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Abstract

Background: Analysis of genomic sequence allows characterization of genome content and organization, and access
beyond gene-coding regions for identification of functional elements. BAC libraries, where relatively large genomic regions
are made readily available, are especially useful for species without a fully sequenced genome and can increase genomic
coverage of phylogenetic and biological diversity. For example, no butterfly genome is yet available despite the unique
genetic and biological properties of this group, such as diversified wing color patterns. The evolution and development of
these patterns is being studied in a few target species, including Bicyclus anynana, where a whole-genome BAC library
allows targeted access to large genomic regions.

Methodology/Principal Findings: We characterize ~1.3 Mb of genomic sequence around 11 selected genes expressed in B.
anynana developing wings. Extensive manual curation of in silico predictions, also making use of a large dataset of
expressed genes for this species, identified repetitive elements and protein coding sequence, and highlighted an expansion
of Alcohol dehydrogenase genes. Comparative analysis with orthologous regions of the lepidopteran reference genome
allowed assessment of conservation of fine-scale synteny (with detection of new inversions and translocations) and of DNA
sequence (with detection of high levels of conservation of non-coding regions around some, but not all, developmental
genes).

Conclusions: The general properties and organization of the available B. anynana genomic sequence are similar to the
lepidopteran reference, despite the more than 140 MY divergence. Our results lay the groundwork for further studies of new
interesting findings in relation to both coding and non-coding sequence: 1) the Alcohol dehydrogenase expansion with
higher similarity between the five tandemly-repeated B. anynana paralogs than with the corresponding B. mori orthologs,
and 2) the high conservation of non-coding sequence around the genes wingless and Ecdysone receptor, both involved in
multiple developmental processes including wing pattern formation.
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Introduction

Accumulation of genomic sequence data for different species is
allowing an in-depth understanding of genome properties and
evolution. Analysis of whole genomes of target species enables a
detailed characterization of genome content and structure, and
comparative analysis of genomic sequence across species provides
insights about different aspects of genome dynamics and evolution
(e.g., [1]). Widening phylogenetic representation of genomic data
has allowed i silico identification of new protein-coding and
miRNA genes, and regulatory sequence (e.g., [2,3]). However, and
despite the increasing number of eukaryotic assembled genomes in
the public depository [4], we are still far from representative
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coverage of biological diversity. This is especially so for groups
with larger genomes whose full sequencing still requires a
significant investment, and/or where repetitive or polymorphic
sequence renders genome assembly a bioinformatic challenge.
Bacterial Artificial Chromosomes (BACs), where large (typically
around 150 Kb) fragments of genomic DNA are cloned and can
be accessed individually, are a valuable resource for species where
a complete genome sequence is not (yet) available. They allow
focus on particular genomic regions (often around genes of
interest), and have been used successfully for different ends such as
sequence annotation (including access to gene coding and
regulatory regions, physical mapping, development of genetic
markers, analysis of synteny, or to assist whole genome assembly
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(e.g., [5,6]). BAC libraries are available for many species, including
different lepidopterans (the insect order of butterflies and moths)
which have relatively large and typically repetitive genomes [7].
This 1s one of the most diverse groups of animals and includes
many agricultural pests and one of only two domesticated insects,
the silkworm Bombyx morz.

The Lepidoptera have an unusual set of genetic properties,
combining holocentric chromosomes, heterogametic females, and
male-restricted meiotic recombination, whose consequences for
genome evolution remain largely unexplored. The genome of
B. mori is completed [8,9] and provides an invaluable reference for
comparative genomics in this group (e.g., [10,11]). However, this is
the only genome publicly available for this relatively vast and
ancient group, with more than 150,000 described species [12,13].
Butterflies have diverged from moths some 140 MYA [14] and,
despite growth in genomic resources [13], no full genome
sequence has yet been made available for any species in this
group. Butterflies have interesting biological properties (such as
color vision and novel wing color patterns) and include many
textbook examples of studies in ecology and evolution — for
example, long distance migrations of monarchs [16], mimicry in
Papilio and Heliconwus [17,18,19], mutualistic relationships between
lycaenids and ants [20], and wing pattern plasticity and evo-devo
in Bicyclus and Funonia [21]. Bicyclus anynana has been established as
a butterfly model in the study of the evolution and development of
wing color pattern elements called eyespots [21,22,23,24]. This
species has a large collection of expressed gene sequences and the
densest gene-based linkage map available to date for any butterfly
species [25,26]. A BAC library available for B. anynana [27] allows
access beyond the coding regions of genes of interest, including
genes involved in wing pattern formation.

Here, we analyze large genomic regions in BAC clones selected
for containing 11 genes expressed during B. anynana wing
development, at stages relevant for color pattern formation [25].
The selected genes include those encoding signaling molecules
proposed as candidate morphogens in the induction of eyespots
(Decapentaplegic, Dpp, and Wingless, Wg; [23]) as well as some of
their regulators possibly responsible for pattern variation (APC-
like, APC, and Naked cuticle, Nkd; [28]), transcription factors
implicated in eyespot ring patterning (Distal-less, DIl, and
Engrailed, En; [29,30,31]) as well as other transcription regulators
(Apterous, Ap, and DP transcription factor, Dp), enzyme
Vermilion (V) presumably involved in pigment synthesis on
developing wings [32], Ecdysone receptor (EcR) involved in wing
pattern plasticity [33,34], and the antioxidation gene Superoxide
dismutase 2 (Sod2; [35]). Our annotation of the BAC sequences
enabled the identification of repetitive DNA and transposable
genetic elements, and prediction of putative protein-coding genes,
including the 11 target genes as well as the genes around them.
The comparative analysis to orthologous regions in other
lepidopteran species allowed us to assess fine-scale conservation
of gene order (synteny) and also of nucleotide sequence in
predicted protein coding and non-coding DNA.

Results and Discussion

We analyzed ~1.3 Mb of genomic sequence for the butterfly
Bicyclus anynana, an emerging model in the study of wing pattern
evolution and development [36]. This sequence was part of 11
BAC clones selected (from a library available for the species [27])
for containing 11 genes (Table 1) expressed in developing wings
during the stages relevant for color pattern formation [25].
Assembled BAC sequences were characterized and annotated in
relation to a number of criteria (see Methods), including detection
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of repetitive elements and prediction of protein-coding genes
(Table 1, Figure 1). Comparison of gene content with the available
gene-based linkage map of B. anynana [26], shows that the BACs
analyzed correspond to regions on nine different chromosomes
(Table 1). The annotated genomic regions were used for a
comparative analysis of gene order in relation to the lepidopteran
reference genome (Figure 1), and for a comparative analysis of
nucleotide sequence in relation to this and other lepidopteran
species with relevant sequence available (Figure 2).

CG content, repetitive sequence, and mobile elements

We used a combination of web-available and custom-designed
bioinformatic tools and extensive manual curation to characterize
different aspects of the target genomic sequence (details in
Methods). Similar to observations in other lepidopterans
[10,37,38], the GC content was ~36.1% for the total sequence
analyzed (with some variation between regions; Table 1) and
~45.4% for the 55 validated predicted protein-coding genes (see
below). This is consistent with studies in Drosophila where
functional (coding) regions exhibit higher GC content than
presumably less constrained regions [39], possibly relating to the
fact that preferred codons often end in C or G [40].

We used RepeatMasker [41] to identify and characterize
repetitive regions, including the type and extent of different
repetitive elements. We identified a total of 857 repeats larger than
20 bp, corresponding to ~2.73% (35567 bp) of the sequence
analyzed (Table 1 and S1). The majority (721) of those repetitive
elements were characterized as low complexity (i.e. poly-purine/
poly-pyrimidine stretches or regions of >87% AT or >89% GC),
and ~0.49% of the total genomic sequence corresponded to
simple repeats (duplications of, typically, 1-5 bp). While the
overall ~2.73% estimated repetitiveness for B. anynana is lower
than the >20% estimate for Helicomius butterflies [10,37], the
proportion of that corresponding to low complexity repeats is
higher than estimates for other lepidopteran species and the % of
simple repeats is comparable between all [10,37,38]. Because our
estimates are based on BACs selected for carrying specific genes,
rather than sequence from randomly-selected BACs, it avoids
gene-less regions and might under-estimate the extent of
repetitiveness in the whole genome. Aside the repetitive elements
identified by RepeatMasker, we also specifically looked for the
nine novel types of repeated elements identified in other model
butterflies [10] (see Methods). We found sequence similar to two of
these in the available B. anynana genomic sequence (Table 1), and
also in nucleotide sequences available for other lepidopteran
species in NCBI’s sequence depository (Table S2).

Using a combination of tools (RepeatMasker, Kaikogaas,
CENSOR and manual BLAST; see Methods), we identified
sequences related to transposable elements (T'Es; Table 1). These
included DNA transposons (T'c1-IS630-Pogo and DNA/Mariner),
retroelements encoding for a reverse transcriptase (three
NonLTR/RTEs, one NonLTR/DMRT and one NonL TR/
CR1), and two LTR-retrotransposons (one LTR/BEL and one
LTR/Gypsy) (see Table 1 and Figure 1). Only one of these nine
TEs (Tcl-IS630-Pogo in BAC AC239116) was identified by
RepeatMasker, and was, thus, within the sequence that was
masked before further annotation (see Methods). This element is,
thus, not in Figure 1 or Table S3. Some of the TEs identified are
located inside introns (e.g., in glycosyltransferase in AC239115, and
Adh-4 in AC239114; Figure 1), and some are located near areas
where synteny between B. anynana and B. mori is disrupted (e.g.,
inversion in AC239118, and transposition of c¢ytosolic ovarian
carcinoma antigen 1 in AC239121; Figure 1). This is especially
interesting because TEs are thought to play an important role in
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Figure 1. Annotation of B. anynana genomic regions and fine-s

Repetitive and transposable elements

@®  microRNAs

10kb

cale synteny with B. mori. Each B. anynana BAC sequence is represented,

with the corresponding scaffold in B. mori (including information on chromosomal location). Each putative gene is represented by a different color:
B. anynana gene names in bold correspond to those on which BAC selection was based (Table 1), and B. mori gene names reflect SilkDB annotation

(e.g., 010572 is SilkDB gene BGIBMGA010572). Exons are explicitly

annotated for B. anynana as stripes of the same color (darker shade for

duplicated exons). Arrows indicate the direction of transcription of each gene, and fine lines are used for highlighting chromosomal rearrangements.
The figure contains a legend for the representation of sequence length, and for the protein-coding genes, repetitive sequence, transposable
elements, and microRNA identified in this study. Details on all B. anynana predicted peptides can be found in Table S3.

doi:10.1371/journal.pone.0023778.g001

genome evolution, including contributing to chromosomal rear-
rangements [42] and to the appearance of new exons and introns
(albeit possibly to a lesser degree in invertebrates [43]).

In silico annotation and manual curation of protein-
coding genes

For the i silico gene prediction we chose to use Kaikogaas [44],
a web-available tool designed for annotation of genomic sequence
of Bombyx mori, the lepidopteran reference [45]. This resulted in a
total of 398 predicted peptides (Table 1 and S3). Of these, fewer
than 10% (38) had any type of annotation (i.e. a putative gene
name or function) beyond “hypothetical protein” (HP). To identify
potential false positives and other issues with the @ silico
predictions, we manually curated the list of 398 Kaikogaas-
derived genes extensively (details in Methods). In our conservative
validation procedure we started by dismissing 111 predicted
peptides shorter than 60 amino acids. We then used BLAST to
check the remainder for sequence similarity in relation to relevant
publicly-available gene collections. Only 55 predicted peptides
(including the eight TEs not identified by RepeatMasker; see
above) had significant similarity with proteins on NCBI and were
kept for further analysis (Table 1, Figure 1 and Table S3). The
curated 55 predicted genes in the 11 BAC sequences correspond to

@ PLoS ONE | www.plosone.org

an average of 4.2 genes per 100 Kb which, despite our very
conservative manual curation, falls well within published estimates
for other insects (Figure S1), and is greater than that for other
lepidopterans (~2.5 genes/100 Kb in Heliconius butterflies [10]
and ~3.4 genes/100 Kb in the silkworm B. mori [46]). Note that
gene density in the B. mor scaffolds orthologous to the available B.
anynana sequence (the regions represented in Figure 1) is 4.5 genes/
100 Kb, which is very close to that in B. anynana. Our manual
curation strategy, designed to dismiss false positives at the expense
of possibly generating false negatives, is expected to generate a
conservative estimate of gene number. On the other hand, gene
density in genomic regions selected for containing specific protein
coding genes is probably higher than that in the whole genome as
selection of gene-containing BACs avoids possible “gene deserts”.

The manual curation also allowed a more in-depth annotation
of the predicted protein-coding genes. By annotating individual
predicted exons we: 1) established that 41 of the 55 predicted
genes had the complete putative coding sequences, 2) identified
errors with the automated annotation process whereby exons of
the same gene had been identified as different genes (e.g.,
Kaikogaas® HP12 gene in AC239120 corresponds to one of the
exons of Ecdysone receptor; Table S3), and 3) highlighted instances of
exon duplications, including cases of duplicated exons with (exons
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11-15 of p80 katanin in AC239115, and Brahma in ACG239121) and
without (exons 2 and 3 of Sod2 in AC239114, and exons 5 and 6 of
cell cycle progression in AC239122) non-sense mutations (Table S3).

Validation of in silico gene prediction using expressed
sequence data

To match i silico gene predictions with expression data (see
Methods), we used all B. anynana UniGenes (unique genes) from
the available assembly of EST sequences [25,26]. The results of
this analysis are displayed graphically in a custom web-available
database [47]. This approach allowed us not only to assess our
annotation of protein-coding sequence, but also to assess EST
assembly. We identified EST-derived UniGenes for most of our
predicted peptides (Table S3), but also many UniGenes matching
genomic regions with no predicted peptide (see [47]). We
identified EST-derived UniGenes for 44 of the 55 predicted
protein-coding genes; 17 with a single UniGene match and 27
with two to seven. In 23 of the 27 cases with more than one
UniGene corresponding to the same predicted peptide, these
UniGenes were at least partly overlapping. This reflects under-
assembly of the ESTs, possibly due to polymorphisms in these
sequences [25,26,48]. On the other hand, UniGenes in regions
with no predicted peptides presumably correspond to false
negatives of our conservative annotation. For example, Kaiko-
gaas-predicted genes HP7 and HP35 in AC235115 and HP13 in
AC239121 were discarded in the manual curation process
(including one case under the 60-aminoacids long threshold).
One UniGene corresponding to a putative transposable element

@ PLoS ONE | www.plosone.org

not identified by Kaikogaas was detected in two BAC clones
(AC239116 and AC239124). Still, the majority of UniGenes that
did not match any predicted gene seemed to fall in repetitive
regions identified and masked by RepeatMasker.

Alcohol dehydrogenase expansion and sequence similar
to lepidopteran miRNAs

We identified an interesting case of gene duplication. Among
the predicted genes, we identified five putative Alcohol dehydrogenase
(Adh) genes in tandem in BAC AC239114 (Figure 1). BLAST
analysis (see Methods) allowed us to identify seven orthologs in
chromosome 10 (BGIBMGA002939-45; minimal e-value le-30) of
the B. mori lepidopteran reference genome, also annotated as Adh
genes [49]. Phylogenetic analysis of the 12 corresponding Adh
proteins, and including the Adh and Adh-related proteins of D.
melanogaster as outgroups (see Methods), showed that all B. anynana
paralogs cluster together and separated from the cluster of B. mori
paralogs (Figure 3). This pattern of higher similarities within
than between species may result from either of two types of
scenarios: 1) independent duplications of Adk having occurred after
the separation of the lineages of B. mori and B. amynana, or
2) duplications having occurred prior to the split of the lineages
with subsequent concerted evolution of paralogs (gene conversion;
see [50]). Unlike what has been shown for converted duplicates in
other species [51], CG content in the five B. anynana Adh genes
(average * standard for entire loci is 36.1%%2.3%) and in the
remaining 50 predicted genes (37.6% £6.2%) is not significantly
different (t-test t=0.521, df=53, p=0.60). This, however, does
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Bmori BGIBMGA002941_tBLASTx:Adh-3/4e-29

99 Bmori BGIBMGA002940_tBLASTx:Adh-3/4e-29
75 Bmori BGIBMGA002939 tBLASTx:Adh-1/9e-33
28 Bmori BGIBMGA002944 tBLASTx:Adh-4/3e-32

gg 50

Bmori BGIBMGA002943_tBLASTx:Adh-2/3e-13

Bmori BGIBMGA002942_tBLASTx:Adh-1/1e-25
Bmori BGIBMGAQ002945_tBLASTx:Adh-2/2e-16

Bany Adh-1

100 Bany Adh-5

65 Bany Adh-4

52 Bany Adh-3
100 Bany Adh-2

100 Dmel Adh (CG3481)

Dmel Adhr (CG3484)

0.1

Figure 3. Phylogenetic tree of Adh genes. Neighbour-joining, unrooted tree reconstructed with MEGA 4 using the aminoacid sequence of the
putative Adh genes in B. anynana (Bany, in green), together with the corresponding paralogs from chromosome 10 in B. mori (Bmori, in red, showing
Silkdb gene accessions and BLAST results) and D. melanogaster (Dmel, in blue, showing FlyBase gene accessions). Numbers are bootstrap values for

1000 replicates.
doi:10.1371/journal.pone.0023778.g003

not distinguish between the scenarios above. More and other types
of data are necessary for such purpose, and also for unravelling the
ecological value of this gene expansion [52].

We used BLAST to search for B. anynana genomic sequence
similar to mature miRNA sequences (~22 nt) from B. mor
available in miRBase [53,54] and from H. melpomene [55] (see
Methods). We identified a putative B. anynana miRNA similar to
one of the 487 B. mort miRNAs (in BAC AC239117, Figure 1). Its
sequence was 95% and 100% identical to that of its B. mori and
H. melpomene counterparts, respectively. Prediction of miRNAs
based on sequence conservation remains of limited value and
needs experimental validation. The extent to which miRNAs are
conserved is only now starting to be characterized. For example,
only 68 of 257 B. mort miRNAs were found to be conserved with
other species (23 with other vertebrates and invertebrates, 13
limited to invertebrates and 32 limited to insects [54]), and 430 of
447 chicken miRNAs were considered to be exclusive to the avian
lineage [56]. In Drosophila, where species from the Sophophora and
Drosophila subgenus diverged ~62 MYA [57], only 28 of 59 D.
melanogaster miRNA were conserved throughout the phylogeny of
those species with fully sequenced genomes [58].

Comparative analysis of gene order: fine-scale synteny
with B. mori

The comparative analysis of gene order in the target B. anynana
genomic regions (protein-coding gene annotation obtained as
explained above) and the corresponding B. mori orthologous
regions over 18 scaffolds (annotation available from SilkDB [49]) is
represented in Figure 1. Note that both species have the same
number of chromosomes and that B. anynana linkage groups were
numbered following orthology with B. mori [26]. Some of the
predicted 55 genes were excluded for a quantification of the
synteny conservation: 1) three genes found isolated in three of the
B. anynana BACs (AC239117, AC239116 and AC239119), 2) two
genes whose B. mor: orthologs were isolated in one scaffold (note
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that you need at least three gene pairs consecutive genes to assess
conservation of order), and 3) the eight transposable elements in
Figure 1. Out of 42 orthologous pairs analyzed, 36 genes (~86%)
are in the same order in both species. We also identified three B.
mort genes (gray arrows in Figure 1) not represented in the
corresponding B. anynana region (confirmed by running tBLASTn
and tBLASTx of the B. mori sequence against the B. anynana BAC).
One of these B. mori genes (BGIBMGAO006231) presumably
encodes a 57 amino acid protein with no SilkDB annotation [49)]
and might be a “false positive”. The other two (BGIBMGA010383
and BGIBMGAO010570), however, are annotated and presumably
encode longer peptides (776 and 304 amino acids, respectively).
We used different BLAST algorithms to confirm that their absence
in the corresponding B. anynana BAC was not the result of loss
during our stringent manual curation. Interestingly, all three genes
are associated with chromosomal rearrangements; one transposi-
tion in AC239115 and one inversion in AC239118 (Figure 1).
Previous results comparing genetic or physical maps had shown
that chromosomal gene composition and gene order is highly
conserved between butterflies and moths, but also revealed
mstances of chromosomal rearrangements [26,59]. A fine-scale
comparison of genomic sequence in ca. 420 Kb sequence between
the butterfly Heliconius erato and the moth B. mori showed conserved
gene order and distances for ca. 90% of the annotated protein-
coding genes [10]. Here, in ca. 1303 Kb of sequence compared
between B. anynana and B. mori, we detected smaller levels of
conservation and identified 1) small scale inversions: inverted
order of different genes (e.g., mRpL46 and dpp in AC239118) and
inverted direction of single genes (e.g., p80 katamin in AC239115),
and 2) transpositions: with a number of genes assigned to non-
orthologous chromosomes (e.g., cytosolic ovarian carcinoma antigen 1
gene in AC239121 is in chromosome 11 in B. anynana and
chromosome 14 in B. mor) and with the orthologs for the nine
putative genes in AC239115 (B. anynana chromosome 1)
distributed over five B. mori scaffolds, including regions in
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chromosome 4 and regions not yet assigned to a B. morn
chromosome. Inversions and transpositions have been well
documented between the sequenced genomes of Drosophila species
[60,61,62] and are known to have played an important role in the
evolution of their chromosomes.

Comparative sequence analysis highlights conserved
non-coding regions

Of the ca. 1,303 Kb of B. anynana genomic sequence analyzed,
6% corresponded to estimated coding sequence (cds), while 28%
and 66% corresponded to predicted intronic and intergenic
regions, respectively (Table 1). Using VISTA [63,64], we
compared the genomic sequence available for B.anynana with that
of orthologous regions (identified as described in the Methods
section) of B. mori and other Lepidoptera. The results are displayed
in Figure 2. Note that for the putative Adk genes, even though the
B anynana and B. mori copies showed conservation at the protein
level (Figure 3), the VISTA software was unable to identify
nucleotide sequence conservation in the corresponding regions.
For all B. anynana regions compared, VISTA estimated a total of
4.3% nucleotide identity with B. mori (and 1.3% with butterflies
Papilio dardanus, and 6.4% with Heliconius melpomene, for available
sequence), with 2.8% in predicted coding region, 0.4% in introns,
and 1.1% in intergenic regions (Table 1). Conserved sequence
regions correspond largely to the location of putative exons (blue
areas in Figure 2), but, in some instances, also to putative non-
protein coding regions (red areas). Non-protein-coding DNA
forms the majority of the genomes of many multicellular
cukaryotes (e.g. ~80% of noncoding DNA in Drosophila [65]),
and ~99% in humans [66]), and is known to be functionally
important in many respects (e.g. for the regulation of gene
expression and chromosome packaging). Conservation of non-
coding sequence is often taken as a sign of possible functional
importance. Different studies found considerable levels of
conservation of non-coding sequence (e.g. between pairs of
Drosophila species [67,68], diverged no more than 62 MYA [57])
and constraints on intergenic regions have been estimated to
possibly be as high as 60% [69].

The regions of significant conservation of non-coding sequence
are heterogeneously distributed in the neighborhood of different
genes (Figure 2). In fact, we see high levels of conservation
around some (notably, wingless and Ecdysone receptor) targeted
“developmental genes”, but not all (e.g. around Distal-less and
engrailed). Like has been suggested for Drosophila where levels of
selective constrain (and putative functional role) appear to
correlate with intron length [70], B. anynana wingless and Ecdysone
receptor have relatively large introns (~13 Kb and ~50 Kb,
respectively), compared to the average of ~6.5 Kb for the other
46 non-intronless predicted genes (their intron length ranging
from 50 bp in the putative DNA/Mariner element to ~33 Kb
for the gene encoding transcription factor apterous). The high
degree of conservation of non-coding sequence around wingless
and Ecdysone receptor between B. anynana and other lepidopterans
(~78 MYA for B. anynana and H. melpomene [71]), and more than
140 MYA for B. anynana and B. mor: [14]) is lost when comparing
B. anynana to species in other insect orders (Figure S2). It is
noteworthy that wingless and Ecdysone receptor are highly pleiotropic
genes involved in a multitude of developmental processes across
in multiple species, and which, in B. anynana are thought to be
associated to the formation of characteristic wing color pattern
elements [28] and seasonal polyphenism [72]. It will be
interesting to extend this analysis to more lepidopteran species,
including closer relatives with comparable wing pattern proper-
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ties, and to explore the functional role of the conserved non-
coding sequence experimentally.

Overview and conclusions

We analyzed 11 BAC clones of the butterfly Bicyclus anynana,
selected for the presence of key genes expressed during wing
development at stages relevant for wing color pattern formation
[25]. We have identified different genes in these regions,
corresponding to gene densities similar to other lepidopterans.
Among the genes identified, we discovered five tandemly arranged
genes similar to Alcohol dehydrogenase (Adh), which potentially
represent an expansion in the Lepidoptera. Comparative studies
of sequence, expression and function of these genes are necessary
to shed light onto their evolutionary history and ecological
importance.

Our comparative analysis of the B. anynana genomic regions
with the orthologous regions of the lepidopteran reference
genome allowed assessment of conservation of fine-scale gene
order and of DNA sequence. We detected strong synteny but 1)
also multiple events where it was disrupted by different
chromosomal rearrangements, including inversions and transpo-
sitions not detected with a previous comparative analysis of
B. amynana versus B. mori linkage maps [26], and 2) lower
proportion of genes in conserved order that a previous smaller-
scale, fine-resolution analysis comparing Heliconius erato BAC-
derived sequence with B. mori scaffolds [10]. We also detected
instances of unusual high conservation of non-coding regions, in
particular, around the genes encoding for Ecdysone Receptor
and Wingless, between species diverged some 140 MYA.
Understanding the functional significance of these regions will
allow for a better understanding of the evolution and diversifi-
cation of living organisms.

Materials and Methods

BAC sequences and target genes

We analyzed over 1,303,271 bp of nucleotide sequence from 11
B. anynana BAC clones deposited on GenBank (AC239114—
AC239124). These BAC clones were obtained from the 9x
coverage B. anynana BAC library available at Clemson University
Genomics Institute (CUGI [27]) and were Sanger sequenced at 8—
9x depth and their sequences assembled into 11 individual
scaffolds by the Joint Genome Institute (JGI [73]), as part of the
Community Sequencing Program FY2006. The sequenced BAC
clones were originally selected by screening the BAC library filters
with radioactively-labeled probes against 11 genes of interest
(Table 1), expressed in developing wings [25].

Annotation of genomic sequence

For the annotation of the BAC sequences aimed at character-
izing different aspects of their genomic composition, we used a
combination of web-available and custom-designed bioinformatic
tools, as well as manual curation. We also used sequence
information from orthologous regions in other species, with
emphasis on the silkworm B. mor, the lepidopteran genomic
reference.

RepeatMasker [41] with CrossMatch search algorithm (default
settings) was used to identify repetitive regions, including the type
and extent of different repetitive elements. The repetitive regions
identified in this way were masked before all further analysis. Also,
using BLASTn (e-value cut-off of le-5) against the B. anynana BAC
sequences, we searched for nine transposable element families
recently identified in another butterfly [10]. CENSOR [74] was
used for classifying the identified putative transposable elements in
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the different classes (nonL'TRs, LTRs, and DNA transposons) and,
when possible, families.

In silico gene prediction was done for each complete BAC
sequence using Kaikogaas (a web-available tool customized for B.
mori genomic data; [44]). Kaikogaas’ output is a graphical display
(Figure S3) and a list of all putative proteins identified (Table S3)
in each target BAC. This list was extensively manually curated for
validation of Kaikogaas’ predictions and for further annotation.
Manual curation involved a sequence of steps: 1) hypothetical
proteins shorter than 60 amino acids were dismissed; 2) predicted
peptides longer than 60 amino acid were used to search for
similarity with the complete collection of non-redundant insect
protein sequences (this collection consisted of 913470 entries
when our analysis was run in 2010) using BLASTp (e-value cut-
off of le-10) and best hits were used for gene identification; 3) the
amino acid sequences corresponding to these proteins were then
used for running BLASTp (default settings) against the Bombyx
mort genome in SikDB [49], from where the corresponding
scaffolds were downloaded (assembly of August 2010) and used
for later comparison of genomic sequence around predicted genes
(see below); 4) to attempt to confirm the putative exons of each
hypothetical gene, we used homologs from both B. mori (from
SilkDB [49]) and D. melanogaster (from Flybase [75]) to run
(BLASTx (default settings) against the B. anynana BAC sequences.

BAC annotation was also done using a custom-built platform
[47] which, aside repetitive regions and orthologs to genes in
relevant public databases, also uses the complete list of UniGenes
identified from the assembly of a large collection of B. anynana
ESTs [25,26]. BLAST results comparing the sequences of each
complete BAC to the UniGene collection were deposited in a
database queried by the GBrowse interface [76]. This analysis
allowed, on the one hand, validation of the wn silico prediction of
exons, and, on the other, an assessment of EST assembly.

For the identification of conserved putative microRNAs
(miRNAs), we ran BLASTn analysis (e-value cut-off of 1E-3;
word size of 15) using as query against the B. anynana BAC
sequences, the mature sequence (~22 nt) of the 487 miRNA
sequences of B. mori (available at miRBase [53,54]) and the
recently identified miRNAs from Heliconius melpomene butterflies
[55].

Comparative analysis of gene order and genomic

sequence

To compare fine-scale physical linkage and gene order between
B. anynana and B. mori, we used our annotation of the B. anynana
BAC sequences (obtained as explained above) and the available
annotation (SilkDB; [49]) for the corresponding B. mori scaffolds
(identified as explained above, based on BLAST of predicted
peptides during the manual curation).

To investigate nucleotide sequence conservation between B.
anynana and other lepidopterans, we used VISTA (default settings:
70% identity, 100 bp window; [63,64]) comparing whole B.
anynana BACs with the corresponding genomic regions of other
species. For B. mori these were obtained from the SilkDB scaffolds
based on sequence similarity with the predicted B. anynana genes.
For other species, they were obtained from BAC sequences
available on NCBI, based on discontinuous megablast (default
settings) of the complete B. anmynana BAC sequence. Pairwise
alignments between sequence for B. anynana sequence and each of
the available corresponding sequences obtained were performed
on the mVISTA program using the Avid alignment algorithm
(default settings), which globally aligns DNA sequences of
arbitrary length [77]. For the quantification of sequence
conservation, we considered only the regions comprised between
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the first and last orthologous genes in each BAC that matched a
single scaffold in the other species. The genomic regions around
EcR, wg and Wat-6 (plus 15 Kb upstream and downstream) from
Drosophila melanogaster, Apis mellifera and Tribolium castaneum were
downloaded from Flybase [75], Beebase [78] and BeetleBase
[79,80], respectively. They were used for comparison with the
same regions in B. anynana (AC239120 and AC239123) using
VISTA (Figure S2).

Phylogenetic analysis of Adh genes

Putative Adh genes from B. anynana (AC239114) were used for
running tBLASTn and (BLASTx analysis against B. mor
nucleotide and protein collection in SilkDB. The first hits
corresponded to annotated Adh genes located at chromosome
10 of the silkworm. The corresponding proteins were down-
loaded, together with the ADH and ADHR (Adh-related)
proteins of D. melanogaster from Flybase. These were used,
together with the amino acid sequence of the putative B.
anynana genes, for phylogenetic reconstruction using AMEGA
version 4 [81] (Neighbor-joining with pairwise deletion and
bootstrap).

Supporting Information

Table S1 Quantification of repetitive sequence in target
B. anynana BACs. Identification and characterization of
repeated regions was done with RepeatMasker (see Methods).
Simple Repeats correspond to duplications of, typically 1-5bases.
Low Complexity Sequence corresponds to poly-purine/poly-
pyrimidine stretches or regions of >87% AT or >89% GC.
(PDF)

Table S2 Heliconius repetitive elements identified in
the target B. anynana BACs. Two of the novel repetitive
elements identified in Heliconius [10] appear to be present in our
target B. anynana genomic sequence, as well as in publicly available
nucleotide sequence for other lepidopterans (cf. BLASTn analysis;
see Methods).

(PDI)

Table 83 List of Kaikogaas predicted genes and subse-
quent manual curation.

(TXT)

Figure S1 Gene density and genome size in insects. Gene
density (number of genes per 100 Kb; ¢f [10,46,82,83,84,85,
86,87,88] in relation to genome size for different insect species
(¢f- [89]). Circles correspond to species where gene densities were
estimated based on sequenced genomes — note that the size of
assembled genome can differ from the estimates in this Figure.
Other symbols correspond to species where gene density was
estimated based on a few BAC clone sequences — including this
paper for B. anynana.

(PDI)

Figure S2 Comparative analysis of the EcR and wg/
Wnt-6 genomic regions. VISTA plots of the genomic regions
comprising the genes £cR (BAC AC239120) and wg/ Wnt-6 (BAC
AC239123) with the orthologous regions in other insects with
relevant sequence available: Heliconius melpomene, Bombyx mort,
Helicoverpa  armugera, Spodoptera  frugiperda, Drosophila melanogaster,
Tribolium castaneum, and Apis mellifera.

(PDF)

Figure S3 Kaikogaas graphical output of BAC annota-
tion.

(PDF)
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