

Employing Dynamic Health Policies to Control Influenza
Spread

In this section, we discuss how the optimal dynamic health

policy for using the transmission-reducing intervention and

vaccinating additional susceptible individuals in decision epochs

is determined as an epidemic progresses and new data become

available.

Table 1 shows the observable information that accrues during

an epidemic. Before the start of epidemic, at time t~0, the policy

maker obtains an estimate for XS(0), denoted by x̂x0
S . For a novel

strain of influenza, we assume that the entire population is

susceptible, hence x̂x0
S~N for these situations. The policy maker

also obtains a prior distribution for the number of susceptibles who

may become infectious by time t~1. Let the number of infectives

at time t~1 be randomly distributed according to probability

mass function PXI (1)(:) with support ½0,x̂x0
S�. The policy maker can

then use the following optimization problem to find the number of

susceptibles to immunize at time t~0:

z�0~ arg max
0ƒz0ƒx̂x0

S

Xx̂x0
S

{z0

xI ~0

v� x̂x0
S{z0{xI ,xI

� �
PXI (1)(xI ){pz0, ð10Þ

in which, the variable z0 only takes integer values over the interval

½0,x̂x0
S�.

Using observation of the number of new infections occurring

during the epidemic, we update our knowledge on the state of the

epidemic for the next decision epochs as follows. At the beginning of

Figure 1. Observed new cases in the English boarding school versus the model’s predictions. This figure shows each day’s expected
number of new infections calculated by the model (presented by solid curve) versus the observed data (presented by dots). The dotted curves show
the model’s expected number of new infections +3 times its standard deviation.
doi:10.1371/journal.pone.0024043.g001
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period t~1, x̂x1
I new infections are observed which implies that the

number of susceptibles at this time is x̂x1
S~x̂x0

S{z�0{x̂x1
I . At the end

of each period t, ÎIt new infections are observed. This observation

implies that (1) the number of susceptibles at the beginning of period

tz1 is x̂xtz1
S ~x̂xt

S{ÎIt and (2) the number of infectives at time tz1 is

ÎIt, since we assume that all infectives at time t are removed or

recovered by the next decision epoch (see Table 1).

Now, knowing that the epidemic is at state (x̂xt
S,x̂xt

I ) and

assuming that no vaccine is available at time t, the optimal

transmission-reducing decisions for period t is obtained by solving

Eq. (8) (which can also be summarized in form of the policy shown

in Figure 2).

Now assume that at decision epoch t, vaccines for the epidemic

strain of influenza either become available for the first time or that

depleted stocks of vaccine have now been replenished. Let

v̂v(xS,xI ; at,zt) denote the expected reward if influenza spread is

in state (xS,xI ) at time t, the transmission-reducing intervention

at[f0,1g is implemented during period ½t,tzDt�, and ztƒxS

Figure 2. Optimal stationary health policy for l~$.,25000/QALY. The conditions for recommending the use of the transmission-reducing
intervention is presented within the triangle in the upper part of each figure. In disease states consistent with those that are captured within the grey
cells, the intervention should be used. For instance, the transmission-reducing intervention should be implemented if the state of the disease is
(hS ,hI )~(0:5,0:2), and should not be used when the state of the disease is (hS ,hI )~(0:15,0:4). The rectangle in bottom of this figure, labeled as ‘‘% of
susceptibles to immunize at t~0,’’ represents the optimal health policies for immunization before the start of epidemic given that vaccine is available
at a market price.
doi:10.1371/journal.pone.0024043.g002

Table 1. Observed information over the course of an epidemic.

Period 0 1 2 . . . t

Observed number of x̂x0
S x̂x1

S~x̂x0
S{z�0{x̂x1

I x̂x2
S~x̂x1

S{ÎI1 x̂xt
S~x̂xt{1

S {ÎIt{1

susceptibles, X̂XS(t)

Observed number of x̂x1
I x̂x2

I ~ÎI1 x̂xt
I ~ÎIt{1

infectives, X̂XI (t)

Observed new infections, ÎI(t) ÎI1 ÎI2 ÎIt

doi:10.1371/journal.pone.0024043.t001
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susceptibles are vaccinated by the decision epoch tzDt. Then,

function v̂v(xS,xI ; at,zt) is calculated as:

v̂v(xS,xI ; at,zt)~r(xS,xI ; at){pztzc
X

s’[V’(zt)

P(s’jxS,xI ; at)v
�(s’)
ð11Þ

where V’(zt)~f(x’S,x’I )[Vjx’S~xS{ztg. The optimal transmis-

sion-reducing intervention (a�t ) and the number of susceptibles to

vaccinate (z�t ) during the period ½t,tzDt� is then determined by

solving the following problem:

max v̂v(x̂xt
S,x̂xt

I ; at,zt),

0ƒztƒx̂xt
S,

at[f0,1g

ð12Þ

where v̂v(xS,xI ; at,zt) is given by Eq. (11) and the variable zt only

takes integer values over the interval ½0,x̂xt
S�.

As briefly pointed out before, to determine the stationary health

policy p�~½a�(:)�, we assumed that the parameters of the influenza

spread model are all known and do not change over time. It is,

however, more realistic to assume that as new data become

available over the course of epidemics, policy makers also update

the parameters of the underlying transmission model. Table 2

outlines a procedure describing how dynamic health policies can

be employed when policy maker is using the real-time data to also

update the parameters of the influenza spread model.

Optimal Dynamic Health Policies under Resource
Constraint

The optimal health policies developed in the previous section do

not consider the availability of resources (e.g. vaccines, budget, and

antiviral for treatment) while making health recommendations.

For example, the policy presented in Figure 2, recommends

vaccinating 99% of the remaining susceptibles when the initial

proportion of susceptibles is 0:8; this recommendation does not

account for the number of vaccines that are actually available.

Similarly, the recommendations for turning on and off the

transmission-reducing intervention do not account for the budget

and resources necessary to initiate or terminate these recommen-

dations. The framework proposed here can be expanded to

incorporate different forms of resource constraints while con-

structing dynamic health policies. In this section, we discuss policy

development under three types of resource limitations.

Let us first consider the case where n vaccines are available at

time t~0, and the policy maker must decide how many

susceptibles to vaccinate using these n vaccines. For now, let us

assume that no additional vaccines will become available during

the epidemic and any unused vaccine by time t~1 will be lost (e.g.

shipped to other communities). The policy maker can now use

Figure 3 to select the WTP for which a feasible vaccination

recommendation can be implemented. For a given initial

proportion of susceptibles h0
S , Figure 3 identifies the number of

vaccines required for each value of WTP (l) through solving the

optimization problem (10). As an example, for h0
S~0:5, if the

policy maker’s sole objective is to minimize cost (i.e. l~
$0=QALY) 352 vaccines are required and for any WTP l§

$.,25000/QALY, 367 vaccines should be used. Note that for

h0
S~0:5, vaccinating less than 352 susceptibles results in a

monetary loss, and vaccinating more than 367 susceptibles does

not increase the population’s expected net monetary benefit for

any l§ $.,25000/QALY.

Now to demonstrate how a vaccine supply constraint can be

accounted for in constructing an optimal health policy, let us

assume that for our population, at time t~0 (before the start of

epidemic), there are n~550 vaccines available (the same approach

can be followed for all other decision epochs). When n~550
vaccines are available, then according to Figure 3, for any initial

proportion of susceptibles h0
Sv0:76 any health policy with l§

$.,25000/QALY can be used to optimally allocate all of the

available vaccines. For any initial proportion of susceptibles

h0
S§0:76, all 550 vaccines should be used.

Now we consider a more complex scenario of vaccine limitation

where vaccines become available in varying quantities over several

decision epochs. Let us assume that at time t~0, the policy maker

knows with certainty that during the following H decision epochs

f1,2, . . . ,Hg, fn1,n2, . . . ,nHg vaccines will become available. Like

before, we assume that any vaccine unused during a period will be

lost at the end of the period. Given epidemic state

(XS(t),XI (t))~(xt
S,xt

I ) and nt available vaccines at time t, the

policy maker must now decide how many susceptibles to vaccinate

and also whether to implement the transmission-reducing

intervention. To illustrate how these decisions can be made at

each decision epoch, let us assume that H~2 (cases with Hw2
are solved in a similar fashion).

Table 2. Determining Dynamic Health Policies Using Real-Time Data.

At time t = 0

1. Obtain estimates for model parameters (m̂m,t̂t), initial number of susceptibles, x̂x0
S , and a prior distribution for random variable XI (1).

2. Use Eqs. (7)–(8) to determine the dynamic health policy p�~½a�(:)�.
3. Find the optimal number of susceptibles to immunize, z�0 , using Eq. (10).

4. Increment time to t~1.

5. Update the number of susceptibles at time t~1: x̂x1
S~x̂x0

S{z�0{x̂x1
I .

While X̂XI tð Þw0 :

1. Given the availability of vaccine, use Eq. (8) or Eq. (12) to find the optimal number of susceptibles to immunize, z�t , and the optimal transmission-reducing

intervention, a�t .

2. At the end of period t, use the real-time data fÎI1,ÎI2, . . . ,ÎItg to update the model parameters (using for instance, maximum likelihood estimation) and the
dynamic health policy p�~½a�(:)�, using Eqs. (7)–(8).

3. Increment time: t/tz1.

4. Use Table 1 to update the epidemic state at time t.

doi:10.1371/journal.pone.0024043.t002
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The optimal allocation is determined iteratively as follows. We

start by finding the optimal decisions for the final decision epoch

for which vaccines are supplied (i.e. t~H~2 in this example). If at

decision epoch t~2, the epidemic is at state

(XS(2),XI (2))~(x2
S,x2

I ) with n2 vaccines available, the optimal

recommendations for vaccination and transmission-reducing

intervention are determined by solving the problem:

v�2(x2
S,x2

I )~ max
0ƒz2ƒn2

a2[f0,1g

v̂v(x2
S,x2

I ; at,zt), ð13Þ

where v̂v(x2
S,x2

I ; at,zt) is calculated by Eq. 11. Next, we step

backward in time and determine the optimal decisions for epoch

t~1. If at time t~1, the epidemic is at state

(XS(1),XI (1))~(x1
S,x1

I ) with n1 vaccines available, the optimal

decisions at time t~1 is determined by:

v�1(x1
S,x1

I )~ max
0ƒz1ƒn1

a1[f0,1g

r(x1
S,x1

I ; a1){pz1zl

X
(x
02
S

,x
02
I

)[V
0
(z1)

P(x
02
S ,x

02
I jx1

S,x1
I ; a1)v�2(x

02
S ,x

02
I ),

ð14Þ

where V’(z1)~f(x02S ,x
02
I )[Vjx02S ~x2

S{z1g and v�2(x
02
S ,x

02
I ) is

already calculated in problem (13).

Now to employ this new dynamic health policy that was

generated under assumptions of known vaccine constraints

fn1,n2g, we take the following steps (note that we assume here

that no vaccine is available at time t~0):

Step 1: At time t~1, for the observed state (x̂x1
S,x̂x1

I ) and

n1 available vaccines, use problem (14) to find the

optimal number of susceptibles to vaccinate and the

transmission-reducing intervention to implement.

Step 2: Update the epidemic state using the observed

number of new cases during period 1, ÎI1 (see Table 1).

Step 3: At time t~2, for the observed state (x̂x2
S,x̂x2

I ) and

n2 available vaccines, use problem (13) to find the

optimal number of susceptibles to vaccinate and the

transmission-reducing intervention to implement.

Step 4: For the remaining decision epochs t§3, use

Table 1 to update the epidemic state and then use

problem (8) to find the optimal transmission-reducing

intervention to employ.

Finally, we discuss how budget constraints can be accounted for

while generating dynamic health policies. From a methodological

perspective, ensuring that budgetary limitations are not exceeded

while attempting to control an epidemic is more challenging

primarily due to the stochastic nature of disease spread that leads

to high variance for the expected costs incurred. However, if we

assume that the policy maker is mainly interested in keeping the

expected cost incurred during epidemic lower than a constant

budget threshold, Figure 4 can be used to select the health policy

which satisfies such a constraint.

Suppose that for our population, after vaccination phase at

t~0, the proportion of susceptibles at t~1 is reduced to 0:7, and

that the policy maker sets the budget threshold at b~$.,50000.

Then, Figure 4 indicates that for WTP l~$.,100000/QALY the

expected cost incurred during epidemic remains below b
als$.,50000. Therefore, the policy maker should use the health

policy generated by setting the willingness-to-pay l~$.,100000/

QALY to guide decision making during the epidemic.

Evaluating the Effect of Dynamic Health Policies in
Controlling the Spread of Influenza

To study the effect of employing the dynamic health policies,

we built a simulation model for influenza spread in the

population described above. Figure 5 displays the expected

number of new infections during each period when aT~40% and

policies corresponding to different WTP are employed, given the

Figure 3. Number of Vaccines Required. Each line specifies the optimal number of vaccines required by different WTP for health. For a given
initial number of susceptibles, the policy maker can use this figure to find the WTP for health whose corresponding policy satisfies the vaccine
constraint.
doi:10.1371/journal.pone.0024043.g003
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realistic assumption that no effective vaccine was available before

the start of epidemic. If vaccines were available in sufficient

quantities to employ the and the vaccine recommendations in

Figure 5, the epidemic would be averted and there would be no

need to employ dynamic policies. The incidence of disease for

these policies in each period were statistically different with each

other at 1000 simulation runs. As shown in Figure 5, as the

willingness-to-pay for health increases, the expected number of

individuals infected during the epidemic is reduced since the

policies corresponding to the higher willingness-to-pay tend to be

more aggressive in implementing the transmission-reducing

intervention.

Evaluating the Assumption of the Observability of New
Cases

In previous section, we assumed that the policy maker is able to

accurately measure the number of new infections occurring in

each period. This is a strong assumption that will be violated for

many infectious diseases (including influenza) where diagnosis is

difficult and for which the number of reported cases is an

underestimate for the actual number of infections. To examine the

sensitivity of the performance of the generated dynamic health

policies to the assumption that all cases are observed, we assume

that the policy maker’s observation of the number of cases during

Figure 4. Expected Budget Required During Epidemic. Each curve specifies the expected budget required by different WTP for health. For a
given initial number of susceptibles, the policy maker can use this figure to find the WTP for health whose corresponding policy satisfies the budget
constraint.
doi:10.1371/journal.pone.0024043.g004

Figure 5. Effect of dynamic health policies on controlling the spread of influenza when no vaccine is available. As the willingness-to-
pay for health increases, the expected number of individuals infected during the epidemic is reduced since the policies corresponding to the higher
willingness-to-pay tend to be more aggressive in implementing the transmission-reducing intervention.
doi:10.1371/journal.pone.0024043.g005
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period ½t,tzDt� is only a portion of the true number of cases; that

is x̂xtz1
I ~(1ze(t))I(t), where e(t) is the percent error in identi-

fying the number of new cases during period ½t,tzDt�.
If the error term e(t) is a constant in each period, i.e. e(t)~gt,

and known to the policy maker, the number of susceptibles and the

number of infectives in Table 1 can be calculated, respectively, as

x̂xt
S~x̂xt{1

S {(1zgt{1)ÎIt{1 and x̂xt
I~(1zgt{1)ÎIt{1. Hence, the

constant observation error e(t)~gt can be easily corrected in

order to preserve the optimality of dynamic health policies under

this error setting.

Now let us assume that the error term e(t) has the form

e(t)~gtze, where gt is a constant known to the policy maker and

e is a normally distributed noise with mean zero and standard

deviation s( ). The effect of the constant term gt can be corrected

like before by using equations x̂xt
S~x̂xt{1

S {(1zgt{1)ÎIt{1 and

x̂xt
I~(1zgt{1)ÎIt{1 to update the current information about the

epidemic state in Table 1. The effect of the random noise cannot

be corrected; yet, the impact of this noise on the performance of

the dynamic health policies can be investigated through

simulation. Figure 6 shows the effect of uncertainty around the

number of observed cases on the capability of dynamic health

policies in controlling the epidemic in our population, for different

WTP for health. We find that as the standard deviation of noise,

s( ), increases, the total number of individuals affected by the

epidemic also increases; however, this increase is linear with a low

rate which implies that for our population the performance of the

generated dynamic health policies is not highly sensitive to the

assumption of observability of new cases.

If this simulation analysis shows significant sensitivity of the

performance of dynamic health policies to the assumption of

observability of new cases, or the policy maker believes that the

probability distribution of noise e varies over time (for instance, if

vigilance of testing diagnosis increases or decreases over time),

then more advanced optimization tools can be employed. This

issue is briefly discussed in the Discussion section.

Discussion

The emergence of novel human pathogens (e.g. H1N1 and

H5N1 influenza, SARS) and their devastating health and financial

consequences on affected populations have highlighted the need

for developing methods which allow real-time selection of health

interventions to control the epidemic while effective vaccines are

not available or not present in sufficient quantities to prevent

disease spread. We refer to policies informed by such methods as

dynamic health policies which are intended to allow for real-time

recommendations to be made in response to changing disease and

population characteristics as well as the availability of resources.

In contrast to most existing approaches for identifying optimal

strategies for infectious disease control which use simulation or

mathematical models of disease spread to compare the performance

of a limited number of pre-determined health policies, we proposed the

use of ‘‘dynamic programming’’ [23] to characterize and identify

optimal dynamic health policies. We demonstrated how a Markov

decision process [16] can be employed to find optimal dynamic

health policies for a simple model of influenza epidemic, in which

two types of interventions may be available during the epidemic to

control the influenza spread: (1) vaccination, and (2) a transmission-

reducing intervention, such as social distancing. The generated

dynamic health policies help the policy maker to determine (1) how

to allocate vaccines when they become available, and (2) whether

the transmission-reducing intervention, such as school closure,

should be employed or lifted given the number of susceptibles and

infectives at any point of time.

While we used a discrete-time Markov decision process, a

number of other methodologies have also been proposed and

Figure 6. Expected total number of new infections versus the standard deviation of the error in observing the number of new
cases. As the standard deviation of noise increases, reflecting imperfect surveillance capacity, the total number of individuals affected by the
epidemic also increases. However, this increase occurs linearly at a low rate, which implies that for our population the performance of the generated
dynamic health policies is not extremely sensitive to the assumption of observability of new cases.
doi:10.1371/journal.pone.0024043.g006
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developed to determine or approximate optimal dynamic health

policies for controlling emerging epidemic. For instance, Lefevre

[24] used a continuous-time Markov decision model, Merl et al.

[2] developed a statistical framework and Ludkovski and Niemi

[21] developed a simulation-based model for dynamic determina-

tion of optimal policies for emerging epidemics. Undoubtedly,

comparing the effectiveness of these methodologies when em-

ployed in real practice merits a separate research study.

The influenza model proposed in this paper is very simple and

not intended to realistically model disease spread or be used

directly to guide the selection of interventions. We present it only

for illustration of our proposed approach for dynamic decision

making. The model makes several simplifying assumptions that

were required for using an MDP to generate the optimal health

policies: first, we require that the number of new infections during

each period is observable by the policy maker, and second, we

assume that an infectious individual interacts with the rest of the

population only during the next period and then is effectively

removed (treated or isolated) from the population. Relaxing these

two assumptions will mean the state of the epidemic is

unobservable; yet, a probability belief about the epidemic state

can often be generated as new data become available. If we relax

these assumptions, we can use generalized discrete-time Markov

models for infectious diseases proposed in [19] and use partially

observable Markov decision process (POMDP) [25] to character-

ize optimal health policies. However, as the number of states

required to model disease spread increases, MDP and POMDP

rapidly lose their efficiency. In these cases, approximate dynamic

programming [22] using a simulation model may be employed to

identify optimal dynamic health policies. Accordingly, the

framework we propose here can potentially be extended to inform

decision-making for control of a pathogen with a more complex

natural history such as tuberculosis or to design interventions that

consider distinct responses targeted toward different risk groups.

Such extensions are attractive topics for future research.

As a final note, for the successful implement of the dynamic

health policies in practice, the mathematical or simulation model

of the disease spread along with the optimization technique used

for finding the dynamic health policies must be coupled with an

surveillance system that can supply data to estimate the

parameters of the underlying model and to provide knowledge

on the state of the epidemic. Although dynamic optimization

techniques are capable of handling noisy observations, inaccura-

cies in the surveillance and reporting system may result in

suboptimal policies, further underscoring the tremendous impor-

tance of public health surveillance in defining responses to

epidemics.
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