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Abstract

Background and Aims: Osteopontin, SDF-1a, and MMP-2 are important secreted molecules involved in the
pathophysiology of human hepatocellular carcinoma (HCC). This study investigates the effect of the SDF-1a/CXCR4 axis
on expression and activity of MMP-2 induced by osteopontin.

Methods: The expression of CXCR4, SDF-1a, MMP-2 and their associated cellular signaling cascades, involving Akt and MAP
Kinases, were determined by Western blotting. The activities of MMP-2 and MMP-9 were assayed by gel zymography. The
role of the osteopontin receptors integrin avb3 and CD44v6 was evaluated using neutralizing antibodies. We also
established CXCR4-deficient SMMC7721 cell lines by transfection with miRNA-CXCR4 plasmids and determined cell invasion
activity in a transwell assay.

Results: In comparison with untreated cells, recombinant human osteopontin (rhOPN) up-regulated CXCR4, SDF-1a, and
MMP-2 expression about 5-, 4-, and 6-fold on the protein levels through binding to integrin avb3 and CD44v6 in
hepatocellular carcinoma cells (SMMC7721 and HepG2). Inhibition of the SDF-1a/CXCR4 axis down-regulated the rhOPN-
induced MMP-2 expression and activity. rhOPN also activated Akt, p38 and JNK. Down-regulation of CXCR4 decreased the
rhOPN-induced invasion in SMMC7721 cells.

Conclusion: These results indicate that rhOPN up-regulates MMP-2 through the SDF-1a/CXCR4 axis, mediated by binding to
integrin avb3 and CD44v6 and activating the PI-3K/Akt and JNK pathways in HepG2 and SMMC7721 cells. Therefore, the
osteopontin-SDF-1a/CXCR4-MMP-2 system may be a new therapeutic target for treating HCC progression.
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Introduction

Many experimental and clinical studies have demonstrated that

a substantial number of secreted factors are involved in the

pathophysiology of human hepatocellular carcinoma (HCC) [1].

Among them, the cytokine osteopontin, the SDF-1a/CXCR4 axis

(stromal cell derived factor-1/ CXC chemokine receptor 4), and

MMP enzymes are thought to play key roles in invasion and

angiogenesis [2,3,4].

Osteopontin is an aspartate-rich protein expressed by various

tissues and cell types. The existence of variant forms of osteopontin,

representing a secreted (sOPN) and intracellular (iOPN) protein, has

been described. sOPN interacts with integrins and variant CD44. It

contains several cell binding domains, including an arginine-

glycine-aspartate (RGD)-motif that engages a subset of cell surface

integrins (avb3, avb1, avb5, and a8b1), a serine-valine-valine-

tyrosine-glutamate-leucine-arginine (SVVYGLR)-containing do-

main that interacts with other integrins (a9b1, a4b1 and a4b7),

and an ELVTDFTDLPAT domain that has been reported to bind

to integrin a4b1 [5]. The CD44-binding site has been mapped to the

C-terminal portion of osteopontin. The cytokine activates various

signaling pathways to mediate multiple functions such as inflam-

mation, cell adhesion, migration and tumor invasion. Osteopontin

up-regulates matrix metalloproteinase 2 (MMP-2). In MDA-MB-

231 human breast cancer cells, MMP-2 was significantly decreased

following exposure to an inhibitor of osteopontin [6]. Further study

has shown that osteopontin activates the phosphoinositide 3-kinase/

Akt survival pathway [7,8].

SDF-1 and its receptors, such as CXC chemokine receptor 4

(CXCR4), are thought to play critical roles in motility, homing,

and proliferation of many cancer cells [9]. SDF-1, which belongs

to the CXC chemokine subfamily, is produced in two forms, SDF-

1a (CXCL12a) and SDF-1b (CXCL12b), by alternative splicing of

the SDF-1 gene. The binding of SDF-1a to its receptor CXCR4

stimulates receptor dimerization and activates downstream
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signaling to play an important role in a wide array of disease

processes [10,11,12,13].

We thus assessed the role of the SDF-1a/CXCR4 axis in the

process of OPN mediated MMP-2 up-regulation in the two

human hepatocellular carcinoma cell lines, HepG2 and

SMMC7721.

Materials and Methods

Materials
rhOPN (Recombinant human Osteopontin/his) (#1433-OP/CF)

was purchased from R&D Systems (USA). PD98059 (#9900),

LY294002 (#9901), MAPK Family Antibody Sampler Kit

(#9926), Phospho-Akt (Ser473), Antibody (#9271) and SDF-1

antibody (#3530) were purchased from Cell Signaling Technology

(USA). Rabbit polyclonal to CXCR4 (#ab2074) was obtained from

Abcam (USA). Anti-CD44var (v6) monoclonal antibody

(#MAB4073), Anti-integrin aV clone AV1 monoclonal antibody

(#MAB2021Z) and Rabbit anti-human stromal cell-derived factor-1a
affinity purified polyclonal antibody (#AB1868P) came from

Millipore (USA). SB203580 (#S8307), SP600125 (#S5567) and

ECM gel (#e1270) were obtained from Sigma-Aldrich (USA).

AMD3100 (#10011332) was purchased from Cayman Chemical

and Functional Grade Purified anti–human CXCR4 (12G5) (#16-

9999) from eBioscience (USA).

Cell culture
The human hepatocellular carcinoma cell lines SMMC7721

and HepG2 cells [14] were cultured in DMEM supplemented with

10% fetal bovine serum (FBS), penicillin (100 U/ml), streptomycin

sulfate (100 mg/ml), and maintained at 37uC with 5% CO2 in a

humid incubator.

Construction of miRNA-CXCR4 expression plasmids and
stable clone selection

Four distinct domains within the coding region of the human

CXCR4 cDNA were targeted for RNA interference. For this

purpose, four pairs of reverse complementary oligonucleotides

were designed and synthesized as Table 1.

The oligonucleotides were annealed and inserted into the

pcDNA6.2-GW/EmGFP-miR expression vector (Invitrogen,

#K4936-00) to create pcDNA6.2-GW/EmGFP–miR -CXCR4-

1-4, 2-4, 3-1, and 4-4. A control construct was also created.

We used lipofectamine 2000 (Invitrogen, Carlsbad, CA, USA)

to separately transfect the five kinds of plasmids into SMMC7721

cells. To select for successful transfectants, the cells were cultured

48 hours after transfection in selection medium containing 3 mg/

ml blasticidin (Sigma-Aldrich, Saint Louis, MO, USA). Blasticidin-

resistant cells were maintained in culture medium supplemented

with 3 mg/ml blasticidin for further analysis.

Gel zymography for evaluation of gelatinolytic activity
In this study, the human hepatocellular carcinoma cell lines

SMMC7721 and HepG2 (16106) were seeded in 6-cm (diameter)

dishes containing complete growth medium. After 12 hours

incubation in DMEM with 0.1% BSA, the medium was changed

to DMEM with 0.1% BSA in the absence or presence of rhOPN

(50 nM) for 60 hours. The rhOPN concentration is in the range

commonly associated with cancer [14]. We then collected the

supernatant and centrifuged it at 12,000 rpm for 10 min to pellet

insoluble material. The protein concentration in the supernatant

was determined using a Protein Assay Rapid Kit (Bio-Rad, Osaka,

Japan). Samples containing 40 mg total protein in sample buffer

(10% SDS, 4% sucrose, 0.25 M Tris-HCl, pH 6.8 and 0.1%

bromophenol blue) were used in gelatin zymography. The

samples, diluted 1:1 with 26 sample buffer, were not boiled but

warmed in a water bath (55uC) for 3–5 min before being subjected

to electrophoresis in a 10% SDS-polyacrylamide gel (SDS-PAGE)

containing 0.1% gelatin under non-reducing conditions. The gel

was washed twice for 30 min in 2.5% Triton X-100 at room

temperature to remove the SDS. After the second wash, all but 2–

3 ml of the Triton X-100 was removed, and 100 ml of

development buffer (0.05 M Tris-HCl pH 8.8, 5 mM CaCl2,

0.02% NaN3, 0.02% Brij) was added for further incubation for

24 hours at 37uC. The gel was then stained for 3 hours in

Coomassie blue (0.1% Coomassie brilliant blue R250 (w/v) in

fixing/destaining solution) and destained in fixing/destining

solution (methanol: acetic acid: water, 4.5:1:4.5) until clear bands

of gelatinolysis appeared on a dark background. Total activity was

analyzed using a scanning densitometer with molecular analysis

software (Bio-Rad) [15].

SDF-1 ELISA
Enzyme-linked immunosorbent assay (ELISA) was done with a

human SDF-1 Quantikine kit (R&D), used in accordance with the

manufacturer’s protocol. In this study, the human hepatocellular

carcinoma cell lines SMMC7721 and HepG2 (16106) were seeded

in 6-cm (diameter) dishes containing complete growth medium.

After 12 hours incubation in DMEM with 0.1% BSA, the medium

was changed to DMEM with 0.1% BSA in the absence or

Table 1. Reverse complementary oligonucleotides.

oligo 59to 39

MR079-1-F TGCTGTAGTAAGGCAGCCAACAGGCGGTTTTGGCCACTGACTGACCGCCTGTTCTGCCTTACTA

MR079-1-R CCTGTAGTAAGGCAGAACAGGCGGTCAGTCAGTGGCCAAAACCGCCTGTTGGCTGCCTTACTAC

MR079-2-F TGCTGAACAGTGGAAGAAAGCTAGGGGTTTTGGCCACTGACTGACCCCTAGCTCTTCCACTGTT

MR079-2-R CCTGAACAGTGGAAGAGCTAGGGGTCAGTCAGTGGCCAAAACCCCTAGCTTTCTTCCACTGTTC

MR079-3-F TGCTGAACACAACCACCCACAAGTCAGTTTTGGCCACTGACTGACTGACTTGTGTGGTTGTGTT

MR079-3-R CCTGAACACAACCACACAAGTCAGTCAGTCAGTGGCCAAAACTGACTTGTGGGTGGTTGTGTTC

MR079-4-F TGCTGATACCAGGCAGGATAAGGCCAGTTTTGGCCACTGACTGACTGGCCTTACTGCCTGGTAT

MR079-4-R CCTGATACCAGGCAGTAAGGCCAGTCAGTCAGTGGCCAAAACTGGCCTTATCCTGCCTGGTATC

Negative-F TGCTGAAATGTACTGCGCGTGGAGACGTTTTGGCCACTGACTGACGTCTCCACGCAGTACATTT

Negative-R CCTGAAATGTACTGCGTGGAGACGTCAGTCAGTGGCCAAAACGTCTCCACGCGCAGTACATTTC

doi:10.1371/journal.pone.0023831.t001

OPN Induces MMP-2 through the SDF-1/CXCR4 Axis
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presence of rhOPN (50 nM) for 24, 48, 72 hours. We then

collected the supernatants and measured total protein content

using the BCA protein assay kit (Pierce) before analysis. Results are

representative of three independent experiments.

Western blotting analysis
The SMMC7721 and HepG2 cells (16106) were treated with

rhOPN (50 nM) for 48 hours, and then lysed in RIPA buffer.

Equal amounts of protein (60 mg) were electrophoresed on 12%

SDS-PAGE gels and electrophoretically transferred to Immobilon-

P membranes (Millipore, Bedford, MA, USA). The membranes

were probed overnight at 4uC with antibody to CXCR4 (1:1000),

MMP-2, SDF-1a and monoclonal anti-a-tubulin (1:5000) in

TBST containing 1% BSA (w/v). The blots were then incubated

for 2 hours with anti-rabbit or anti-mouse secondary antibodies,

the immune complex was detected using an ECL plus detection kit

(Pierce, Rockford, IL, USA), and analyzed using a scanning

densitometer with molecular analysis software (Bio-Rad).

Integrin avb3 and CD44v6 neutralization
SMMC7721 and HepG2 cells were cultured as described above

in the presence of anti-integrin avb3 or anti-CD44v6 neutralizing

antibodies, or of control IgG. After 60 hours, the cells were

collected and Western blotting was performed for the relevant

signaling molecules.

Cell invasion assay
Cell invasion was studied using 24-well transwell plates (Corning

Costar, Schiphol-Rijk, Netherland). 60 ml of the ECM gel solution

was added to the top compartment of each cell culture insert and

dried overnight under laminar air flow. The cells under study were

harvested, washed twice with PBS, resuspended in serum-free culture

medium with 0.2% BSA and adjusted to a final concentration of 106

per ml. 600 ml serum-free DMEM/ 0.2% BSA containing rhOPN

(50 nM) was added to the lower compartment of each well, and

200 ml of the cell suspension was added to the pre-coated upper

compartment. The plate with inserts was incubated for 48 hours in a

cell culture incubator at 37uC and 5% CO2. To determine the

background migration, some wells of the 24-well plate were prepared

without rhOPN in the lower compartment. Cells remaining on the

top side of the filter were removed by soft mechanical dislodging, and

the number of cells migrating to the bottom of the filter was counted

using a light microscope (in each chamber, six fields were counted at

2006magnification for each condition).

Flow cytometry
SMMC7721 and HepG2 cells were collected with trypsin/

EDTA, washed with fluorescence-activated cell sorting (FACS)

buffer (phosphate-buffered saline [PBS], 2 mM EDTA, and 0.5%

BSA), and then incubated in FACS buffer for 1 hour at 4uC in the

presence of monoclonal antibodies at the manufacturer’s recom-

Figure 1. SDF-1a, CXCR4 and MMP-2 expression are induced by rhOPN in SMMC7721 and HepG2 cells. SMMC7721 cells (A) or HepG2
cells (B) were stimulated with various concentrations of rhOPN for 48 hours, the cells were collected, and SDF-1a, CXCR4 and MMP-2 were detected
by Western blotting assay. (C) HepG2 cells were stimulated with 50 nM rhOPN for increasing time frames, the cells were collected, and SDF-1a, CXCR4
and MMP-2 were detected by Western blotting assay. (D) SDF-1 ELISA of culture supernatants (SMMC7721 and HepG2) after 0–72 hours of rhOPN
(50 nM). (E) MMP-2 activity was analyzed by gelatin zymography after stimulation with 50 nM rhOPN for 60 hours in the SMMC7721 and HepG2 cell
lines. *denotes P,0.05 versus control. The results presented are representative of at least three independent experiments.
doi:10.1371/journal.pone.0023831.g001

OPN Induces MMP-2 through the SDF-1/CXCR4 Axis
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mended concentrations. Binding of anti-CD44var (v6) and anti-

integrin aV clone AV1 were visualized with FITC-conjugated

rabbit anti-mouse immunoglobulin (Chemicon, Temecula, CA).

The cells were washed, fixed with 1% paraformaldehyde and the

fluorescence was quantified on 10,000 cells using a FacsCalibur

with Cellquest software (BD Biosciences, PharMingen).

Statistical analysis
The data were analyzed by two-tailed Student’s t-test for single

comparisons and by one-way analysis of variance for multiple

group comparisons. Differences were considered significant at a

probability of error below 5% versus control.

Results

Osteopontin up-regulates SDF-1a, CXCR4 and MMP-2
expression in hepatocellular carcinoma cells

To determine the effect of rhOPN on the SDF-1a/CXCR4

axis and MMP-2 expression, Western blotting analysis and gel

zymography were done in two human hepatocellular carcinoma

cell lines, SMMC7721 and HepG2. Figure 1A shows that the

expression of SDF-1a, CXCR4, and MMP-2 protein were

induced by rhOPN. There was an apparent increase in the

CXCR4 protein level when the concentration of rhOPN was

3.12 nM in SMMC7721 cells, and the same phenomenon was

also observed in HepG2 cells (Figure 1B). Figure 1C shows that

MMP-2 expression was detectable within 24 hours after the

addition of rhOPN, reached a maximum around 60 hours. The

MMP-2 levels increased in a time-dependent manner in HepG2

cells. SDF-1a and CXCR4 expression increased accordingly

(Figure 1C and 1D). Figure S1A and S1B are quantification of

expression described in Figure 1A and 1B based on grayscale

analysis.

After identifying MMP-2 protein expression in SMMC7721 and

HepG2 cells, we further analyzed the MMP-2 activity in the two

cell lines by gelatin zymography. The results demonstrated that

the activity of MMP-2 but not MMP-9 was induced by rhOPN at

a dose of 50 nM (Figure 1E).

Figure 2. Effects of the SDF-1a/CXCR4 axis on rhOPN-induced MMP-2 expression and activity. (A) Verification by Western blotting of the
miRNA knockdown of CXCR4 showed a significant reduction of the CXCR4 protein in all clones (1-4, 2-4, 3-1, 4-4). After blocking the SDF-1a/CXCR4
axis with miRNA-CXCR4 and inhibitors (SDF-1 neutralizing antibody at 100 ng/ml, CXCR4 inhibitor 12G5 at 50 mg/ml, or CXCR4 inhibitor AMD3100 at
500 ng/ml), the cells were stimulated by rhOPN in serum-free medium for 60 hours, the cells were collected and analyzed by Western blotting in
SMMC7721 cells (C) and in HepG2 cells (F). The supernatants of SMMC7721 cells (B) and HepG2 cells (E) were analyzed by gelatin zymography. (D)
and (G) show the densitometric ratio of MMP-2 protein/a-tubulin. (H) Western blotting was used to assay the MMP-2 expression induced by rhOPN
(50 nM) or/and SDF-1 (30 nM) for 48 hours. * denotes P,0.05 versus control. The results presented are representatives of at least three independent
experiments.
doi:10.1371/journal.pone.0023831.g002

OPN Induces MMP-2 through the SDF-1/CXCR4 Axis
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The SDF-1a/CXCR4 axis is involved in osteopontin-
induced MMP-2 expression and activity

The MMPs are a large family of proteolytic enzymes, which play

an important role in cancer invasion and metastasis due to their

ability to degrade the extracellular matrix and basement membrane.

Among them, MMP-9 and MMP-2 have been found to be highly

associated with metastatic spread by various cancers. Therefore, to

determine whether the SDF-1a/CXCR4 axis mediates osteopon-

tin-induced MMP-2 expression and activity, we established

CXCR4-deficient SMMC7721 cell lines (clone 1-4, 2-4, 3-1 and

4-4) through the transfection of miRNA-CXCR4. SMMC7721-

vector was used as a control. The CXCR4 protein was detected by

Western blotting. CXCR4 expression was significantly down-

regulated in all of the four miRNA clones (Figure 2A).

The SMMC7721 cells and the miRNA transfectant clones were

stimulated with rhOPN for 60 hours. At that time, the cells and

their conditioned medium were collected for gelatin zymography

and Western blotting. Decreased amounts of MMP-2 proteins were

detected in CXCR4-deficient SMMC7721 cells (clones 1-4, 2-4, 3-1

and 4-4) (Figure 2C), compared to SMMC7721 and vector control.

The increased activity of MMP-2 but not MMP-9 was abolished in

the CXCR4-deficient SMMC7721 cells (Figure 2B).

Figure 3. Integrin avb3 and CD44 mediated OPN-induced CXCR4 expression in SMMC7721 and HepG2 cells. FACS analysis using
monoclonal antibodies to avb3 integrin (left) and CD44 (right) was done for SMMC7721 cells (A) and HepG2 cells (C), stimulated by rhOPN for
24 hours. The grey area represents isotype control, while the dark line represents the control and the grey line represents the experimental group.
SMMC7721 (E) and HepG2 (F) cells were treated with rhOPN (50 nM), in the presence of neutralizing antibodies to integrin avb3 or CD44v6, or control
IgG. After 60 hours, the cells were collected and Western blotting was performed to detect CXCR4. (B), (D), (G) and (H) are quantitative evaluations.
The results are shown as mean 6 standard deviation (n = 3). * denotes P,0.05 compared to rhOPN treatment in the absence of antibody.
doi:10.1371/journal.pone.0023831.g003

OPN Induces MMP-2 through the SDF-1/CXCR4 Axis
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To further elucidate the role of the SDF-1a/CXCR4 axis in

human hepatocellular carcinoma, we detected the expression and

activity of MMP-2 induced by 50 nM rhOPN in the presence or

absence of SDF-1a neutralizing antibody, CXCR4 inhibitor

12G5, or CXCR4 inhibitor AMD3100. Firstly, we have assessed

the toxicity of AMD3100, and the results showed that AMD3100

(500 ng/ml) had no effect on proliferation of HepG2 (figure S2A).

The results indicated that exposure of the HepG2 cells to anti-

SDF-1 antibody, CXCR4 inhibitor 12G5, or CXCR4 inhibitor

AMD3100 decreased the rhOPN-induced MMP-2 activity

(Figure 2E) and expression (Figure 2F and D). In order to confirm

that SDF-1 actually mediates the observed OPN effects on MMP-

2 expression, Western blotting was used to assay the MMP-2

expression levels induced by rhOPN (50 nM) or/and SDF-1

(30 nM) for 48 hours. The results indicate that SDF-1 does

generate the same response as OPN in terms of MMP-2

expression, but rhOPN and SDF-1 have no synergistic effects on

MMP-2 expression (Figure 2H), presumably because they belong

to the same pathway.

Osteopontin up-regulates CXCR4 in hepatocellular
carcinoma cells through both major receptors

Known receptors for osteopontin through which the cytokine is

thought to influence diverse physiological and pathological processes

include integrins, most prominently avb3, and CD44v3-6. To assess the

respective roles of the cognate receptors in osteopontin-dependent

signaling pathways, we initially performed flow cytometry analysis in

SMMC7721 and HepG2 cells for the expression levels of avb3 integrin

and CD44. CD44 was expressed a high levels in both cell lines,

regardless of whether they had been cultured in the presence or

absence of rhOPN. Integrin avb3 was about twofold inducible by

rhOPN from very low baseline expression levels in SMMC7721 cells

(Figure 3A and B). The receptor was only marginally inducible by

rhOPN in HepG2 cells (Figure 3C and D).

Neutralizing antibodies to integrin avb3 and CD44v6 were used to

further test whether these osteopontin receptors are involved in the

observed induction of CXCR4 expression. Both antibodies down-

regulated the CXCR4 expression induced by rhOPN, about 4.2- and

1.8-fold in SMMC7721 cell (Figure 3E and G), 3.2- and 2.2- fold in

HepG2 cell (Figure 3F and H). It is known that CD44 and integrin b3

can interact. The contribution by both receptors suggests that rhOPN

may engage a CD44v6/integrin avb3 complex in the cancer cell

membrane, activating downstream signal transduction pathways in the

hepatocellular carcinoma cells HepG2 and SMMC7721.

Osteopontin-induced CXCR4 and MMP-2 expression are
mediated by PI-3K/Akt and JNK

Osteopontin has been reported to activate various kinases such

as PI-3K, protein kinase C, and the MAP Kinases, which have

three major subgroups (ERK, p38, and JNK). We first asked

whether osteopontin activates Akt (the downstream target of PI-

3K) and MAPK in SMMC7721 and HepG2 cells. As shown in

Figure 4A–D, Akt, p38, and JNK phosphorylation were

stimulated within 30 min following the addition of rhOPN,

whereas ERK1/2 was not. Figure S3A, B, C and D are

quantification of expression described in Figure 4A, B, C, and D

based on grayscale analysis (analyzed from three independent

experiments, *P,0.05 versus control. The data are representative

of three experiments).

To define the role of the PI-3K/Akt and MAPK pathways in

rhOPN-induced SDF-1, CXCR4 and MMP-2 expression, we used

inhibitors for PI-3K and MAPKs. SDF-1, CXCR4 and MMP-2

Figure 4. The rhOPN-induced expression of CXCR4 and MMP-2 depends on the PI3K/Akt and JNK pathways. rhOPN induced the
phosphorylation of Akt (A), p38 (B) and JNK (C), but not ERK1/2 (D) in SMMC7721 and HepG2 cells. The cells (16106 cells/ml) were left untreated or
stimulated with rhOPN (50 nM) for 30 min and total cell lysates were subjected to Western blotting analysis. After pretreatment of SMMC7721 cells
(E) or HepG2 cells (F) with PD98059 (ERK inhibitor, 100 mM), SB203680 (p38 inhibitor, 100 mM), SP600125 (JNK inhibitor, 100 mM), LY294002 (PI-3K
inhibitor, 100 mM) or DMSO for 45 min, the cells were treated with rhOPN (50 nM) for 48 hours and total cell lysates were subjected to Western
blotting analysis for MMP-2 or CXCR4.
doi:10.1371/journal.pone.0023831.g004

OPN Induces MMP-2 through the SDF-1/CXCR4 Axis
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expression, stimulated by rhOPN, were decreased significantly in

the presence of LY294002 (PI-3K inhibitor) or SP600125 (JNK

inhibitor). However, as shown in Figure 4E and F (figure S3E and

F are quantification of expression described in Figure 4E and F

based on grayscale analysis), the inhibitors of ERK or p38 had

little effect on the rhOPN-induced CXCR4 expression in

SMMC7721 and HepG2 cells. These results indicate that

osteopontin-mediated CXCR4 and MMP-2 expression depends

on activation of the PI-3K/Akt and JNK pathways.

CXCR4 is required for osteopontin-induced cell invasion
The observation that rhOPN induced SDF-1a, CXCR4 and

MMP-2 expression in human hepatocellular carcinoma cells

suggested that the SDF-1a/CXCR4 axis might play a role in

osteopontin-dependent tumor progression. Therefore, we assessed

the invasive response to rhOPN in a transwell assay. As shown in

Figure 5, rhOPN stimulated the invasion response of SMMC7721

cells (6-fold) and SMMC7721-miRNA-CXCR4 cells, clones 1-4

and 2-4 (2-fold). Importantly, invasiveness was decreased in clone

1-4 and 2-4 cells, about four fold lower than in SMMC7721cells.

These results indicate that rhOPN activates cell invasion through

the induction of CXCR4 in SMMC7721 cells.

Discussion

Hepatocellular carcinoma (HCC) is one of the most common

and malignant neoplasms worldwide. Its pathophysiology is

associated with multiple cytokines and secreted factors, including

osteopontin, SDF-1 and its receptor CXCR4, as well as MMP-2

and MMP-9 [16,17,18]. Osteopontin expression is up-regulated in

tumors and blood of human HCC patients compared to healthy

controls [19,20,21]. It has been suggested that osteopontin

overproduced by tumor cells may act as a potent angiogenic

factor [22]. Our study indicates that osteopontin stimulates MMP-

2 expression and activity through a hitherto undefined pathway.

Both MMP-2 and MMP-9 play important roles in the

pathogenesis of many cancers [19,20]. Our results are consistent

with previous results showing that osteopontin up-regulates MMPs

[21,22,23]. It has been reported that the osteopontin-induced

activation of MMP-2 or MMP-9 is mediated by the PI-3K/Akt/

NF-kB signaling pathway [21,24,25]. Osteopontin may promote

the activation of pro-MMP-9, but not MMP-2, through an

NADPH oxidase-associated signaling cascade [22]. While we

found no rhOPN effect on MMP-9, our study has identified a

novel pathway to MMP-2 expression and activation, which is

mediated by the SDF-1a/CXCR4 axis (Figure 6). Our results

(Figures 4) further demonstrate that the p38 and ERK pathways

are involved in the expression of MMP-2, but not SDF-1 and

CXCR4 expression, induced by rOPN. In this study, our focus is

on the OPN-dependent enhancement of the expression and

activity of MMP-2 via the SDF-1/CXCR4 axis. p38 and ERK

MAPK induces MMP-2 expression in many cells, for example,

baicalein downregulates the protein expression levels of MMP-2

by inhibiting the expression of p-Akt, p-ERK, p-p38 and p-JNK

[26]; the down-regulation of p38 MAPK and JNK by siRNA

transfection resulted in a decrease in MMP-2 expression by

MelJuso cells [27]. The rhOPN-induced CXCR4 expression is

dependent on CD44 and integrin receptors, and is regulated by

the PI-3K/Akt and JNK pathways (Figures 3 and 4) in the two

hepatocellular carcinoma cell lines (HepG2 and SMMC7721)

tested. Moreover, decreased production of CXCR4 and MMP-2

in association with lower invasion of hepatocellular carcinoma cells

could be related to the down-regulation of metastasis [28,29]. Our

data add to this evidence (Figure 5), indicating that osteopontin,

CXCR4, and MMP-2 are key cytokines for HCC progression.

Although our results are derived from two model cell lines,

published evidence corroborates that they are relevant for human

cancers [30].

Osteopontin and CXCR4 have been used as markers for

immune activation [31] for homing precursor cells [32,33] and for

metastasizing cancer cells [34,35,36]. Further, osteopontin and

CXCR4 may serve as early biomarkers for cancer detection [37].

However, reports in the literature have not yet provided a

functional link between these molecules. The identification of

CXCR4 as a downstream target of osteopontin and an essential

mediator in the induction of MMP-2 closes this gap. Osteopontin

up-regulates MMP-2 through activating the SDF-1a/CXCR4Figure 5. The rhOPN-induced SMMC7721 cells invasion is
mediated by CXCR4. The invasion assay was set up in transwell
chambers. Cell culture inserts with 8.0-mm pore diameter were used to
separate the top and bottom chambers. 60 ml of ECM gel solution was
added to the upper compartment of each cell culture insert and dried
overnight under laminar air flow. SMMC7721 parent cells, vector
controls, and CXCR4 miRNA clones (1-4, 2-4) were plated onto the
membrane of the top chamber, and rhOPN was administered to the
bottom chamber. After 48 hours, the cells that had invaded to the
lower surface of the membrane were enumerated. (A) Bright-field
image of cells migrated to the bottom of chambers on the inserts (2006
original magnification). (B) Quantification of cell invasion. The open
bars represent no osteopontin, the filled bars represent rhOPN
treatment. In each chamber, six fields were counted at 2006
magnification for each condition by two investigators. * indicates
P,0.05 versus control. The data are representative of three experi-
ments.
doi:10.1371/journal.pone.0023831.g005

Figure 6. Model for the mechanism of osteopontin-dependent
MMP-2 up-regulation in hepatocellular carcinoma. The results of
the present study show that osteopontin up-regulates SDF-1a, CXCR4,
and MMP-2 via integrin avb3 and CD44v6, as well as PI-3K/Akt and JNK.
These data are consistent with an osteopontin-induced autocrine loop
of SDF-1a/CXCR4 activation that leads to tumor invasion, in part via
MMP-2 secretion.
doi:10.1371/journal.pone.0023831.g006
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axis, mediated by binding to integrin avb3 and CD44v6 and

activating the PI3K/Akt and JNK pathways in hepatocellular

carcinoma cells (HepG2 and SMMC7721). Therefore, the

osteopontin-SDF-1a/CXCR4- MMP-2 system may be a promis-

ing therapeutic target.

Supporting Information

Figure S1 Figure S1A and S1B are quantification of
expression described in Figure 1A and 1B based on
grayscale analysis (analyzed from three independent
experiments). *denotes P,0.05 versus control.

(TIF)

Figure S2 The cell numbers at 12 h postplating were set
as 1, and cell numbers collected at all other time points

were compared with the initial values at 12-h time point.
Results were expressed as the mean6SD. * P,0.05 when

compared with the DMSO control.

(TIF)

Figure S3 Quantification of expression described in
Figure 4A, B, C, D, E and F based on grayscale analysis
(analyzed from three independent experiments). *P,0.05

versus control. The data are representative of three experiments.

(TIF)
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