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Abstract

Background: Classification and regression tree (CART) models are tree-based exploratory data analysis methods which have
been shown to be very useful in identifying and estimating complex hierarchical relationships in ecological and medical
contexts. In this paper, a Bayesian CART model is described and applied to the problem of modelling the cryptosporidiosis
infection in Queensland, Australia.

Methodology/Principal Findings: We compared the results of a Bayesian CART model with those obtained using a Bayesian
spatial conditional autoregressive (CAR) model. Overall, the analyses indicated that the nature and magnitude of the effect
estimates were similar for the two methods in this study, but the CART model more easily accommodated higher order
interaction effects.

Conclusions/Significance: A Bayesian CART model for identification and estimation of the spatial distribution of disease risk
is useful in monitoring and assessment of infectious diseases prevention and control.
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Introduction

Cryptosporidium causes gastrointestinal infection in humans and

animals and is now the most common protozoan parasite associated

with gastroenteritis [1]. Cryptosporidiosis diseases are sensitive to

weather variability as temperature and/or rainfall can influence the

development and transmissibility of cryptosporidium and may also

affect people’s health-related behaviour. However, there are

complex spatio-temporal interactions between the potential explan-

atory variables of these diseases that motivate further investigation.

Spatial dependence and heterogeneity are well known as major

features of in spatial analysis of disease risk [2,3]. Spatial

dependence can arise from the delineation of spatial units of

observation (such as suburbs, statistical local areas and counties),

spatial aggregation, and the presence of spatial exploratory factors.

Spatial heterogeneity is related to the lack of stability over space of

the spatial relationships between the observations [4,5].

Bayesian methods have been shown to account more sensibly

and comprehensively for uncertainty in inference than frequentist

methods, particularly with regard to the handling of parameter

and model uncertainty [6,7,8]. Bayesian algorithms such as

Markov Chain Monte Carlo (MCMC) have allowed for more

widespread application of Bayesian methods to many fields of

scientific investigation, including public health [9].

Bayesian spatial conditional autoregressive (CAR) models are

increasingly being used to estimate spatial variation in disease risk

between spatially aggregated units [2,10,11]. These models are

typically represented as a linear regression between the response

and explanatory variables with additional terms to explain spatial

correlation. These models thus incorporate and estimate spatial

correlation while simultaneously estimating covariate effects.

Recently, Bayesian spatial and spatiotemporal models have been

used to study the geographical distribution of tropical diseases

including Ross River virus, malaria and schistosomiasis

[2,12,13,14].

Classification and regression tree (CART) models provide an

alternative representation of the relationship between a response

variable and potential explanatory variables. These models have

been shown to be very useful in identifying and estimating

complex hierarchical (high order nonlinear interaction effect)

relationships in ecological and medical contexts [15,16,17,18].

CART models are accepted in many fields of research because

they are easy to interpret, more flexible than conventional

parametric regression models and have a good predictive power

[16]. Bayesian CART models have also been developed [19,20]

but have yet to be widely applied [21,22,23].

In a previous study we used a frequentist CART model to assess

the relationship between social-ecological factors and cryptospo-

ridiosis [24]. In this study we apply the Bayesian CART algorithm

developed by O’Leary [22] to predict the spatial distribution of the

cryptosporidiosis infection using selected social-ecological factors

and climate variables. We also compare the outcomes of the

spatial CART model with those of the Bayesian spatial CAR

model.
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Materials and Methods

Data collection
The dataset considered here has been described elsewhere [24].

Briefly, we obtained the computerised dataset on notified

cryptosporidiosis cases by local government areas (LGAs) in

Queensland for the period of 1st January–31st December 2001

from the Queensland Department of Health. The dataset includes

the onset date and place of onset of the notified cases of

cryptosporidiosis infection, age and sex of the patients and

laboratory test date. Weather (daily temperature and daily rainfall)

and socio-economic index for areas (SEIFA) data were obtained

for the same period from the Australian Bureau of Meteorology

and the Australian Bureau of Statistics, respectively.

Bayesian CART model
CART models are binary decision trees that are built by

dividing the predictor space repeatedly into partitions, or nodes,

based on splitting rules of the predictor variables [15]. The aim of

partitioning the space in this manner is to progressively increase

the homogeneity of the response variable y within each node. The

response variable determines the type of tree and the homogeneity

of the terminal nodes. If the response variable is categorical then a

classification tree is used to predict the classes of the response, and

assessment of homogeneity is based on (correct) allocation of

observations within a node to a single class; alternatively if the

response is continuous then a regression tree predicts the average

response within a node, and assessment of homogeneity is based

on the corresponding variance, deviance, residual sums of squares

or similar measure.

This modelling approach facilitates the fitting of complex

nonlinear interactions, such as combination of environmental and

sociological variables to help explain spatial patterns of a disease

(e.g. [8]), combinations of habitat variables describing ecological

niches [11], or gene-gene interactions that explain diseases [25].

Consider a response variable yi and predictor variables xil,

i = 1,…, n; l = 1,…, L. The partition of the response variable starts

at the root node and divides the predictor space (observations i) at

each internal or split node Sk, k = 1,…, K21, where K is the size of

the tree (defined as the number of terminal nodes). At each

splitting node Sk, the partition is based on a splitting rule Rk, of a

variable Vk and divides the observations {yi; yi [ Sk} into the left

and right child node. Terminal nodes T1, …, TK, also called

leaves, are the final nodes in which the predictor space is not split

any further. At each splitting node Sk, the lth predictor is selected

as the splitting variable Vk from the list of possible predictor

variables xl. If this predictor is continuous, e.g. S1 in Figure 1, then

the splitting rule Rk is based on a value a so Rk = a, where

min(Vk)#a#max(Vk). For example, at S1 in Figure 1, V1 is

Temperature and R1 is Temperature #32.5, so that observations

with temperature less than or equal to 32.5 are partitioned to the

left of the tree and the remainder are partitioned to the right.

Alternatively, for a categorical response, Rk is based on a class

subset c so Rk = c, where c5 {possible levels of Vk}. Letting yk

represent the parameters corresponding to the assumed distribu-

tion of the data in the kth terminal node, the parameter vector

hk = (Rk, Sk, Vk, yk) defines the parameter set or tree structure in

this node; thus hK = {hk, k = 1, … K}.

Following O’Leary [22], in a Bayesian framework, the joint

distribution of the model parameters (size of tree K, tree structure

hk and response variable y) is modelled by

p K , hk, yð Þ~p Kð Þ p hk Kjð Þ p y K,hkjð Þ:

Here p(K) is the prior probability distribution for each model

(where the model is defined by the number of terminal nodes K),

p(hk|K) is the prior probability distribution of the parameter set hk

given model K, and p(y|K, hk) is the likelihood of the data y given

the model K and the corresponding parameter set hk. Bayesian

analysis about the tree size K and tree structure hk is calculated

from the joint posterior distribution p(K, hk|y).

For regression trees, if the (continuous) response variable y is

assumed to have a normal distribution, then yk = (mk, s
2
k) and the

likelihood is
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For classification trees, the (categorical) response variable y is

typically assumed to have a multinominal distribution, so that if

there are N categories, yk = (pk1,..,pkN) and the likelihood is

p(y K , hk)! P
K

k~1
P
N

j~1
(pkj)

mkj ,

����

where mkj is the number of data points y at the kth terminal node k

which are classified into the jth category.

The prior for the model is p(hk|K) p(K), so that

p hk j Kð Þ p Kð Þ~p Rk j Vk, Sk, Kð Þ p Vk j Sk, Kð Þ

p Sk j Kð Þ p Kð Þ p yk j V , S, Kð Þ:

For a regression tree with a normal likelihood, a noninformative

prior for p(yk|V, S, K) can be represented by a normal prior with a

large variance for mk and a uniform prior with a large range for sk.

For a classification tree with a multinomial likelihood, a

noninformative prior for p(yk|V, S, K) can be represented by a

Dirichlet prior for pk with hyperparameters equal to 1.

Dirichlet priors may also be used in both regression and

classification trees for the splitting node p(Sk | K), variables p(Vk |

Sk, K), and splitting rules p(Rk | Vk, Sk, K):

p(Sk K)j ~Dir(Sk as1
, . . . ,ask

��� ),

Figure 1. The best tree identified from Bayesian regression
trees. At each terminal node the mean (m) and number of individuals
(n) are displayed.
doi:10.1371/journal.pone.0023903.g001
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p VkjSk, Kð Þ~Dir VkjaV1
, . . . ,aVk

� �
,

p RkjVk,Sk,Kð Þ~Dir RkjaR1
, . . . ,aRk

� �
:

When no prior information is available about these variables, non-

informative uniform distributions can be defined by setting all

hyperparameters to 1, so that aS1
, . . . ,aSk

~1;

aV1
, . . . ,aVk

~1; aRk
~1:

The prior on the size of the tree p(K) is assumed to be a

truncated Poisson distribution with parameter l (expected number

of nodes in the tree),

p Kð Þ~ lk

(el{1)k!
I0vkvK�

This prior imposes a left limit of k.0 because the minimum

model contains one terminal node. The value of l represents the

expected number of splitting nodes is restricted to an interpretable

size K*. In the case study considered here, this was taken to be

l= 10 [20].

In the present case study there was no information available

about the model variables, so, noninformative priors were

adopted. In other situations, if such information is available, then

informed priors may be used instead. For example, in an analysis

of habitat suitability of a threatened species, O’Leary et al. [23]

discuss how to elicit from an expert the size of the tree, the relative

importance of the variables, and the splitting rules for the most

important variables. They also show how to translate this

information into priors and combine with the data for Bayesian

classification trees.

The sensitivity of the Bayesian CART model to the choice of

priors has been investigated by O’Leary [22] for classification

trees. The sensitivity analysis involved the investigation of the

hyperparameters of the priors for tree size (number of terminal

nodes), splitting nodes, splitting variables and splitting rules. The

results indicated that the posterior distribution is relatively robust

to these priors except for extreme choices of the hyperparameters.

The Bayesian CART models were fitted using the approaches

suggested by Chipman et al. [19] and Denison et al. [20]. A

reversible jump MCMC algorithm was used [20,26], with single

long chain [20]. The final stopping rule was based on the stability

of the posterior distribution [20].

A fully Bayesian simulation from the posterior distribution could

have been implemented via a greedy search algorithm. However,

currently this is computationally infeasible because the parameter

space is large and has an inflexible hierarchical structure. Instead

we chose to follow the overall approach of Denison et al. (1998)

and Chipman et al. (1998), by constraining the search algorithm to

examine only the more optimal portions of the model space

[19,20]. This stochastic search algorithm is based on careful choice

of model performance criterion to ensure that a range of good

models are selected [22]. Therefore, Bayesian CART search

algorithm produces a large number of trees, whilst traditional

CART only produces one tree. The selection of the best

classification tree, in Bayesian CART algorithm, is based on the

research aim, in this case study the tree with the highest sensitivity

and specificity.

Following O’Leary [22], the goodness of fit of a classification

tree is assessed by several accuracy measures, calculated from the

confusion or loss matrix (Table 1). The ‘‘best’’ tree can be defined

as the one that minimizes/maximises one or more accuracy

measures, depending on the aims of the study. In this paper the

following accuracy measures were chosen: the misclassification

rate (MCR) = (number of false positives (b)+number of false

negatives (c))/total number (N), sensitivity = number of true

positives (a)/(number of true positives (a)+number of false

negatives (c)) and specificity = number of true negatives (d)/

(number of true negatives (d)+number of false positives (b)). A set

SG of G ‘‘good’’ trees is identified based on preset criteria, in this

case study trees with highest sensitivity and specificity, and lowest

MCR. The variables and splitting rules at each splitting node of

the trees in SG are examined, and convergence is declared when

the membership of SG and structure of the component trees has

stabilised, i.e. the same trees are in the set SG.

For each tree in the set of good classification trees SCG the

following summary statistics can be examined: tree structure

(variables, splitting rules and number of terminal nodes),

sensitivity, specificity, deviance (226log likelihood p(y|K, hk)),

log likelihood and log posterior probability. From this set of good

classification trees, depending on the aims of the analysis, a small

number of trees may be chosen as the ‘‘best’’ trees, based on the

modal tree structure (same size tree with the same variables and

splitting rules), highest sensitivity and specificity, lowest deviance,

and the highest likelihood and posterior probability.

For regression trees, the stopping criterion is based on posterior

probabilities, deviance and residual sums of squares (RSS)

RSSð Þ~
XK

k~1

X
j[Tk

yj{�yytk

� �2

Therefore a set of SRG G good R regression trees, for a certain

number of iterations after burn-in, is identified to have the smallest

Table 1. Confusion or loss matrix – classification of observed versus predicted presence (‘Yes’) and absences (‘No’) from Bayesian
CART model.

Predicted Observed Total

Yes No

Yes a (true) b (false) a+b

No c (false) d (true) c+d

Total a+c b+d N

doi:10.1371/journal.pone.0023903.t001
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RSS, minimum deviance and maximum likelihood and posterior

probabilities of p(yk|V, S, K) (i.e. distribution of the data given the

tree structure). Similar to classification trees, tree structure

(variables, splitting rules and number of terminal nodes) in SRG

is investigated. Once the membership of SRG and structure of the

component trees has stabilised, this set of regression trees is

declared ‘‘good’’.

Bayesian models focus on the estimation of the model

parameters (and model) conditional on all of the observed data.

Overfitting of the Bayesian CART model can be assessed in the

following manner. Following the practice adopted in cross-

validation, the data can be split into a training and test dataset,

using a stratified random sample to ensure equivalent allocation of

presences and absences (for a classification tree) or subgroups (for a

regression tree) [27,28]. The model is then fit to the training

dataset and the set of best trees is identified. For each tree, the

posterior predictive distribution [27] is computed for both the

training dataset and the test dataset and a confusion matrix based

on the posterior predictive distribution and the observed data is

computed. This is performed for each iteration of the MCMC

algorithm, thus incorporating the uncertainty of the model

parameters and the data in the evaluation. Finally, overfitting is

assessed by comparing the accuracy measures (classification trees)

or RSS (regression trees) between the training and validation

datasets for the best trees. This approach is an adaptation of the

typical use of predictive posterior distributions [27], in that instead

of comparing the distribution of the observed data with that of

future observations ỹ under a proposed model, here we compare

these distributions of observations in the training and validation

datasets.

The cryptosporidiosis dataset contains a large number of zero

incidence rates (n = 1131 out of 1332 observations). To accom-

modate this, two Bayesian CART models were applied to

incidence of cryptosporidiosis in LGAs: 1) a Bayesian classification

tree in which the response is binary: presence/absence of

cryptosporidosis; 2) a Bayesian regression tree in which the

response is continuous: positive incidences rates, i.e ignoring zeros.

This two stage approach is similar to hurdle and zero-inflated

models [29].

Bayesian CAR model
An initial descriptive analysis of cryptosporidiosis was per-

formed. Crude standardised morbidity ratios (SMRs) for each

LGA for the whole study period were calculated using standard

methods [9], where SMR = (the observed number of cryptospo-

ridiosis cases)/(the expected number of cryptosporidiosis cases).

This model assumed that the observed counts of cases (Okt) for the

kth LGA (k = 1…125) in the tth month in 2001 follow a Poisson

distribution with mean (mkt), that is,

Okt*Poisson(mkt)

and

log(mkt)~log(Ekt)zhkt

hkt~az(TempT
kt)b1z(RainT

kt)b2z

(SEIFAT
kt)b3z(Temp T

kt) � (SEIFA T
kt)b4

zckzukzvkzd

where a is the intercept, b1 is the coefficient for temperature, b2 is

the coefficient for rainfall, b3 is the coefficient for SEIFA, b4 is the

interaction coefficient of temperature and SEFIA, c is a LGA-level

temporal trend coefficients, u is LGA-level variation that is

spatially structured (ie. spatially-structured factors not explained by

the model covariates), v is spatially unstructured LGA-level

variation, and d is the amplitude of seasonal oscillation in the

month-specific random effects, which was modelled by a sinusoidal

term cosine(2p6t/12). Spatial correlation between LGAs was

modelled using a CAR prior for u, using a simple adjacency

weights matrix [9].

Parameter estimation was obtained via MCMC simulation

using an initial burn-in of 5000 iterations and subsequent set

100,000 interactions for estimation. Convergence was assessed by

examining posterior density plots, history plots and autocorrelation

of selected parameters. Model selection was performed using the

deviance information criterion (DIC), where a lower DIC suggests

a better trade-off between model fit and parsimony. Poisson

regression models were developed in a Bayesian framework, using

the WinBUGS software version 1.4 [30].

Results

Figure 2 shows the spatial patterns of cryptosporidiosis, rainfall,

temperature and SEIFA in Queensland by LGA. The figure

confirms that all these variables varied with geographical location.

Bayesian classification tree
A set of five good Bayesian classification trees, with the highest

sensitivity, specificity and lowest deviance, are displayed in Table 2.

The first tree has the highest sensitivity and specificity, and lowest

deviance. Since the focus of this case study was on correct prediction of

presence (highest sensitivity) the first tree was selected as the best. This

tree, depicted in Figure 3, indicates that presence of cryptosporidiosis

was predominantly explained by a high-order nonlinear interaction

between temperature, SEIFA and rainfall. The probability of

cryptosporidiosis was largest when temperature was high and rainfall

was low, temperature was low and SEIFA was very low, and

temperature was low and SEIFA was mid-range but rainfall was low.

Table 3 shows the quantiles of sensitivity, specificity and log

posterior (distribution of data given the tree structure) for training

and validation datasets over all accepted classification trees. This

shows that the Bayesian CART algorithm search space includes

trees with very low (close to zero) to very high (close to one)

sensitivity and specificity.

Overfitting of Bayesian classification trees was explored by

investigating the quantiles of sensitivity and specificity for training

and validation dataset, over all accepted trees. Table 3 reveals

similar 95% CIs for sensitivity and specificity between the training

and validation datasets, indicating no over-fitting. However, for

the validation dataset, the fourth and fifth trees have slightly higher

sensitivity than the first tree.

Bayesian regression tree
The Bayesian CART algorithm was applied to positive

incidence rates of cryptosporidium. The set of five best regression

trees (with lowest RSS and deviance) have the same log RSS

(258.96 and 258.47), log posterior (216.18 and 213.56) and

deviance (22.58 and 17.35) for both training and validation dataset

respectively. The only difference between these trees is the splitting

rules, which have all resulted in the same y observations being

classified into the same terminal nodes. Over the 300,000

iterations, the iteration number for each of these five trees are

very different, indicating that the Bayesian CART did not get

Bayesian Classification and Regression Trees
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Table 2. Top 5 of the set of 16 best trees (based on sensitivity, specificity, accuracy and deviance) for Bayesian classification trees.

Training dataset Validation dataset

Trees Sens Spec Post Dev Sens Spec Post Dev Size

1 0.776 0.527 2406.08 807.78 0.825 0.513 293.94 183.51 8

2 0.783 0.502 2405.74 807.32 0.825 0.491 293.65 183.15 9

3 0.789 0.501 2420.28 836.20 0.800 0.496 2100.59 196.82 8

4 0.783 0.538 2417.91 831.44 0.775 0.531 2103.44 202.52 8

5 0.783 0.517 2409.40 814.44 0.750 0.482 2101.63 198.92 11

The table displays sensitivity (Sens), specificity (Spec), posterior (Post) and deviance (Dev) for both the training and validation datasets. The size of the tree (K; number of
terminal nodes) is also shown.
doi:10.1371/journal.pone.0023903.t002

Figure 2. The observed spatial distribution of SEIFA, temperature, rainfall and annual average incidence rates of cryptosporidiosis.
doi:10.1371/journal.pone.0023903.g002

Bayesian Classification and Regression Trees
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trapped in local maxima. The first and second trees were

designated as the ‘best trees’ since they were most consistently

accepted in the set of good trees.

The best regression tree modeling positive incidence rates of

cryptosporidium is displayed in Figure 1. There are three groups

of positive incidence rates of cryptosporidium, ranging from low to

high incidence. A monthly mean incidence rate of cryptosporid-

ium of 78.22/100,000 (n = 105; far left terminal node) occurs in

areas with temperatures less than or equal to 28.5u and SEIFA less

than or equal to 1033.8. The monthly mean incidence rate is

reduced to 4.73/100,000 when temperatures are the same but

SEIFA is greater than 1033.8. The highest monthly mean

incidence rate (134.76/100,000) occurs when the temperature is

greater than 28.5u.

The quantiles of log RSS, deviance and log posterior

(distribution of data given the tree structure) over all accepted

regression tees are displayed in Table 4. The Bayesian regression

tree algorithm search space includes trees with low to high RSS,

deviance and log posterior. There was no evidence over-fitting

with Bayesian regression trees since there was little difference in

log RSS and deviance between training and validation datasets.

Spatial CAR model
Table 5 shows that under the spatial regression (CAR) model,

the average increase in monthly cryptosporidiosis incidence rates

was 9% (95% credible interval (CrI): 0–18%) for a 1uC increase in

monthly average maximum temperature. However, there was no

substantive association between SEIFA, rainfall and cryptosporid-

iosis incidence. No interactions effects were found between

temperature and SEIFA.

Comparison with frequentist CART models
We also compared the outcomes of the Bayesian CART model

with those of the traditional CART model [8]. Both the Bayesian

CART and traditional CART models show that SEIFA and

temperature were associated with the cryptosporidiosis disease.

However, the analyses indicate that Bayesian CART gave slightly

better prediction accuracy (ie. high sensitivity) (sensitivityBayeisan:79%;

specificityBayesian: 50%) than the CART accuracy (sensitivityfrequentist:

10%; specificityfrequentist: 99%) established using the more traditional

frequentist approach. An important difference between the two

models was that the frequentist tree gave equal weighting to correct

classification of all observations, whereas the Bayesian tree

differentially weighted the groups of presences and absences based

on the respective sample size.

Discussion

Both the Bayesian CART and Bayesian CAR models show that

temperature was significantly associated with the cryptosporidiosis

disease. The analyses indicate that the nature and magnitude of

the effect estimates were similar for the two methods used in this

study. However, the Bayesian CART allowed more flexible

identification and description of nonlinear interactions between

explanatory or predictor variables, while still allowing for local

smoothing.

The Bayesian CART model revealed a strong nonlinear

interaction between SEIFA and temperature, and a weaker

interaction with rainfall, in predicting incidence rate of crypto-

sporidiosis. In contrast, because only main effect term and one

interaction term (ie. temperature and SEIFA) were included in the

spatial CAR model, other interactions were not identified.

Figure 3. The best tree identified from Bayesian classification
trees. At each terminal node the predicted category of presence or
absence is denoted respectively by pres or abs. The two numbers
directly below this are in general a/b (e.g. 16/0) which denotes the
number of observed absences ‘‘a’’ and presences ‘‘b’’ that are classified
into this particular node.
doi:10.1371/journal.pone.0023903.g003

Table 3. Quantiles of sensitivity, specificity and log posterior
for training and validation datasets over all accepted trees, for
Bayesian classification trees.

2.50% 50% 97.50%

Training Sensitivity 0.081 0.466 0.938

Specificity 0.108 0.638 0.976

Log posterior 2441.580 2414.580 2394.710

Validation Sensitivity 0.050 0.475 0.950

Specificity 0.124 0.646 0.987

Log posterior 2109.860 2100.090 291.965

doi:10.1371/journal.pone.0023903.t003

Table 4. Quantiles of log residual sums of squares (RSS),
deviance and log posterior for training and validation datasets
over all accepted trees, for Bayesian regression trees.

2.50% 50% 97.50%

Training Log RSS 255.446 251.261 249.960

Deviance 10.213 21.224 40.428

Log posterior 221.284 212.823 212.478

Validation RSS 261.689 257.727 255.864

Deviance 8.597 14.823 28.864

Log posterior 217.232 210.846 29.879

doi:10.1371/journal.pone.0023903.t004

Bayesian Classification and Regression Trees
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Although other interactions (ie. temperature, rainfall and SEIFA)

could of course be included in the CAR model, it is difficult to

identify a priori which interactions to include and evaluation of all

possible interactions would require a much larger dataset than was

available here.

We also considered including these interactions in a spatial

CAR hurdle model, which allows for zero-inflation by having a

probability mass at zero, but found this to be difficult to fit in terms

of stability and interpretability of the estimates and corresponding

predictions. This is possibly not surprising given that the

discretisation of the data into two components (zero and non-

zero) may impact on the representation of the spatial component

in the model, especially when taking into interactions into account.

This requires further future investigation. In the meantime, a

posteriori inclusion of interactions, based on the CART, into the

CAR model analyses is a potentially useful alternative.

A strong advantage of a Bayesian framework for the CAR and

CART models is that all the parameters of the model are treated

as variables, so that probabilistic inferences are made on the basis

of the corresponding posterior distributions [30]. Moreover, by

virtue of the MCMC computation, the distributions used to

describe these variables are no longer constrained to analytically

tractable (e.g., normal) formulations. Furthermore, under a

Bayesian CART framework, a diverse range of tree structures

can be readily explored. The typical frequentist approach of fitting

the CART model uses single recursive partitioning algorithms

[31,32] in which the choices of the splitting rules at nodes further

down the tree are constrained by the choices made at nodes above

it, and only get one optimal tree. In contrast, the Bayesian CART

approach investigates a wide variety of tree structures with

different variables, splitting rules and number of terminal nodes.

At any splitting node, the variable and splitting rules are randomly

selected from the prior and trees that perform well in terms of high

likelihood (low deviance) and posterior probabilities are chosen.

Accounting for model uncertainty in this manner can improve

predictive performance [8].

A Bayesian CART model for identification and estimation of

the spatial distribution of disease risk can be useful in monitoring

and assessment of infectious diseases and in decision-making about

prevention and control. The methodology developed through this

study may be directly applicable to research on other infectious

diseases, with further potential for application to a wider range of

public health problems.
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