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Abstract

Background: Mannose binding proteins (MBPs) play a vital role in several biological functions such as defense mechanisms.
These proteins bind to mannose on the surface of a wide range of pathogens and help in eliminating these pathogens from
our body. Thus, it is important to identify mannose interacting residues (MIRs) in order to understand mechanism of
recognition of pathogens by MBPs.

Results: This paper describes modules developed for predicting MIRs in a protein. Support vector machine (SVM) based
models have been developed on 120 mannose binding protein chains, where no two chains have more than 25% sequence
similarity. SVM models were developed on two types of datasets: 1) main dataset consists of 1029 mannose interacting and
1029 non-interacting residues, 2) realistic dataset consists of 1029 mannose interacting and 10320 non-interacting residues.
In this study, firstly, we developed standard modules using binary and PSSM profile of patterns and got maximum MCC
around 0.32. Secondly, we developed SVM modules using composition profile of patterns and achieved maximum MCC
around 0.74 with accuracy 86.64% on main dataset. Thirdly, we developed a model on a realistic dataset and achieved
maximum MCC of 0.62 with accuracy 93.08%. Based on this study, a standalone program and web server have been
developed for predicting mannose interacting residues in proteins (http://www.imtech.res.in/raghava/premier/).

Conclusions: Compositional analysis of mannose interacting and non-interacting residues shows that certain types of
residues are preferred in mannose interaction. It was also observed that residues around mannose interacting residues have
a preference for certain types of residues. Composition of patterns/peptide/segment has been used for predicting MIRs and
achieved reasonable high accuracy. It is possible that this novel strategy may be effective to predict other types of
interacting residues. This study will be useful in annotating the function of protein as well as in understanding the role of
mannose in the immune system.
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Introduction

Carbohydrates are important component of life, they are also

known as third molecular chain of life, after DNA and proteins [1].

Protein-Carbohydrate interaction plays a vital role in a variety of

biological processes like infection, immune response, cell differen-

tiation and neuronal development [2–5]. In past large number of

methods have been developed to predict protein-protein [6],

protein-nucleotide [7,8], protein-RNA [9,10] and protein-DNA

interaction [11–13]. Only limited number of methods has been

developed to identify residues in proteins that interact with

carbohydrate covalently (glycosylation) or non-covalently (carbo-

hydrate binding sites) [14–21]. Most of the existing methods for

predicting carbohydrate-binding sites are structure-based meth-

ods; these methods predict carbohydrate-binding sites in protein

structures [15–19]. Thornton et al. (2000) predicted carbohydrate-

binding site in known 3D protein-carbohydrate complex with

overall accuracy of 65% [1]. Similarly, Balaji et al. (2004)

developed a program COTRAN to predict galactose-binding site

in known protein complexes and achieved 76% sensitivity [19].

Malik and Ahmad (2007) first time developed a sequence-based

method for predicting carbohydrate-binding sites in a protein

[20,21]. Recently, classifiers have been developed for predicting

glucose-binding sites in proteins [22].

It is important to predict protein residues that interact with

specific type of carbohydrate instead of any type of carbohydrate,

in order to understand protein-carbohydrate interaction in depth.

The goal of this study is to develop method for predicting

mannose-interacting residues in a protein, a sugar monomer of the

aldohexose series of carbohydrates [23,24]. The mannose binding

proteins (MBPs) also called mannose-binding lectin (MBL) (24),

plays a vital role in immune defense mechanism. These MBL

mediates innate immune function including activation of lectin

complement pathway, by binding to mannose on the surface of

wide range of pathogens that are absent at mammalian cell surface

[3]. These mannose binding proteins play an important role in

opsonize bacteria by tagging the surface of a pathogen to facilitate

recognition and ingestion by phagocytes (Figure 1). Opsonization

is a process to make bacteria or other cells more susceptible to the

action of phagocytes [2,3].
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In the present work a systematic attempt has been made to

develop modules for predicting mannose interacting residues in a

protein, from its primary sequence. Firstly, we developed

similarity-based module for predicting MIRs in proteins [25].

Secondly, we developed Support Vector Machine (SVM) based

modules for predicting MIRs in proteins using binary profile of

patterns [26]. Thirdly, SVM module was developed using

evolutionary information in form of PSSM profile [27,28]. Finally,

a module based on local composition or composition profile of

patterns was developed for predicting MIRs in proteins.

Materials and Methods

Dataset
We extracted 647 structures of mannose-binding proteins from

Protein Databank (PDB). These mannose-binding proteins were

selected based on information provided in SuperSite documentation

[29]. The chains of these proteins were processed using Ligand

Protein Contact (LPC) server [30] and got total 1502 PDB chain

which contain mannose-interacting residues. Figure 2, shows a

mannose protein complex with their MIRs. Further Blast-clust

(http://blast.ncbi.nlm.nih.gov/Blast.cgi) software was used for

removing redundant chains. Finally we got 120 mannose binding

protein chains, where no two chains have more than 25% sequence

similarity. These chains contain 1029 mannose-interacting and

38136 mannose non-interacting residues (binding sites). Mannose

binding site is defined as the site present on the surface of protein,

where mannose atoms interact with the amino acids of protein

within a distance-cutoff of 4 Au. Sequences of these 120 mannose-

binding proteins with their PDB ID and chain name are available at

Figure 1. Schematic diagram of pathway of mannose binding
lectins, recognition of mannose on pathogens and process of
phagocytosis.
doi:10.1371/journal.pone.0024039.g001

Figure 2. Schematic representation of algorithm used to generate patterns from a given protein sequences and their binary and
composition profile.
doi:10.1371/journal.pone.0024039.g002
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http://www.imtech.res.in/raghava/premier/data.php, where MI

Rs are in lowercase and non-MIRs are in uppercase.

Creation of Patterns
It is well known that the function of a residue is not solely

determined by itself but influenced by its neighboring residues

[7,8]. Thus, we created overlapping patterns (segments) of

different window size from 17 to 25 residues for each mannose-

binding protein. If the central residue of pattern was MIR, then we

classified the pattern as positive (or mannose interacting) pattern

otherwise it was termed as negative (or non-interacting) pattern.

To create a pattern corresponding to the terminal residues in a

protein chain, we added (L-1)/2 dummy residues ‘‘X’’ at both

terminals of protein (where L is the length of pattern) [9]. It means

for window size 17, we added 8 ‘‘X’’ at N terminal and 8 ‘‘X’’ at

C-terminal, in order to create L patterns from sequence of length

L. It is similar to the approach adopted by Kaur and Raghava

[27–28] for prediction of turns in protein sequences (Figure 2).

Main Dataset
In this dataset we have used equal number of positive and

negative patterns, where negative patterns were randomly picked

up from the pool of negative patterns. Positive patterns contain

interacting residues in its center while negative patterns contain

non-interacting residues in its center. We have used this dataset

because machine-learning techniques are more efficient in

learning when negative and positives patterns are equal and it’s

common in literature. In summary main dataset consists of 1029

interacting and 1029 non-interacting patterns.

Realistic Dataset
Though it’s easy to develop the model on equal dataset but it

does not represent the realistic situation. In real life non-MIRs are

much more than MIRs. This raises question whether models

developed on our main dataset will be effective in real life. To

overcome this problem we created a realistic dataset, which

contain more non-interacting patterns then interacting patterns.

This dataset has 1029 MIR Patterns and 10320 non-MIR patterns

(approximately 10 times more negative pattern of the positive

patterns). In this dataset we used only 10320 non-MIRs out of total

38136 non-MIRS in order to save computational time used to

train/test SVM models.

Binary Profile of Patterns
We created positive and negative patterns as described above

but these patterns cannot be used directly for developing SVM

based models because SVM need numerical values. Thus we

converted these patterns into binary numbers, where a pattern of

length N was represented by a vector of dimension N621. Each

amino acid is represented by a vector of dimension 21 (e.g. Ala

by 1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), contained 20 amino

acids and one dummy amino acid X (Figure 2). This binary

profile of patterns has been used in most of existing methods [7–

12].

Evolutionary Information
volutionary information of protein sequences were obtained

from position-specific scoring matrix (PSSM) generated using

PSI-BLAST [18], where each mannose-binding protein was

searched against non-redundant (nr) database (ftp://ftp.ncbi.nih.

gov/blast/db/fasta/nr.gz) of protein sequences. The PSSM

matrices were generated by PSI-BLAST using three iterations

at cutoff e-value of 0.001. The PSSM thus generated contained

the probability of occurrence of each type of amino acid residues

at each position along with insertion/deletion. PSSM profile

encapsulates evolutionary information in the form of a matrix,

which is considered as a measure of residue conservation at a

given location. This means that evolutionary information for each

amino acid is encapsulated in a vector of dimension 21, where the

size of PSSM matrix of a protein with N residues is 216N. Where

20 dimension are standard amino acid and 1 for dummy amino

acid. We normalized each value within 0–1 ranges using

following equation:

Val~
1

1z(2:7182)-val
ð1Þ

Where val is the PSSM score and Val is its normalized value. We

normalize values of PSSM matrix, as variation was very high

between –1000 to +1000. It is difficult for SVM to learn from

these types of variation, thus we normalize values between 0

and 1.

Local Composition or Composition Profile of Patterns
In previous studies, patterns or segment were converted into

binary numbers, where a vector of dimension 21 represents an

amino acid. In this study we used local composition or

composition profile of patterns (CPP). It means we represent a

pattern by its amino acid composition. Thus a vector of

dimensions 21 can represent a pattern or segment of any length.

Recently, our group used this concept for predicting conforma-

tional B-cell epitopes [31]. In CPP, we simply compute amino acid

composition of a pattern (Figure 2). Thus pattern can be

represented by a vector of dimension 21, which represents twenty

natural amino acids and one dummy amino acid ‘‘X’’. Amino acid

composition of patterns were computed using following formula

[31,32]:

comp(i)~
Ri

N
ð2Þ

where comp(i) is the fraction of residue or composition of residue

of type i. Ri and N are number of residues of type i, and total the

number of residue in protein i (length of protein) respectively.

Support Vector Machine (SVM)
SVM based modules have been developed for discriminating

MIRs and non-MIRs in proteins [26]. SVM is a universal

approximator based on statistical learning and optimization

theory, which support both regression and classification. SVM is

particularly attractive to biological sequence analysis due to its

ability to handle noise, dataset and large input space. We

implemented SVM technique using SVM_light package (http://

www.cs.cornell.edu/People/tj/svm_light) [26]. This package is

very powerful and users friendly, which allow users to select

various parameters and various kernel functions, like radial basis

function (RBF), linear and polynomial functions.

Five-Fold Cross-Validation
In this study, we used commonly used technique called five-fold

cross-validation technique, were data set is randomly divided into

five subsets, each containing an equal number of patterns [6–8].

Each set is an unbalanced set that retains nearly equal number of

interacting and non-interacting patterns. Out of these five sets four

sets were used for training and the remaining fifth set for testing.

This process was repeated five times in such a way that each set

was used once for testing. The final performance was obtained by

averaging the performance of all the five sets.

Identification of Mannose Interacting Residues
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Performance Measures
In order to assess the performance of SVM modules developed

in this study, we used standard parameters [6–13]. These

parameters have been described in brief in this section, for detail

description see Chauhan et al. [8]. We compute following

threshold dependent parameters; i) sensitivity is percent of

correctly predicted MIRs, ii) specificity (Spe) is percent of correctly

predicted non-MIRs, iii) accuracy (Acc) is percent of correct

predicted residues and iv) Matthew’s correlation coefficient

(MCC). In this study we also evaluate our models using area

under curve (AUC), which is a threshold independent parameter.

We used SPSS package (11.0.1) for plotting ROC curve and for

calculating AUC (http://www.spss.com/).

Results

Analysis of MIRs
In order to understand whether certain types of residues are

preferred in mannose interaction, composition of interacting and

non-interacting residues was compared (Figure 3). It was observed

that certain types of residues like Asp, Glu, Asn, Gln, Arg, Ser,

Thr, Trp and Tyr are preferred in mannose interaction (Figure 3).

Majority of the amino acid that helps in protein carbohydrate

interaction are the one having side chains residues with polar

groups like ASN, ASP, GLU, GLN, ARG and HIS [33]. Amino

acid side chains of tryptophan and tyrosine are capable of making

CH/pi interactions with carbohydrates. In CH/pi interactions the

hydrophobic C-H groups of carbohydrate interact with the pi-

electron system of aromatic-acid residues. These CH/pi interac-

tions are important for carbohydrate binding proteins for ligand-

recognition [34]. We have also observed that polar/uncharged

amino acids play an active role to differentiate between MIRs and

Non-MIRs (Figure 4). The dominance of these residues shows a

vital role of these residues in mannose interaction. It has been

shown in the past that properties of a residue (i.e. interaction,

secondary structure) depend on its neighbor residues [7]. It is a

common practice to develop a method using window/pattern

where center residue is interacting and non-interacting [8–12]. For

better understanding, we create a two-sample logo graph showing

MIR at center is different than non-MIR (Figure 5). From the

Figure 4 we found that Asp, Tyr, Trp, Asn, Glu and Gln residues

are abundant in center position and flanked by mostly Ser, Thr,

and Gly in positive patterns/MIRs Patterns.

In addition we have also created a graph for comparing

composition of MIRs and non-MIRs containing patterns as shown

in Figure 6. It was seen that Ser and Thr residues are prominent in

MIRs patterns. It was interesting observation compared with other

analysis, such as DNA and RNA binding proteins, which have high

preference for charged residues at the binding sites, trans-

membrane helical proteins with a stretch of hydrophobic residues

in the membrane [35]. Here, Arg is favored and Lys is not favored;

among aromatic residues, Tyr and Trp are favored and Phe is not

favored.

Similarity Based Module
BLAST is a commonly used tool for annotating function of a

protein [25]. In this technique protein is searched against database

of annotated proteins (e.g., Swiss-Prot). If a query protein or its

region has high similarity with an annotated protein then we

assign same function to a query protein. BLAST was examined

whether it can be used for predicting mannose-interacting residues

in proteins. Mannose-binding proteins (MBP) were searched

against remaining MBPs (119 MBPs), this process is repeated

120 times in such a way that each MBP was searched against

remaining MBPs. It was observed that we got BLAST hit only for

40 MBPs, among those we analyzed 12 MBPs, which have

minimum E-value and has more than three mannose interacting

residues. Alignment details (BLAST) of each protein are shown in

Datasheet S1. It was observed that BLAST was not suitable for

predicting MIRs. There is a need to develop an alternative

technique for predicting MIRs.

Figure 3. Comparison of percent amino acid composition of mannose interacting and non-interacting residues.
doi:10.1371/journal.pone.0024039.g003
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Performance of SVM on Main Dataset
Binary Profile of Patterns. It has been shown in previous

studies that 17-residue patterns gave optimize performance in

prediction of nucleotide interacting residues [8–12]. Thus we also

developed SVM based model using patterns where length of a

pattern is 17-residues. These patterns were converted into binary

patterns called binary profile of patterns. We achieved maximum

MCC of 0.19 with accuracy 59.60% using binary profile of

patterns of length 17 (Table 1). At zero threshold accuracy was

maximum and having minimum difference in sensitivity and

specificity. Model was evaluated on main dataset using fivefold

cross-validation technique. Although this is a standard technique

for predicting interacting residues, unfortunately the performance

of this technique was very poor in case of MIR prediction.

SVM Model Using Evolutionary Information
In the past, it has been shown in several studies that

evolutionary information provides more information then single

sequence [27,28]. In this study, the evolutionary information

obtained from a PSSM profile generated using PSI-BLAST has

been used for developing SVM based models[25]. As shown in

Table 1, performance increased significantly when PSSM was

used as input instead of single sequence (Table S1). We achieved

maximum MCC of 0.32 with accuracy 65.66%, sensitivity 73.51%

and specificity 57.80%.

Local Composition or Composition Profile of Pa-

tterns. It has been observed in Figures 3, 4, 5, and 6 that

certain types of residues are more abundant in MIRs patterns

(e.g., Ser, Thr, Asn, Asp, Tyr). Thus it’s possible to discriminate

MIRs and non-MIRs patterns based on their composition. Based

on this observation we used a new strategy for converting patterns

in numbers. In this case we compute composition of each pattern

and represent a pattern by a vector of dimension 21. This is

called local composition or composition profile of pattern (CPP),

see Ansari and Raghava [31] for detail. We developed CPP based

SVM models and achieved a maximum MCC of 0.61 for a

pattern of length 17-residues. It was interesting to note that the

performance of composition based SVM model is significantly

higher than SVM models developed using binary or PSSM

profile. We also developed CPP based SVM models using

different windows lengths (Table 2). These results clearly indicate

that this newly introduced CPP based SVM models are

more accurate in prediction of mannose interacting residues

(Table S2 & S3).

CPP based SVM Models on Realistic Dataset. All above

model developed on main dataset where MIRs and non-MIRs are

equal. In real life there is only few mannose interacting residues in

protein thus we developed composition based SVM model on

realistic dataset where non-MIRs patterns are 10 times of MIR

patterns. On this dataset we achieved maximum MCC 0.58 at

window length 25 where sensitivity and specificity are nearly same

Figure 4. Comparison of percent composition of MIRs and Non-MIRs based on properties of residues.
doi:10.1371/journal.pone.0024039.g004

Figure 5. Two Sample logo graph between MIRs and Non-MIRs patterns.
doi:10.1371/journal.pone.0024039.g005
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(Table 3). We achieved maximum MCC 0.62 with 93.72%

accuracy at threshold 20.2 MCC was maximum but sensitivity

was very poor (Table S4). At threshold 20.7 we achieved balanced

performance with sensitivity and specificity (MCC was 0.54 with

89.02% accuracy). In order to understand the performance of

models on realistic dataset we have also evaluated our composition

based SVM model using threshold independent parameter AUC.

As shown in Table 4, we achieved maximum AUC 0.894 at

window length 25 (Figure 7).

Comparison with Existing Methods
This is important to compare newly developed method with

existing methods in order to understand its novelty. Recently,

Nasif et al. [22] compare performance of carbohydrate binding

methods mainly developed for predicting glucose and galactose

binding sites (See Table XI of Nasif et al. [22]). Best of authors

knowledge, no method has been developed in past for predicting

mannose interacting residues in protein from their primary

sequence. Thus it is difficult to compare our method directly with

any existing method.

Description of Web Server
The prediction method described in this paper is implemented

in the form of a web-server PreMieR (http://www.imtech.res.in/

raghava/premier). This server is launch from a Solaris based SUN

server using Apache. The common gateway interface (CGI) scripts

of server were written in PERL. This server allows users to predict

MIRs using compositional profile based SVM models with

different threshold range from 21 – +1. The prediction results

are presented in graphical form where the predicted MIRs and

non-MIRs are displayed in different color.

Discussion

Mannose binding proteins play an important role in the innate

immune response by binding to carbohydrates on the surface of a

wide range of pathogens and activate the complement system

[24]. Experimental techniques of identification of mannose

interacting residue are costly and time consuming. There is a

need to develop in silico techniques for predicting protein-

mannose interaction in order to understand function of MBPs

Figure 6. Overall amino acids comparison of MIRs and Non-MIRs patterns.
doi:10.1371/journal.pone.0024039.g006

Table 1. The performance of SVM models developed on main dataset (Window length 17) using binary, evolutionary and
compositional profile (complete table shown in Table S1).

Binary PSSM Composition

Thes Sen Spe Acc MCC Sen Spe Acc MCC Sen Spe Acc MCC

20.3 81.21 30.34 55.77 0.13 85.6 36.76 61.18 0.26 96.77 41.64 69.21 0.46

20.2 73.44 39.43 56.44 0.14 82.58 43.91 63.24 0.29 93.84 48.39 71.11 0.47

20.1 66.09 49.44 57.76 0.16 78.05 50.15 64.1 0.29 87 66.47 76.74 0.55

0 58.43 60.78 59.6 0.19* 73.51 57.8 65.66 0.32 77.03 82.89 79.96 0.60

0.1 49.74 68.54 59.14 0.19 67.37 63.54 65.46 0.31 68.82 90.13 79.47 0.60

0.2 40.65 75.89 58.27 0.18 59.01 68.68 63.85 0.28 63.44 94.62 79.03 0.61

0.3 31.56 82.89 57.2 0.17 51.56 73.82 62.69 0.26 56.79 96.48 76.64 0.58

*Bold values indicate the point where sensitivity and specificity is equal or minimum difference with maximum MCC.
doi:10.1371/journal.pone.0024039.t001
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and their role in innate immunity [2–4]. In past, methods have

been developed for predicting glucose, galactose and carbohy-

drate interacting residues in a protein [1,16–22] but no method

has been developed for predicting mannose interacting residues.

In this direction, we had made a systematic attempt to develop an

accurate and robust method for predicting MIRs in protein

sequences.

In this study, we created clean and standard dataset from

SuperSite documentation and PDB and assign MIRs using

program LPC [29,30]. This dataset have 125 non-redundant

MBPs where no two MBPs have more than 40% similarity. In

order to understand preference of residues in mannose interaction

we compute and compare composition of MIRs and non-MIRs

(Figures 3, 4, 5, 6). It was observed that certain types of residues

are more preferred in mannose interaction than others. It was

observed MIRs neighbor residues are also different then non-

MIRs neighbor residues. It indicates that mannose interacting

sites/pockets are highly conserved. This was also observed that

mannose-protein interaction is different than DNA or RNA

protein interaction in term of residues preferred interaction [35].

SVM model based on binary patterns of amino acid sequence has

been developed to predict mannose interacting residues with low

accuracy around 59%. It has been shown in previous studies that

evolutionary information of a protein contains more information

than single amino acid sequence of protein. In order to improve

performance of our models, we used evolutionary information in

form of PSSM profile for developing SVM models for predicting

mannose interacting residues (Table 1). The accuracy of SVM

modules increase significantly from 59% to 66%, it is expected

PSSM provides more information than single sequence. During

analysis of MIRs, it was observed that residues involved in mannose

interaction as well as MIRs neighbors’ residues are dominated by

certain types of residues. Based on this observation, we used

composition profile of patterns (CPP) for developing modules for

predicting MIRs instead of binary or PSSM profile. As shown in

Table 1 and 2, CPP based SVM modules predict MIRs with high

accuracy around 85%. The performance of SVM modules based on

CPP is significantly higher than SVM modules based on BPP or

PPP. Previously, our group used this concept for predicting

conformational B-cell epitopes in proteins.

This is interesting that models based on simple composition of

patterns perform better than models based on binary or PSSM

profile of patterns. BPP provides more comprehensive information

than CPP. In case of BPP, information includes order and types of

residues in a pattern, where as CPP contain only composition of

residues. Ideally BPP based modules should be more accurate than

CPP based modules as it have more information. In real life results

are contradictory. This problem may be compared with problem

of sub-cellular localization of methods where simple composition

based SVM modules out perform alignment based methods like

BLAST [36,37]. Biologically, it is difficult to justify that

composition based method can perform better than BPP or PPP

based methods. We feel it is due to limitations of representation of

patterns to be used in SVM. In case of BPP, pattern of residues N

are represented with matrix of N621 which contain value 1.0 for

N elements and 0.0 for N620. In simple term, values of most of

matrix elements are zero, thus it is difficult for any machine

learning technique to learn from matrix having most of elements

Table 2. The performance of composition based SVM model developed on main dataset using window length 21, 23 and 25
(complete tables shown in Tables S2 & S3).

21 Window 23 Window 25 Window

Thes Sen Spe Acc MCC Sen Spe Acc MCC Sen Spe Acc MCC

20.3 91.55 50.53 71.04 0.46 96.60 41.59 69.10 0.46 96.31 37.03 66.67 0.41

20.2 86.69 70.46 78.57 0.58 93.78 55.00 74.39 0.53 93.68 48.59 71.14 0.47

20.1 83.87 82.02 82.94 0.66 89.99 72.89 81.44 0.64 90.48 66.67 78.57 0.59

0 83.87 82.02 82.94 0.66 86.78 82.80 84.79 0.70 87.17 77.07 82.12 0.65

0.1 75.90 92.52 84.21 0.69 83.09 89.21 86.15 0.72 84.94 83.87 84.40 0.69

0.2 71.53 94.66 83.09 0.68 80.37 92.91 86.64 0.74 81.92 88.63 85.28 0.71

0.3 65.99 95.92 80.95 0.65 76.48 94.85 85.67 0.73 77.45 91.93 84.69 0.70

Bold values indicate the point where sensitivity and specificity is equal or minimum difference with maximum MCC.
doi:10.1371/journal.pone.0024039.t002

Table 3. The performance of composition based SVM model
developed on realistic dataset using different window lengths
(complete data in Table S4).

Window Lengths Thes Sen Spe Acc MCC

17 20.7 75.61 91.07 89.66 0.54

19 20.7 76.68 90.48 89.22 0.53

21 20.7 77.75 90.52 89.36 0.54

23 20.7 80.27 89.89 89.02 0.54

25 20.7 69.39 94.37 92.10 0.58

doi:10.1371/journal.pone.0024039.t003

Table 4. The performance of composition based SVM models
in term of AUC on realistic dataset.

Window Lengths SVM parameter AUC

17 g:0.01 c:2 j:2* 0.855

19 g:0.01 c:1 j:2 0.868

21 g:0.01 c:1 j:2 0.869

23 g:0.01 c:1 j:2 0.863

25 g:0.01 c:1 j:1 0.894

*SVM parameters, RBF kernal (g), trade-off between training error & margin (c),
cost-factor (j).
doi:10.1371/journal.pone.0024039.t004
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zero. In case of CPP, pattern is presented by only 21 values where

most of values are non-zero. This is probable reason that compo-

sition based methods is becoming popular over the years [38].

This study will be useful for researcher working in the filed of

immunology to understand host pathogen interaction and res-

ponse of innate immunity.
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