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Abstract

Original antigenic sin is the phenomenon in which prior exposure to an antigen leads to a subsequent suboptimal immune
response to a related antigen. Immune memory normally allows for an improved and rapid response to antigens previously
seen and is the mechanism by which vaccination works. I here develop a dynamical system model of the mechanism of
original antigenic sin in influenza, clarifying and explaining the detailed spin-glass treatment of original antigenic sin. The
dynamical system describes the viral load, the quantities of healthy and infected epithelial cells, the concentrations of naı̈ve
and memory antibodies, and the affinities of naı̈ve and memory antibodies. I give explicit correspondences between the
microscopic variables of the spin-glass model and those of the present dynamical system model. The dynamical system
model reproduces the phenomenon of original antigenic sin and describes how a competition between different types of B
cells compromises the overall effect of immune response. I illustrate the competition between the naı̈ve and the memory
antibodies as a function of the antigenic distance between the initial and subsequent antigens. The suboptimal immune
response caused by original antigenic sin is observed when the host is exposed to an antigen which has intermediate
antigenic distance to a second antigen previously recognized by the host’s immune system.
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Introduction

An immune memory comes from a previous infection or

vaccination, stores the information for antigen recognition, and is

activated in a future infection by a related pathogen. Long-term

immune memory has been observed in various pathogens

including smallpox [1], malaria [2], hepatitis B [3], dengue [4],

and influenza A [5]. By recognizing and rapidly eliminating the

reinfecting pathogen, this long-lasting effect can permanently or

temporarily prevent the reinfection of the host by some pathogens

[6]. In some cases, this long-lasting effect can also reduce the

severity, duration, or risk of the infection and symptoms [7].

Smallpox virus, also called variola virus, only propagates in

humans and has a relatively low mutation rate [8]. In contrast,

influenza A virus propagates in humans, pigs, and aquatic birds,

with a higher mutation rate that is approximately 2:0|10{6/

nucleotide/infectious cycle [9], or 1:6|10{5/amino acid/day.

Calculation of the binding free energy between human antibodies

and circulating influenza A strains shows that the virus mutates

away from the genotypes that code for hemagglutinin proteins well

recognized by the human immune system [10]. Thus for influenza

A, there is usually a significant antigenic distance between the

circulating strain in a given year and the immune memory from

previous years.

Original antigenic sin is the phenomenon in which prior

exposure to an antigen leads to a subsequent suboptimal immune

response to a related antigen [11–13]. In some years when the

antigenic distances between vaccine and circulating virus strains

fell into a certain range, the effect of original antigenic sin

decreased the effectiveness of influenza vaccines. Historical data of

influenza vaccines indicate that vaccine effectiveness does not

monotonically decrease with the antigenic distance between the

vaccine strains and the circulating strains, but rather has a

minimum at an intermediate antigenic distance [14,15]. Interest-

ingly, since the vaccine effectiveness at this intermediate antigenic

distance between the vaccine and circulating strains is lower than

the effectiveness at a larger antigenic distance in unvaccinated

people, original antigenic sin could make vaccinated people more

susceptible to the virus than those who are unvaccinated.

The mechanism of original antigenic sin was previously studied

using stochastic models at the cellular level [16,17]. These

previous studies developed stochastic models with thousands to

millions of B cells [16,17]. The stochastic models introduce various

antigens to a repertoire of B cells. The B cells with higher affinity

to an antigen have larger probability to be selected during the B

cell maturation process. Earlier works discussing the mechanism of

original antigenic sin at the cellular level include [17], which

attributed original antigenic sin to the localization of the B cells in

the secondary immune response around the B cells in the primary

immune response in the amino acid sequence space. The affinity

between an antibody and an antigen is given by the generalized

NK model (GNK model) of the three-dimensional protein

structures [18]. The GNK model was derived from the NK
model which was originally introduced to model rugged fitness

landscapes [19,20] and evolutionary processes [21–23]. In the

GNK model, the amino acid sequences of a group of influenza A

specific antibodies are allowed to mutate freely and independently

in the affinity landscape to maximize their affinities to the virus. B

cells that produce antibodies with the highest affinities replicate

into the next generation. The mutation of the virus is modeled by
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changing the fitness landscape. The antibody affinities at the end

of the simulation correlate well with the vaccine effectiveness data

observed in history [14].

The present study aims to use a set of ordinary differential

equations (ODEs) to describe the interaction among the B cells,

the virus particles, and the epithelial cells. This deterministic

model can reduce the memory and CPU requirements, compared

to the stochastic models [16,17]. In this study, I developed a set of

ODEs as the mean-field approximation of the stochastic models

that store the information of each B cell. The ODEs give a

deterministic explanation of original antigenic sin. This explana-

tion agrees with both the observed data [14] and a previous

explanation given by the GNK model [17]. Various ODE models

have been established to describe and simulate the process of

influenza A infection and the resulting immune response [24–29].

The basic elements of these ODE models were described in [30].

Automata have also been used to model the time-dependent

spatial distribution of the tissue cells and the virus [31,32].

In this study, I build a deterministic ODE-based model

compatible with the previous GNK model [17] to reproduce the

observed phenomenon of original antigenic sin. The main purpose

of this paper is to address the following two questions on the

modeling of original antigenic sin. First, can a deterministic

dynamical model with a small number of state variables simulate

the phenomenon of original antigenic sin, which was simulated by

stochastic models of a large repertoire of B cells [16,17]? Second,

what is the mechanism of original antigenic sin revealed by the

deterministic dynamical model? I address the first question by

building a deterministic ODE model, which reproduces the

phenomenon of original antigenic sin observed in experiment [11–

13]. See the subsections Model Development and Description,

Time Courses of Infection and Recovery, and A General Picture

of Original Antigenic Sin in the section Results. I address the

second question by analyzing the non-monotonicity of the overall

effect of an immune response. See the subsection Mechanism of

Original Antigenic Sin in the section Results. The values of the

parameters mainly come from previous studies that simulated

influenza infection and immune response and obtained plausible

results. However, the limitations of the available experimental data

do not allow one to develop an accurate model purely based upon

experimental data [33]. Experimental data available for model

development usually have limited quality or quantity, causing

unavoidable overparameterization of the models. In the present

dynamical model, two parameters c0 and s need to be estimated

prior to the simulation. I give the estimation of parameters c0 and

s in the section Materials and Methods and perform the sensitivity

analysis of both of them in the section Results. The terms in the

ODEs have clear physical meanings, so my model explicitly

illustrates the details of the influenza A infection and the immune

response. A comparison between this deterministic dynamical

model and previous stochastic models is presented in the section

Discussion. A brief review of the influenza A genome is in

Appendix S1.

Results

Model Development and Description
I use a simplified model consisting of the major components of

an immune response, which are epithelial cells, influenza A

viruses, and an immune system, to describe the dynamics of an

influenza A infection and the subsequent immune response. This

model contains six state variables, which are the healthy cell

concentration Hð Þ, the infected cell concentration Ið Þ, the viral

load Vð Þ, the concentrations of naı̈ve and memory antibodies

X1 and X2ð Þ, respectively, and the naı̈ve antibody affinity U1ð Þ.
These state variables are in Table 1.

This model comes from the following information on influenza

A infection. The concentration of epithelial cells on the upper

respiratory tract is around a fixed homeostatic level H0, which is

also the sum of the concentrations of healthy cells (H ), of infected

cells (I ), and of dead cells (D) killed by the influenza A virus,

respectively. Free influenza A virus particles (V ) are released from

infected cells and are eliminated by influenza A specific antibodies.

I only consider virus clearance by antibodies, because a T cell can

recognize influenza A strains with different antigenic characters

[34]. This model has two types of antibodies: the naı̈ve antibodies

and the memory antibodies generated by the last influenza A

infection or vaccination. The concentrations of the naı̈ve and the

memory antibodies are defined as X1 and X2, respectively. The

immune system cleared the influenza A viruses bound by

antibodies. With the definition of antibody affinity

Ka~
Ag : Ab½ �
Ag½ � Ab½ � , ð1Þ

the concentration of influenza A virus particles bound by

antibodies Ag : Ab½ � is proportional to the concentrations of the

free influenza A virus particles Ag½ � and of the influenza A specific

antibodies Ab½ �. The naı̈ve and memory antibodies have affinities

U1 and U2, respectively, to the influenza A virus. The affinity of

memory antibodies, U2, is a constant parameter of the model. The

maximum affinity is defined as Umax. Here U1 and U2 are

quantified using the reduced unit 1:0|107 M{1, as described in

the subsection Reduced Units and Parameter Estimation in the

section Materials and Methods. Thus the affinities U1 and U2 are

defined as Ui~Ka=1:0|107 M{1 (i~1,2). The maximum affinity

is Umax~1 when Ka~1:0|107 M{1.

From the above information, a minimal set of ODEs are built to

model the influenza A specific immune response of co-existing

naı̈ve antibodies with a low initial affinity and memory antibodies

with a higher and constant affinity. The state variables

Z~ H,I ,V ,X1,X2,U1ð Þ comprise the healthy cell concentration

H , the infected cell concentration I , the viral load V , the naı̈ve

Table 1. Descriptions and units of the variables of the
dynamical model.

Variable Description Unit

H Healthy cell concentration 1:7|10{11 M

I Infected cell concentration 1:7|10{11 M

V Viral load 1:7|10{11 M

X1 Concentration of naı̈ve
antibodies recognizing
the virus

1:7|10{11 M

X2 Concentration of memory
antibodies from a previous
infection or vaccination

1:7|10{11 M

U1 Affinity of naı̈ve antibodies
recognizing the virus

1:0|107 M{1

U2 Affinity of memory antibodies
from a previous infection or
vaccination

1:0|107 M{1

D Dead cell concentration 1:7|10{11 M

doi:10.1371/journal.pone.0023910.t001
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antibody concentration X1, the memory antibody concentration

X2, and the binding affinity of naı̈ve antibodies U1.

dH

dt
~lD{bVH ð2Þ

dI

dt
~bVH{aI ð3Þ

dV

dt
~kI{mV{p U1X1V{p U2X2V ð4Þ

dX1

dt
~c Z,tð Þ U1X1

U1X1zU2X2
{bX1 ð5Þ

dX2

dt
~c Z,tð Þ U2X2

U1X1zU2X2
{bX2 ð6Þ

dU1

dt
~s U1X1V Umax{U1ð Þ: ð7Þ

The homeostasis of epithelial cells gives an additional algebraic

equation for the dead cell concentration, D,

D~H0{H{I : ð8Þ

Equation 2 describes the dynamics of the concentration of

healthy epithelial cells. The repair mechanism for epithelial tissue

is activated only if any damage in epithelial cells is detected

(D=0), and new healthy cells are regenerated with the rate lD to

repair the damaged tissue [25]. Alternative models for this repair

mechanism include regeneration rate~l [28] or lDH [29]. In

the stochastic model in [32], the regeneration rate is 0 when D~0
and has a mathematical expectation of lH when D=0. The

average life span of human trachea cells is 47.5 days [35], while

the time for epithelial cell regeneration is 0.3–1 day [25,36],

showing that the cell regeneration rate is significantly higher than

the normal cell division rate. With this consideration in mind, I

select the expression lD as the cell regeneration rate [25]. The

infection rate b represents the speed in which influenza A virus

converts healthy cells into infected cell. The protective effect of

interferon is neglected in this simplified model.

Equation 3 characterizes the dynamics of the infected cell

concentration. All the infected cells are converted from healthy

cells. Infected cells are killed by the virus with the rate a.

Equation 4 depicts the generation and elimination of virus

particles. Virus particles are released from infected cells with the

rate k. The half-life of free virus particles is 1=m. Viruses bound by

antibodies are neutralized and cleared by the immune system.

Thus the virus clearance rate is proportional to the concentration

of viruses bound by antibodies Ag : Ab½ �. From equation 1, the

virus clearance rate is proportional to the antibody affinity Ui

(i~1,2), the antibody concentration Xi (i~1,2), and the viral load

V , respectively.

Equations 5 and 6 show the secretion and decay of naı̈ve

antibodies and memory antibodies. Antigen presenting cells (APC)

process the virus and present the antigen on their surface,

activating naı̈ve T cells. Some of these activated T cells proliferate

and differentiate into Th2 helper T cells. Th2 cells and free virions

activate B cells together [37]. The intensity of activation signal for

B cells, c Z,tð Þ, is a function of time depending on viruses, APCs,

and naı̈ve T cells. The intensity c Z,tð Þ is a rectangular window

function with the maximum value of c0, and is further described in

the section Materials and Methods. Naı̈ve B cells mature in

germinal centers, undergoing proliferation and somatic hypermu-

tation. B cells are selected by competing for antigen binding and

activation signals from Th2 cells surrounding the germinal center.

The morphology of germinal centers determines that the interface

between the B cell region and the Th2 cell region is approximately

constant, and so is the amount of antigens inside the germinal

center. Therefore B cells inside the germinal center compete with

each other for the activation signal. The ratio of the intensities of

the activation signals for naı̈ve and for memory B cells is

U1X1=U2X2. The decay rate of both naı̈ve and memory

antibodies is b. I use identical decay rate (b) for naı̈ve antibodies

(X1) in equation 5 and memory antibodies (X2) in equation 6

because the decay rate is independent of the type of antibodies

[38].

Equation 7 indicates that the increase rate of the affinity is

proportional to the concentration of the antigen-antibody

complex. Because the B cells are selected by the affinity to the

antigen in their maturation process, the increase of the naı̈ve

antibody affinity U1 is driven by successful binding between the

naı̈ve antibody and the antigen. The logistic factor Umax{U1ð Þ
ensures that the probability for B cells to mutate to a state of

higher affinity decreases as the maturation proceeds.

The dynamical model comprises equations 2–7. Equations 2, 3,

4, and 7 are adapted from previous models [24,25,29]. Note that

equations 2, 3, 4, and 7 are not identical to their original form in

literature. Most of these previous models were developed

according to the processes of cell death and regeneration and

virus entry and release. The parameters of these models come

from experiment except for the parameter c0, which describes the

activation of B cells, and for the parameter s, which describes the

B cell maturation process. The parameter s was fit to experimental

data in a previous model [29]. As will be shown, I estimate the

values of c0 and s all over again and perform a sensitivity analysis

to the parameters c0 and s.

The present six-ODE model is able to be mapped from a

previous 10-ODE model developed by Hancioglu et al. [29].

Hancioglu et al.’s model contains 10 state variables, which are V
(virus), H (healthy cells), I (infected cells), M (antigen presenting

cells), F (interferons), R (virus resistant cells), E (cytotoxic T cells),

P (plasma cells), A (antibodies), and S (antigenic distance between

the antibody and the virus). Out of these 10 state variables, five

variables V , H, I , A, and S are also the state variables of my

model, and the other five variables M, F , R, E, and P are

incorporated into my model in a mean-field approach. In

Hancioglu et al.’s model, state variables M and P inhibit virus

growth by increasing the concentration of antibody (A), while state

variables F , R, and E reduce the concentration of infected cells (I )

that produce virus. In my model, the intensity of activation signal

for B cells is the term c Z,tð Þ in equations 5 and 6. Compared to

Hancioglu et al.’s 10-ODE model, my six-ODE model removes

five state variables, while using two state variables X1 and X2 for

the naı̈ve and memory antibodies, respectively.

Time Courses of Infection and Recovery
With all parameters defined and fixed in the section Materials

and Methods, I use the stiff differential equation solver ode23s in

MATLAB to numerically solve equations 2–7. The relative and
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absolute error tolerances of the solver are 10{9 and 10{6,

respectively. The first set of parameters listed in the left column of

Table 2 are adopted. As described in the subsection Kinetics of

Influenza A Virus Infection in the section Materials and Methods,

at the moment of infection, all the epithelial cells are healthy cells,

and the initial viral load is approximately 1% of the epithelial cell

concentration. The concentration of naı̈ve antibodies capable of

recognizing the antigen is approximately 10{4 of the epithelial cell

concentration, while the concentration of memory antibodies

specific to the antigen is 10{2 of the epithelial cell concentration.

Initial affinity of naı̈ve antibodies to the antigen is 104 M{1, 10{3

of the maximum affinity. Using the reduced units introduced

in the section Materials and Methods, the initial values

Z 0ð Þ~ H 0ð Þ,I 0ð Þ,V 0ð Þ,X1 0ð Þ,X2 0ð Þ,U1 0ð Þð Þ~ 1,0,10{2,10{4,
�

10{2,10{3Þ. I run a simulation of 20 days. The solved trajectories

of the state variables Z are compared to the kinetics of influenza A

infection observed in reality to verify the model parameters.

I use two cases to illustrate the dynamics of all state variables. In

the first case, the virus has substantially mutated from the previous

strains, and the binding affinity of the memory antibodies to the

virus is low. In the second case, there is no significant escape

mutation of the virus, and the binding affinity of the memory

antibodies to the virus is high. The affinity of memory antibodies is

U2~10{3 in the first case and is U2~0:5 in the second case. The

details of the model dynamics are shown in Figure 1 and 2.

Figure 1 describes the whole process of influenza A virus

infection and clearance in humans without immune memory

(U2~10{3). A symptom with approximately 30% of the epithelial

cells killed is observed after the infection. The peak of the dead cell

concentration D occurs on Day 1 to Day 2, agreeing with the

experimental data [25]. On Day 5, the dead cell concentration D
falls under 0.1. The viral load V decreases to the initial level on

Day 3 to Day 4. A 105-fold increase of the naı̈ve antibody

concentration occurs in the virus infection and clearance process.

The naı̈ve antibody affinity U1 approaches to the maximum

Umax~1. The memory antibody concentration X2 has an initial

102-fold increase, and decreases approximately exponentially after

Day 1 with the rate 0.0427, similar to the antibody decay rate

b~0:043. Thus few memory antibodies are produced after Day 1.

Figure 2 shows the dynamics of virus infection and clearance

with immune memory (U2~0:5). Few dead cells are accumulated

and thus no symptoms are observable in the infected person. The

viral load is remarkably suppressed compared to Figure 1. Figure 2

depicts the effect of a successful vaccination. Compared to

Figure 1, the increase of the naı̈ve antibodies concentration is

absent, and the naı̈ve antibody concentration, X1, decreases

approximately exponentially with the rate 0.0423, close to the

antibody decay rate b~0:043, indicating that naı̈ve antibodies are

rarely produced during the whole process of virus infection and

clearance. No significant somatic hypermutation is observed in

those naı̈ve B cells. The naı̈ve antibody affinity U1 is almost

constant, as shown by the plot of U1 against t. There is a notable

increase in the memory antibody concentration X2: the value of

X2 on Day 7 is approximately 10-fold higher than that in Figure 1.

The immune response is dominated by the naı̈ve antibodies

when the memory antibodies have low affinity and is dominated

by the memory antibodies when they have high affinity. The

transition between these two cases occurs when the value of the

memory antibody affinity U2 falls into a critical region. In the

following subsection, U2 is set to a variety of values in the range

10{3
ƒU2ƒ1. As the value of U2 changes, the phenomenon of

original antigenic sin can be observed in other characters of the

dynamics, such as the maximum percentage of dead cells, the

maximum viral load, the cumulative effects of naı̈ve antibodies

and of memory antibodies, and the average antibody affinity. This

model is able to reproduce the phenomenon of original antigenic

sin observed in the experimental data at intermediate memory

antibody affinity U2.

A General Picture of Original Antigenic Sin
To illustrate the phenomenon of original antigenic sin, I choose

100 values of U2 logarithmically spaced between 10{3 and 1:0.

The minimum value Umin
2 ~10{3 reflects the case that memory

antibodies rarely recognize a new virus strain. The maximum

value Umax
2 ~1:0 corresponds to the immune response with the

highest memory antibody affinity. The intermediate values of U2

correspond to the case that memory antibodies have decreased

capability to recognize a new virus strain due to the escape

mutation of the strain or imperfect vaccination. One hundred

independent simulations were run with these 100 values of U2,

respectively. The maximum viral load and the maximum

percentage of dead cells were recorded for each simulation. The

cumulative effects of naı̈ve antibodies and of memory antibodies

are respectively calculated with

X Int
1 ~

ð
X1 tð ÞU1 tð Þdt ð9Þ

Table 2. Parameters of the dynamical model.

Physical meaning Parameter Parameter Estimation Unit

set 1 set 2

l Regeneration rate of healthy epithelial cells 2 day{1

b Infection rate 0.34 0.27 5:9|1010 M{1 day{1

a Death rate of infected epithelial cells 1.5 4.0 day{1

k Rate of virus release from infected epithelial cells 510 480 day{1

m Nonspecific virus clearance rate 1.7 3.0 day{1

p Rate of virus neutralization by antibodies 619.2 5:9|103 day{1

b Decay rate of antibodies 0.043 day{1

c0 Production rate of antibodies 1.0 1:7|10{11 M day{1

s Maturation rate of B cells 100 3:5|1014 M{1 day{1

doi:10.1371/journal.pone.0023910.t002
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X Int
2 ~

ð
X2 tð ÞU2 tð Þdt: ð10Þ

Similarly, the average antibody affinity at the end of each

simulation is

Uavg~fX1 tð ÞU1 tð ÞzX2 tð ÞU2 tð Þ
X1 tð ÞzX2 tð Þ gjt~20: ð11Þ

Equation 11 calculates the average antibody affinity after the 20-

day period of time during which the patient recovered from the

infection. Note that indicated by equation 7, the naı̈ve antibody

affinity U1 monotonically increases, while the memory antibody

affinity U2 is constant. Figure 3 depicts the maximum percentage

of dead cells, the maximum viral load, the cumulative effects of

naı̈ve and of memory antibodies, and the final average antibody

affinity as the functions of the memory antibody affinity U2.

Figure 3a presents a picture of original antigenic sin with the

maximum percentage of dead cells. With U2~Umin
2 ~10{3, the

maximum percentage of dead cells, Dmax
0 , is 30:6%. Original

antigenic sin is observed in the interval 10{3
vU2v5:0|10{2.

The peak in the figure, 40.8%, is reached when U2~3:8|10{3 and

is 33.3% higher than the maximum percentage Dmax
0 ~30:6% with

U2~10{3. This 33.3% increase is significant for the percentage of

dead epithelial cells. When U2w0:1, the maximum percentage of

dead cells falls below 10%, indicating that no observable symptoms

occur in the infected person. That is, when the antigenic distance from

the previous infection or vaccination to the new virus strain is small,

the immune system can clear the virus effectively.

Figure 3b shows the non-monotonicity of the maximum viral

load V as a function of the memory antibody affinity U2 in the

process of virus infection and clearance. The maximum viral load

is Vmax
0 ~45:0 when Umin

2 ~10{3. The maximum viral load in the

region 10{3
vU2v1:2|10{2 is higher than Vmax

0 ~45:0, and so

original antigenic sin occurs in this region. The maximum viral

load in the interval 1:6|10{3
vU2v2:8|10{3 is at least twice

as high as Vmax
0 . With U2w0:11, the maximum viral load is less

than unity, agreeing with the fact that memory antibodies

effectively recognize and eliminate virus strains which are

antigenically similar to the immune memory [14].

Figure 3c describes the cumulative effects, X Int
1 and X Int

2 , of

naı̈ve and memory antibodies in the process of virus infection and

clearance, respectively. The cumulative effects X Int
1 and X Int

2 are

calculated with equations 9 and 10, respectively. There is a

Figure 1. Time courses of the healthy cell concentration Hð Þ, the infected cell concentration Ið Þ, the dead cell concentration Dð Þ, the
viral load Vð Þ, the concentrations of naı̈ve and memory antibodies X1 and X2ð Þ, respectively, and the naı̈ve antibody affinity U1ð Þ.
The memory antibody affinity is U2~10{3 . The initial conditions are H 0ð Þ~1, I 0ð Þ~D 0ð Þ~0, V 0ð Þ~0:01, X1 0ð Þ~10{4 , X2 0ð Þ~10{2 , and
U1 0ð Þ~10{3 .
doi:10.1371/journal.pone.0023910.g001
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threshold U2~5:0|10{3 below which the cumulative effect of

naı̈ve antibodies X Int
1 is in a plateau in which X Int

1 w100. The

variable X Int
1 sharply decreases from 100 to 9:0|10{5 in a

narrow region 5:0|10{3
vU2v9:3|10{3. The variable X Int

2

increases almost linearly with U2 from 7:7|10{3 (U2~10{3) to

133.8 (U2~1:0). The variable X Int
1 is larger than X Int

2 when

U2v8:1|10{3 and is smaller otherwise. Because X Int
1 decreases

quickly when U2 is near U2~8:1|10{3, there is a large

difference between X Int
1 and X Int

2 when U2v5:0|10{3 or

U2w9:3|10{3. When U2v5:0|10{3, the naı̈ve antibodies

are the dominant type of antibodies which makes the major

contribution to the clearance of influenza A virus. When

U2w9:3|10{3, the memory antibodies are the dominant type.

Figure 3d plots the final average antibody affinity Uavg against

the memory antibody affinity U2. Equation 7 ensures the

monotonic increase of U1, whereas the increase rate of U1

indirectly depends on U2. Similar to Figure 3c, a plateau with

Uavg
w0:9 exists when U2v4:0|10{3, and Uavg decreases

substantially from 0.82 to 8:8|10{3 when U2 increases from

5:3|10{3 to 8:7|10{3. Note that in Figure 3c, this sudden

decrease in the cumulative effect of naı̈ve antibodies X Int
1 occurs in

the same region of U2. When U2w8:7|10{3, Uavg increases

approximately linearly with U2, which is mainly due to the

contribution of the memory antibodies.

Mechanism of Original Antigenic Sin
The dynamical system defined by equations 2–7 can be split

into two subsystems, i.e. an actuator and a controller, with weak

coupling between them. Equations 2–4 constitute the actuator

with H, I , and V as the state variables. Equations 5–7 constitute

the controller with X1, X2, and U1 as the state variables. The

actuator is controlled by the variable E~U1X1zU2X2w0.

Therefore equation 4 is equivalent to

dV

dt
~kI{mV{pEV : ð12Þ

The actuator consisting of equations 2, 3, and 12 has two steady

states:

H ?ð Þ,I ?ð Þ,V ?ð Þð Þ1~ 1,0,0ð Þ

H ?ð Þ,I ?ð Þ,V ?ð Þð Þ2~
a mzpEð Þ

kb
,
l kb{a mzpEð Þ½ �

kb azlð Þ ,

�

l kb{a mzpEð Þ½ �
b azlð Þ mzpEð Þ

�
:

By calculating the eigenvalues of the Jacobian of the actuator, I

find that the first steady state is stable for any Ew0, and the

Figure 2. Time courses of the healthy cell concentration Hð Þ, the infected cell concentration Ið Þ, the dead cell concentration Dð Þ, the
viral load Vð Þ, the concentrations of naı̈ve and memory antibodies X1 and X2ð Þ, respectively, and the naı̈ve antibody affinity U1ð Þ.
The memory antibody affinity is U2~0:5. The initial conditions are the same as those in Figure 1.
doi:10.1371/journal.pone.0023910.g002
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second one is stable only with 0vEv0:18. When the immune

response is strong, E is large and the only steady state, H ?ð Þ,ð
I ?ð Þ,V ?ð ÞÞ1~ 1,0,0ð Þ, indicates a complete recovery from the

infection. In the process of virus infection and clearance, a large

value of E ameliorates the infection of healthy cells by suppressing

virus proliferation. The numerical simulation of the actuator

illustrates the dependence on E of the dynamics of influenza A

infection. Figure 4 displays the effect of E: all the viruses are

cleared from the patient when E is larger than 0.18, and the decay

rates of the dead cell concentration D and of the viral load V
increase with E. Therefore, E is the only factor controlling the

values of D and V .

The other subsystem is the controller comprising the state

variables X1, X2, and U1. The controller observes the state of the

actuator as the factor c Z,tð Þ, which jumps from 0 to c0 when the

viral load V reaches 0.1 and remains c0 for 14 days. Due to the

quick virus proliferation at the beginning of the infection, I let

c Z,tð Þ~c0~1 as an approximation. The dynamics of the

expression E are described by the following equation:

dE

dt
~

d

dt
U1X1zU2X2ð Þ

~U2
d

dt
X1zX2ð ÞzX1

dU1

dt
z U1{U2ð ÞdX1

dt
:

ð13Þ

The first term on the right hand side of equation 13,

U2d X1zX2ð Þ=dt, is the product of U2 and the derivative of a

first order process X1zX2. The derivative of X1zX2 is obtained

by adding equation 5 to equation 6 with the approximation

c Z,tð Þ~1 and is independent of U2. The form of equations 5 and

7 shows that U2 suppresses the variables X1 tð Þ and U1 tð Þ, and so

the term X1dU1=dt monotonically decreases with U2. In the case

of small U2, the factor U1{U2ð Þw0 in the process of virus

infection and clearance (see Figure 1), thus the third term

U1{U2ð ÞdX1=dt decreases with U2. In the case of large U2, X1

is approximately constant, and the third term is negligible.

Consequently, the first term in equation 13 increases with U2

and the other terms decrease with U2. Figure 5 shows E as a

  

  

Figure 3. Trajectories of the maximum percentage of dead cells, the maximum viral load, the cumulative effects of naı̈ve and
memory antibodies defined by equations 9 and 10, respectively, and the final average antibody affinity defined by equation 11
with different memory antibody affinities U2. The dashed horizontal lines in (a) and (b) are the maximum percentage of dead cells and the
maximum viral load, respectively, at the lowest memory antibody affinity U2~10{3 .
doi:10.1371/journal.pone.0023910.g003
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functional of U2: when U2 increases from 10{3 to 1, the increases

in the second and third terms of E do not compensate the decrease

in the first term, yielding a suppression of E at intermediate U2.

The source of original antigenic sin is the interaction of the state

variables of the controller, or the immune system, modeled by

equations 5–7. When the memory antibody affinity U2 is either

low or high, naı̈ve or memory antibodies are dominant,

respectively. If naı̈ve antibodies are dominant, their final affinity

is high. At intermediate U2, the interaction and competition

between naı̈ve and memory antibodies lead to a decreased

immune effect E, which clears the viruses less effectively. This is

original antigenic sin. When original antigenic sin occurs, the

influenza illness rate increases [14] due to the increases of D and

V during the process, and the average antibody affinity decreases

[17] due to the decrease of E. Note that the average antibody

affinity is defined as Uavg~E= X1zX2ð Þ, where X1zX2ð Þ are

approximately independent of U2, as discussed above.

Sensitivity Analysis
The parameters other than c0 and s come from literature. See

Table 2. As mentioned in the subsection Model Development

and Description, my model described by equations 2–7 can be

mapped from a previous dynamical model of influenza infection

and immune response [29], in which a comprehensive sensitivity

analysis for parameters is available. The sensitivity analysis for

most of the parameters in this model has been performed in [29].

So I first focus on two remaining parameters, c0 and s. The

parameter c0 characterizes the stimulation of the immune system

when the viral load increases beyond a threshold. Because this

paper aims to give a simplified model comprising the most

important factors of both epithelial cells and an immune system,

the effects of APC and Th2 cells are combined into the parameter

c0. The parameter s reflects the process of B cell somatic

hypermutation which produces antibodies with high affinity to

the antigens. Here I present a sensitivity analysis for the

parameters.

Figure 6 describes the behavior of the dynamical system with

different values of parameters c0 and s. The maximum

percentage of dead cells with large U2 is insensitive to s. The

average antibody affinity with small and large U2 is also

insensitive to both c0 and s, but is sensitive to intermediate U2.

If U2 is higher than a threshold, the memory antibodies play the

major role in the immune response; otherwise the naı̈ve

antibodies mainly conduct the immune response. As shown in

Figure 6b and 6d, this threshold of U2 decreases with c0 and

increases with s. However, the dynamics with different values of

c0 and s in Figure 6 resemble those in Figure 3a and 3d. The

existence of original antigenic sin is insensitive to the parameters

Figure 4. Trajectories of the concentration of dead cells Dð Þ and the viral load Vð Þ with different effects of immune response Eð Þ. In
each trajectory, H 0ð Þ~1, I 0ð Þ~0, V 0ð Þ~100, and E is constant. When t??, viruses cannot be cleared at small values of E, such as 0.1. The decay
rates of both D and V increase with E.
doi:10.1371/journal.pone.0023910.g004
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c0 and s. In addition, Figure 7 shows that both the maximum

percentage of dead cells and the average antibody affinity Uavg

are insensitive to the decay rate of antibodies (b) and the initial

concentration of memory antibodies (X2 0ð Þ). This sensitivity

analysis shows that the severity of an influenza A infection

decreases with c0, and the effect of original antigenic sin increases

with c0 and decreases with s.

Discussion

The model defined by equations 2–7 is a significant simplification

to the previous models describing the kinetics of influenza A infection

[25,29]. This model introduces a second type of antibodies, the

memory antibodies, to simulate the competition and cooperation

between naı̈ve and memory antibodies. The contributions of Th1

cells, cytotoxic T lymphocytes (CTLs), interferons, and epithelial cells

protected by interferons are incorporated into the parameters of the

model. The contributions of APCs and Th2 cells, which together

activate B cells, are captured by the factor c Z,tð Þ in a mean-field

approach, rather than being explicitly modeled using ODEs. The

presenting model has two limitations. First, at the same time of the

increase in the dead cell concentration D, the viral load V increases

by 103–104 fold and reaches the maximum on Day 1, which is

different from the experimental results of 104–105 fold increase at the

maximum on Day 2. Second, this model does not contain a term

modeling the loss of antibodies due to virus binding in equations 5

and 6. These limitations are due to simplification of the model.

However, these limitations do not seriously affect the emergence of

original antigenic sin in the model at intermediate memory antibody

affinity U2, the major topic of this study.

The concentration of CTLs increases by 100 times in the first

seven days after infection [25] to eliminate the infected cells. The

cellular immune system usually has strong cross immunity for

antigenically different influenza A virus strains [25], while the

humoral immune system cannot effectively recognize a new

influenza A virus strain with a large antigenic distance from the

previous strains seen by the host immune system [14]. Thus the

effects of CTLs against different influenza A virus strains are more

homogeneous than those of antibodies. That is, CTLs induced by

previous virus strains can effectively suppress a new virus strains

despite the escape mutation of the virus [25]. By contrast, the

antibody affinity decreases with the antigenic distance between the

previous virus strains and the new strain. Thus the contribution of

CTLs is more constant compared to that of antibody and can be

modeled by constant parameters to describe original antigenic sin.

For the same reason, the protection for healthy cells by the

interferon secreted by infected epithelial cells is not modeled as an

independent equation either. Additionally, the interferon and the

cells protected by the interferon are not the key factors of the

dynamics of virus infection and clearance: an absence of

interferons does not affect the final elimination of all viruses and

dead cells [29]. APCs and Th2 cells have little interaction with the

elements in the model other than the antibodies. Hence a simple

function c Z,tð Þ is introduced to model the activation of B cells.

The present model contains two parts. Equations 2–4 constitute

a general model for an infection in tissue caused by a cytopathic

virus. Equations 5–7 define a model for the immune system which

recognizes and clears the virus. This model can be extended to

include the dynamics of CTLs and interferons in the immune

system. The model can also be extended to simultaneously

 

 

 

 

Figure 5. Trajectories of the effect of immune response, E~U1X1zU2X2. In each trajectory, H 0ð Þ~1, I 0ð Þ~0, V 0ð Þ~0:01,
X1 0ð Þ~10{4,X2 0ð Þ~10{2,and U1 0ð Þ~10{3 . Each trajectory corresponds to one value of U2 . When t??, viruses cannot be cleared at small
values of E, such as 0.1.
doi:10.1371/journal.pone.0023910.g005
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consider multiple types of cytopathic viruses by using equations 2–

4 with different parameter sets l,b,a,k,mð Þ to model each type of

virus. The cytopathic viruses fall into two categories: those causing

acute diseases and those causing chronic diseases. Viruses in the

first category, such as influenza A virus, are cleared in a short

period of time, thus relatively few escape mutations occur. The

immune system therefore directs itself towards a fixed target.

Equations 5–7 modeling the immune system do not require any

modification to take into account the escape mutation of the virus.

On the other hand, viruses in the second category, including HIV,

persist for years in the host and keep mutating away from the

immune system. A new set of ODEs are needed to model this case.

First, additional terms are required for equation 7 to describe the

decrease of the memory antibody affinity due to the escape

mutation of the virus. Second, if the immune system is also

infected by the virus, equations 5 and 6 should also contain terms

to model this infection. A similar model of the immune response

against HIV and the competition between antibodies has been

developed [39].

The currently available mathematical models of original

antigenic sin falls into two categories: stochastic models represent-

ed by the GNK model [17], and deterministic models as the

present one. Now I compare the mathematical form of the GNK

model [17] with that of my deterministic model. Both models

consider the contributions of naı̈ve and memory B cells. Both

models explicitly simulate the competition between different types

of B cells. In the deterministic model, the maturation of naı̈ve B

cells follows a logistic process. In the GNK model, the B cells have

random walks on a rugged and random landscape [17,19] where

the density of neighboring states with higher affinities decreases

with the affinity in the current state. The deterministic model has

two variables, U1 and U2, for the naı̈ve and memory antibody

affinities, respectively. The GNK model, however, stores the

amino acid sequences of 1000 naı̈ve antibodies and other 1000

  

  

   

 

 

 

  

   

  

   

 

 

 

  

Figure 6. Sensitivity analysis of parameters c0 and s. (a) and (b) The maximum percentages of dead cells and the average antibody affinities at
different values of c0 . (c) and (d) The maximum percentages of dead cells and the average antibody affinities at different values of s. Initial conditions
and parameters other than c0 and s are the same as those in Figure 3.
doi:10.1371/journal.pone.0023910.g006
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memory antibodies [17]. After a simulation of 30 generations, the

number of different amino acid sequences generally converges to

less than five, similar to the deterministic model in which both

naı̈ve and memory antibodies are considered as monoclonal.

There are parallels and differences between my deterministic

model and the GNK model [17], although these two models have

different mathematical forms as shown above. First, the deter-

ministic model uses the factors U1X1= U1X1zU2X2ð Þ and

U2X2= U1X1zU2X2ð Þ to model the selection of naı̈ve and

memory B cells, respectively. In an immune response, B cells

producing antibodies with high binding affinity U1 or U2 are

selected. As a comparison, the stochastic model stores the amino

acid sequence of each B cell, selects those B cells with high affinity

to the antigen, and replicates the selected B cells to the next

generation. Second, the deterministic model simulates the B cell

maturation process with the factor c Z,tð Þ describing the activation

of B cells. In the simulation, c Z,tð Þ is greater than zero for 14 days,

in which the B cells compete for the antigen and divide. The

stochastic model repeats the process of B cell hypermutation and

selection for 30 generations of B cells, which correspond to the

primary or secondary immune response. Third, the naı̈ve antibody

affinity in the deterministic model, U1, is modeled by equation 7, a

logistic equation. The increase rate of U1 decreases as U1

approaches to the maximum antibody affinity, Umax. The

stochastic model builds a rugged antibody affinity landscape, in

which the locations with high affinities have low density.

Consequently, the deterministic model is a mean-field approxi-

mation of the B cell maturation process. The deterministic model

is able to simulate original antigenic sin with reduced memory and

CPU requirement, while ignoring the amino acid sequence of each

B cell.

The dynamical model introduced in this paper is determin-

istic, while the process of influenza A infection and clearance is

stochastic in nature. However, the deterministic model gives

similar results as the stochastic models [16,17]. The deterministic

model assumes both naı̈ve and memory antibodies to be

monoclonal. If either naı̈ve or memory antibodies have multiple

amino acid sequences, the ODEs could be modified by

introducing more types of antibodies. Hence the competition

factors U1X1=(U1X1zU2X2) and U2X2=(U1X1zU2X2) could

  

  

   

 

 

 

  

   

  

   

 

 

 

  

Figure 7. Sensitivity analysis of parameters b and X2 0ð Þ. (a) and (b) The maximum percentages of dead cells and the average antibody
affinities at different values of b. (c) and (d) The maximum percentages of dead cells and the average antibody affinities at different values of X2 0ð Þ.
Initial conditions and parameters other than b and X2 0ð Þ are the same as those in Figure 3.
doi:10.1371/journal.pone.0023910.g007
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be replaced by a tournament-like algorithm involving all the

antibodies recognizing the antigen. By introducing the method

of splitting the dynamical system into an actuator and a

controller, the present model provides a starting point for the

application of nonlinear control theory to explain original

antigenic sin. The dynamical model can also be helpful to

rational vaccine design.

Materials and Methods

Kinetics of Influenza A Virus Infection
Influenza A virus infection can be described by a dynamical

process. The infection occurs in the epithelial cells on the surface

of upper respiratory tract in the bronchi with diameter larger than

3.3 mm [25]. The incubation period between the infection and the

emergence of symptoms ranges from one day to five days and is

typically two days. The host starts to shed infectious virus particle

approximately 24 hours prior to the emergence of symptoms. The

typical initial concentration of influenza A virus particles is

10{13 M. The viral load usually reaches a maximum 3|10{9 M

two days after infection and falls back to the initial level six days

after infection [25]. Influenza A virus is cytopathic and kills the

infected cells, causing the dead cells to accumulate in situ. The

percentage of dead epithelial cells reaches the maximum of 30–

50% on Day 2 and decreases to 10% on Day 5. If the maximum

percentage is lower than 10% in the process of virus infection and

clearance, no symptoms are observable [25]. The immune system

is activated by the detection of virus particles. The most important

suppressor of influenza A virus are antibodies IgG and IgA,

followed by the CD8 CTLs [37]. The concentrations of B cells and

of plasma cells increase by 102 times and 2|104 times,

respectively, within seven days [25]. The immune response to a

primary infection generates memory antibodies with binding

affinity 106 M{1 and concentration 10{13 M, constituting 0.1%–

1% of the total antibodies [29,37]. The naı̈ve antibodies capable of

recognizing the antigen have the affinity 104 M{1 and concen-

tration 10{15 M [29,37], constituting 0.001%–0.01% of the total

antibodies.

Reduced Units and Parameter Estimation
I use reduced units for all the variables and parameters to make

their values close to unity and to facilitate the numerical

calculation. For the state variables H, I , V , X1, and X2, the unit

is defined as the homeostatic concentration of epithelial cells in the

upper respiratory tract, which is 1:7|10{11 M [25,29]. The unit

of U1 and U2 is defined as the maximum affinity between memory

antibodies and influenza A viruses, which is 1:0|107 M{1 [37].

The reduced units for all the variables in equations 2–7 are listed

in Table 1.

The majority of the parameters in this dynamical model are

obtained from previous experiments. These parameters fall into

two sets that are compatible with each other. The first set of

parameters were given by the publications [24,25,29,36]. These

publications depicted the process of influenza A virus infection and

clearance in the cellular level, taking into account the concentra-

tions of epithelial cells, viruses, APCs, interferons, Th1 and Th2

helper cells, CTLs, B cells, plasma cells, and antibodies. The

second set of parameters were extracted from an influenza A virus

infection experiment with six volunteers [27]. A simpler ODE

model with a fixed parametric form was built to fit the daily viral

loads data measured from nasal wash [27]. These two sets of

parameters in the reduced units are listed in Table 2. Despite the

different approaches to obtain the parameters, the parameters b,

a, k, and m from [24,25,29,36] and [27] are similar.

Compared to some previous models [25,29], a major simplifi-

cation in this study is neglecting the propagation of the activation

signal for the immune system, originated by the detection of the

virus and through APCs, Th2 cells, and B cells. Instead, I

introduce a time-dependent factor c Z,tð Þ to model the activation

signal for the immune system in a mean-field approach. In a

typical process of influenza A virus infection, the viral load and the

concentration of APCs reach the maximum simultaneously on

Day 2 [25]. The viral load decreases to the initial level on Day 6

[25]. As listed in Table 3, the half-lives of APCs, helper T cells, B

cells, and plasma cells are similar to the duration of the infection.

Thus the duration of B cell maturation process is estimated to be

14 days, longer than the duration of viral clearance. Accordingly,

the factor c Z,tð Þ has the initial value of zero, is assigned the value

c0 when V reaches 0.1, and equals to c0 for 14 days before

decreasing to zero again. Using the output of the previous models

[25,29], I estimate the parameter c0 to be 1.0, and the parameter s

to be 100.

Supporting Information

Appendix S1 A review of the Influenza A genome.

(PDF)

Author Contributions

Conceived and designed the experiments: KP. Performed the experiments:

KP. Analyzed the data: KP. Contributed reagents/materials/analysis tools:

KP. Wrote the paper: KP.

References

1. Crotty S, Felgner P, Davies H, Glidewell J, Villarreal L, et al. (2003) Cutting

edge: long-term B cell memory in humans after smallpox vaccination. J Immunol

171: 4969–4973.

2. Schmidt NW, Podyminogin RL, Butler NS, Badovinac VP, Tucker BJ, et al.

(2008) Memory CD8 T cell responses exceeding a large but definable threshold

provide long-term immunity to malaria. Proc Natl Acad Sci USA 105:

14017–14022.

3. FitzSimons D, Francois G, Hall A, McMahon B, Meheus A, et al. (2005) Long-

term efficacy of hepatitis B vaccine, booster policy, and impact of hepatitis B

virus mutants. Vaccine 23: 4158–4166.

4. Brandler S, Lucas-Hourani M, Moris A, Frenkiel MP, Combredet C, et al.

(2007) Pediatric measles vaccine expressing a dengue antigen induces durable

serotype-specific neutralizing antibodies to dengue virus. PLoS Negl Trop Dis 1:

e96.

Table 3. Decay rates of different immune cells.

Immune cell Decay rate/day{1 Reference

APC (in the stimulated state) 1 [29]

Macrophage 1 [25]

Th1 helper cell 1 [25]

Th2 helper cell 1 [25]

B cell 0.1 [25]

Plasma cell 0.4 [25]

doi:10.1371/journal.pone.0023910.t003

Understanding Original Antigenic Sin

PLoS ONE | www.plosone.org 12 August 2011 | Volume 6 | Issue 8 | e23910



5. Quan FS, Huang CZ, Compans RW, Kang SM (2007) Virus-like particle

vaccine induces protective immunity against homologous and heterologous
strains of influenza virus. J Virol 81: 3514–3524.

6. Engelkirk PG, Duben-Engelkirk J (2010) Burton’s Microbiology for the Health

Sciences. Philadelphia: Lippincott Williams & Wilkins.
7. Jefferson T, Di Pietrantonj C, Rivetti A, Bawazeer GA, Al-Ansary LA, et al.

(2010) Vaccines for preventing influenza in healthy adults. Cochrane DB Syst
Rev: CD001269.

8. Li Y, Carroll DS, Gardner SN, Walsh MC, Vitalis EA, et al. (2007) On the

origin of smallpox: correlating variola phylogenics with historical smallpox
records. Proc Nat Acad Sci USA 104: 15787–15792.

9. Nobusawa E, Sato K (2006) Comparison of the mutation rates of human
influenza A and B viruses. J Virol 80: 3675–3678.

10. Pan K, Deem MW (2011) Predicting fixation tendencies of the H3N2 influenza
virus by free energy calculation. J Chem Theory Comput 7: 1259–1272.

11. Francis T (1953) Influenza: the newe acquayantance. Ann Intern Med 39:

203–221.
12. Fazekas de St Groth S, Webster RG (1966) Disquisitions on original antigenic

sin I. Evidence in man. J Exp Med 124: 331–345.
13. Fazekas de St Groth S, Webster RG (1966) Disquisitions on original antigenic

sin II. Proof in lower creatures. J Exp Med 124: 347–361.

14. Gupta V, Earl DJ, Deem MW (2006) Quantifying influenza vaccine efficacy and
antigenic distance. Vaccine 24: 3881–3888.

15. Pan K, Subieta KC, Deem MW (2011) A novel sequence-based antigenic
distance measure for H1N1, with application to vaccine effectiveness and the

selection of vaccine strains. Protein Eng, Des Sel 24: 291–299.
16. Smith DJ, Forrest S, Ackley DH, Perelson AS (1999) Variable efficacy of

repeated annual influenza vaccination. Proc Natl Acad Sci USA 96:

14001–14006.
17. Deem MW, Lee HY (2003) Sequence space localization in the immune system

response to vaccination and disease. Phys Rev Lett 91: 068101.
18. Bogarad LD, Deem MW (1999) A hierarchical approach to protein molecular

evolution. Proc Natl Acad Sci USA 96: 2591–2595.

19. Kauffman S, Levin S (1987) Towards a general theory of adaptive walks on
rugged landscapes. J Theor Biol 128: 11–45.

20. Durrett R, Limic V (2003) Rigorous results for the NK model. Ann Probab 31:
1713–1753.

21. Macken CA, Perelson AS (1989) Protein evolution on rugged landscapes. Proc
Natl Acad Sci USA 86: 6191–6195.

22. Flyvbjerg H, Lautrup B (1992) Evolution in a rugged fitness landscape. Phys

Rev A 46: 6714–6723.
23. Sibani P, Pedersen A (1999) Evolution dynamics in terraced NK landscapes.

Europhys Lett 48: 346–352.

24. Marchuk GI, Petrov RV, Romanyukha AA, Bocharov GA (1991) Mathematical

model of antiviral immune response. I. Data analysis, generalized picture

construction and parameters evaluation for hepatitis B. J Theor Biol 151: 1–40.

25. Bocharov GA, Romanyukha AA (1994) Mathematical model of antiviral

immune response III. Influenza A virus infection. J Theor Biol 167: 323–360.

26. Belz GT, Wodarz D, Diaz G, Nowak MA, Doherty PC (2002) Compromised

influenza virus-specific CD8(+)-T-cell memory in CD4(+)-T-cell-deficient mice.

J Virol 76: 12388–12393.

27. Baccam P, Beauchemin C, Macken CA, Hayden FG, Perelson AS (2006)

Kinetics of influenza A virus infection in humans. J Virol 80: 7590–7599.

28. Chang DB, Young CS (2007) Simple scaling laws for influenza A rise time,

duration, and severity. J Theor Biol 246: 621–635.

29. Hancioglu B, Swigon D, Clermont G (2007) A dynamical model of human

immune response to influenza A virus infection. J Theor Biol 246: 70–86.

30. Nowak MA, May RM (2000) Virus dynamics: mathematical principles of

immunology and virology. OxfordNew York: Oxford University Press.

31. Segovia-Juarez JL, Ganguli S, Kirschner D (2004) Identifying control

mechanisms of granuloma formation during M. tuberculosis infection using an

agent-based model. J Theor Biol 231: 357–376.

32. Beauchemin C, Samuel J, Tuszynski J (2005) A simple cellular automaton model

for influenza A viral infections. J Theor Biol 232: 223–234.

33. Beauchemin CA, Handel A (2011) A review of mathematical models of influenza

A infections within a host or cell culture: lessons learned and challenges ahead.

BMC Public Health 11 Suppl 1: S7.

34. Lee LYH, Ha DLA, Simmons C, de Jong MD, Chau NVV, et al. (2008)

Memory T cells established by seasonal human influenza A infection cross-react

with avian influenza A (H5N1) in healthy individuals. J Clin Invest 118:

3478–3490.

35. Flindt R, Solomon N (2006) Amazing numbers in biology. BerlinNew York:

Springer-Verlag.

36. Keenan KP, Combs JW, Mcdowell EM (1982) Regeneration of hamster tracheal

epithelium after mechanical injury. I. Focal lesions: quantitative morphologic

study of cell proliferation. Virchows Arch B Cell Pathol Incl Mol Pathol 41:

193–214.

37. Janeway C, Travers P, Walport M, Shlomchik M (2005) Immunobiology: the

immune system in health and disease. New York: Garland Science, 6th edition.

38. Atassi MZ, Van Oss CJ, Absolom DR (1984) Molecular immunology. New

York: M. Dekker.

39. Ciupe SM, De Leenheer P, Kepler TB (2011) Paradoxical suppression of poly-

specific broadly neutralizing antibodies in the presence of strain-specific

neutralizing antibodies following HIV infection. J Theor Biol 277: 55–66.

Understanding Original Antigenic Sin

PLoS ONE | www.plosone.org 13 August 2011 | Volume 6 | Issue 8 | e23910


