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Abstract

Background: Over-expression of Aurora kinases promotes the tumorigenesis of cells. The aim of this study was to determine
the preclinical profile of a novel pan-Aurora kinase inhibitor, BPR1K653, as a candidate for anti-cancer therapy. Since
expression of the drug efflux pump, MDR1, reduces the effectiveness of various chemotherapeutic compounds in human
cancers, this study also aimed to determine whether the potency of BPR1K653 could be affected by the expression of MDR1
in cancer cells.

Principal Findings: BPR1K653 specifically inhibited the activity of Aurora-A and Aurora-B kinase at low nano-molar
concentrations in vitro. Anti-proliferative activity of BPR1K653 was evaluated in various human cancer cell lines. Results of
the clonogenic assay showed that BPR1K653 was potent in targeting a variety of cancer cell lines regardless of the tissue
origin, p53 status, or expression of MDR1. At the cellular level, BPR1K653 induced endo-replication and subsequent
apoptosis in both MDR1-negative and MDR1-positive cancer cells. Importantly, it showed potent activity against the growth
of xenograft tumors of the human cervical carcinoma KB and KB-derived MDR1-positive KB-VIN10 cells in nude mice. Finally,
BPR1K653 also exhibited favorable pharmacokinetic properties in rats.

Conclusions and Significance: BPR1K653 is a novel potent anti-cancer compound, and its potency is not affected by the
expression of the multiple drug resistant protein, MDR1, in cancer cells. Therefore, BPR1K653 is a promising anti-cancer
compound that has potential for the management of various malignancies, particularly for patients with MDR1-related drug
resistance after prolonged chemotherapeutic treatments.
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Introduction

Mitosis is a key step in cell cycle that is tightly regulated by

many proteins. Abnormal expression or activation of these

regulatory proteins could result in aberrant mitosis, leading to

the development of cancers [1,2]. At the molecular level, Aurora

kinases (Aurora-A, Aurora-B and Aurora-C) are serine/threonine

kinases that function as key regulators of mitosis. Under normal

physiological conditions, they are essential for spindle assembly,

centrosome maturation, chromosomal segregation and cytokinesis

[3,4]. Under pathological conditions, it has been demonstrated

that Aurora kinases are over-expressed in various human cancers

and also played important roles in the process of tumorigenesis

[5,6,7,8]. For example, Aurora-A kinase is over-expressed in upper

gastrointestinal adenocarcinomas [6]. In addition, a correlation

between Aurora-A expression levels and tumor progression has

been demonstrated in patients with head and neck squamous cell

carcinoma [9]. On the other hand, Aurora-B kinase is frequently

over-expressed in primary NSCLC and malignant gliomas,

particularly glioblastomas [10,11]. Since over-expression of

Aurora-A and Aurora-B is frequently associated with tumorigen-

esis, these molecules have been targeted for cancer therapy. The

first proof-of-concept pan-Aurora kinase inhibitor, VX-680 (MK-

0457, Tozasertib), was developed in 2004 by Vertex Pharmaceu-

ticals (in collaboration with Merck) with an aim to target cancer

cells. This specific inhibitor has been shown effective in targeting

cancer cells both in vitro and in vivo, and has received approval from

the US Food and Drug Administration (FDA) to enter clinical
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trials [12,13,14]. Since then, continuous efforts have been made by

different pharmaceutical companies in search of potential Aurora

kinase inhibitors that exhibit better therapeutic profile and

specificity as compare to the first generation inhibitor, VX680

[15,16,17,18,19,20,21,22,23].

Despite early successes of the development of various Aurora kinase

inhibitors, recent studies reveal that the effectiveness of many of these

developed and clinically tested inhibitors, including VX680, PHA-

739358 and AZD1152, can be affected by the expression of multidrug

resistance protein MDR1 (P-gp170) in cancer cells [24,25]. In fact,

over-expression of MDR1 also interferes with a broad range of

different chemotherapeutic agents [2,26,27,28,29]. For examples,

expression of the trans-membrane drug efflux pump, MDR1, reduces

the sensitivity of cancer cells to paclitaxel, vincristine (anti-microtubule

agents), doxorubicin (DNA intercalating agent), mitoxantrone, VP-16

(topoisomerase II inhibitors) and imatinib (tyrosine kinase inhibitor)

[28,30,31,32,33,34]. Therefore, there has been great interest in

identifying novel anti-cancer compounds that can overcome MDR1-

related resistance and also exhibit improved pharmacological profiles.

In this study, a novel pan-Aurora kinase inhibitor entitled

BPR1K653 was developed and its potency against various MDR1-

negative and MDR1-positive cancer cells was evaluated. Results of

the current study show that unlike the above mentioned chemother-

apeutic agents, BPR1K653 is effective in targeting both MDR1-

negative and -positive cancer cells in vitro and in vivo. Furthermore,

BPR1K653 exhibits favorable pharmacokinetic properties in vivo.

Results

BPR1K653 is a potent and selective pan-Aurora kinase
inhibitor

In vitro kinase inhibition assay revealed that BPR1K653

(Figure 1A) inhibited the activity of Aurora-A and -B kinase with

an IC50 value of 124 nM and 45 nM, respectively (Figure 1B

Figure 1. BPR1K653 selectively inhibits the activity of Aurora kinases in vitro. (A) Chemical structure of the anti-cancer compound
BPR1K653. (B) BPR1K653 inhibited the activity of both Aurora-A and Aurora-B kinase as revealed by the in vitro kinase inhibition assay. (C) HCT116
cancer cells were treated with various concentrations of BPR1K653 and the commercially available pan-Aurora kinase inhibitor VX680, and the
expression of various proteins were analyzed by Western blotting. Tubulin was used as the internal control.
doi:10.1371/journal.pone.0023485.g001
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and Table 1). The selectivity of BPR1K653 was then evaluated

against different kinases. BPR1K653 exhibited less potency (i.e.

IC50.10 mM) in inhibiting the activity of ALK, CHK1, cMET,

EGFR, FLT3, VEGFR1 and VEGFR2 as compared to Aurora-A

and Aurora-B kinase (Table 1). The cellular activity of BPR1K653

was also examined. Activation of Aurora-A kinase requires an auto-

phosphorylation on the Thr288 residue, whereas phosphorylation

of the Thr232 residue is an essential regulatory mechanism for

Aurora-B activation [35,36]. Here, Western blot analysis revealed

that the amount of phosphor-Aurora-A, -B and -C kinase present in

HCT116 cancer cells treated with a pan-Aurora kinase inhibitor,

VX680 (positive control), was reduced in a concentration-

dependent manner (Figure 1C). Reduction of phosphor-Histone

H3 (Ser10), a direct substrate of Aurora-B kinase, is widely used as

an indicator of Aurora kinase inhibition in cells. Here, VX680 also

reduced the amount of phosphor-Histone H3 (Ser10) present in cells

as expect (Figure 1C). Consistent with these findings, BPR1K653

induced a concentration-dependent decrease in phosphor-Aurora-

A, -B and -C kinase in HCT116 cells. HCT116 cells treated with

BPR1K653 also showed a concentration-dependent decrease in

phosphor-Histone H3 (Figure 1C).

BPR1K653 inhibits the proliferation of multiple human
cancer cell lines regardless of their tissue origins and p53
status

To determine whether BPR1K653 could inhibit cell proliferation,

a panel of 11 different cancer cell lines was treated with BPR1K653.

For comparison, cells were also treated with two well-characterized

Aurora kinase inhibitors, VX680, and PHA739358. It has been

demonstrated that loss of p53 function induces multidrug resistance

in some types of cancer [37]. Here, results of the clonogenic assay

revealed that BPR1K653 was effective (i.e. IC50,0.5 mM) against

various types of cancer cells, including lung (A549), oral (HONE-1

and OECM-1) cervical (KB), colon (HT29), bladder (NTUB1) and

leukemia/lymphoma (MV4-11 and IM9), regardless of their p53

status (Table 2). Moreover, the potency of BPR1K653 was shown to

be higher than that of VX680 and PHA739358 in most of the tested

cancer cell lines (Table 2). The IC50 values of VX680 and

PHA739358 in various cancer cell lines (except in OECM-1 cells)

were 2–10 folds higher than those of BPR1K653. The IC50s of

VX680 and BPR1K653 were equal in OECM-1 cells. Taken

together, our results demonstrated that BPR1K653 is able to inhibit

the proliferation of various types of cancer cell regardless of their

tissue origins and p53 status.

BPR1K653 is equally potent in inhibiting the growth of
the multiple-drug resistance protein (MDR1) -expressing
cancer cells

It has been widely demonstrated that over-expression of MDR1

(P-gp, drug efflux pump) induces drug resistance to various

chemotherapeutic agents. To determine whether the potency of

BPR1K653 is abrogated by MDR1 expression in cancer cells,

three multidrug resistant MDR1-expressing cancer cell lines, KB-

VIN10, KB-S15 and NTU0.017 [2,38,39,40], were treated with

BPR1K653. As shown in Table 3, the IC50 value of BPR1K653 to

KB-VIN10 and KB-S15 was similar to those of the parental

MDR1-negative KB cells. The IC50 of BPR1K653 to KB-VIN10,

KB-S15 and KB were 14 nM, 11 nM and 12 nM, respectively. In

addition, the IC50 value of BPR1K653 to the MDR1-expressing

NTU0.017 cells was also similar to that of the parental MDR1-

negative NTUB1 cells (Table 3). Previous studies revealed that

Aurora kinase inhibitors, VX680 and PHA739358, are substrates

of MDR1 [24,25]. Consistently, all of our tested MDR1-

expressing cancer cell lines showed cross-resistant to VX680 and

PHA739358 (Table 3). In addition, the level of MDR1 expression

correlated with the level of VX680/PHA-739358 resistance in

Table 1. BPR1K653 specifically inhibits Aurora-A and Aurora-
B kinase.

Enzyme Inhibition IC50 (nM)

Aurora-A 124

Aurora-B 45

ALK .10000

CHK1 .10000

CHK2 2300

cMET .10000

EGFR .10000

FLT3 .10000

VEGFR1 .10000

VEGFR2 .10000

ALK, anaplastic lymphoma receptor tyrosine kinase; CL, total body clearance;
CHK1, checkpoint kinase 1; CHK2 checkpoint kinase 2; cMET, c-Met tyrosine
kinase; EGFR, epidermal growth factor receptor tyrosine kinase; FLT3, FMS-like
tyrosine kinase; VEGFR1, vascular endothelial growth factor receptor 1 tyrosine
kinase; VEGFR2, vascular endothelial growth factor receptor 2 tyrosine kinase.
doi:10.1371/journal.pone.0023485.t001

Table 2. BPR1K653 exhibits anti-proliferative activity against various types of cancer cells.

Aurora kinase inhibitors (nM)

Cell line tissue origin p53 status MDR1 status BPR1K653 VX680 PHA-739358

A549 lung wild-type negative 960 11169 (12) 5668 (6)

HT29 colon mutant negative 1262 160633 (15) 4868 (4)

OECM-1 oral mutant negative 135610 123637 (1) 642668 (5)

HONE-1 oral mutant negative 1160 2062 (2) 59616 (5)

KB cervical wild-type negative 1264 85631 (7) 4006100 (33)

NTUB1 bladder N/A negative 864 7366 (9) 4056134 (51)

MV4-11 leukemia mutant negative 560 1564 (3) 86611 (17)

IM9 lymphoma wild-type negative 462 31616 (8) 450612 (113)

Fold differences as compare to the IC50 of BPR1K653 are listed in brackets ( ).
doi:10.1371/journal.pone.0023485.t002
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KB-VIN10 and KB-S15 cancer cells (Figure 2). To further

determine whether the potency of VX680 and PHA739358 in

KB-VIN10, KB-S15 and NTU0.017 cells were actually affected

by the expression of MDR1, cells were co-treated with the MDR1

modulator (negative regulator), verapamil, and cell viability was

determined. Here, verapamil treatment (10 mM) was shown to be

able to restore/enhance the sensitivity to both VX680 and

PHA739358 in all of the tested MDR1-expressing cancer cells

(Table 3). However, verapamil treatment could not further

increase the sensitivity to BPR1K653 in both MDR-negative

and MDR1-expressing cancer cells (data not shown). On the other

hand, it has been demonstrated that a KB derived VP-16 resistant

cancer cell line, KB-7D, over-expresses another type of the ATP-

dependent multi-drug efflux protein, MPR1 [41]. Interestingly,

the IC50 value of BPR1K653 to KB-7D was also similar to that of

the parental MRP1-negative KB cells (Table 3).

BPR1K653 induces endo-replication in both MDR1-
negative and -positive cancer cells

Further experiments were performed to reconfirm the above

findings that the effectiveness of BPR1K653 is not affected by the

MDR1 expression in cells. Inhibition of Aurora kinases induces endo-

reduplication of cells, indicating by the formation of polyploidy [14].

Here, results of immunofluorescence microscopy and flow cytometric

analysis clearly showed that BPR1K653 induced the formation of

polyploidy (populations .4N) in KB cells (Figure 3A and B, and

Figure S1A). The MDR1-expressing KB-VIN10 cells treated with the

same concentrations of BPR1K653 as had been applied to KB cells

also induced the formation of polyploidy (Figure 3A and C, and

Figure S1A). In contrast, VX680 only induced the formation of

polyploidy in KB cells but not in KB-VIN10 cells under the same

treatment concentrations (Figure 3A, B and C). However, formation

of the polyploidy population was shown in KB-VIN10 cells co-treated

with 10 mM of the MDR-inhibitor, verapamil, and VX680

(Figure 3C). These results are consistent with the findings of the

above clonogenic assay that expression of MDR1 in cancer cells

affects the effectiveness of VX680 but not of BPR1K653.

To determine whether BPR1K653 also induces endo-replication

in cancer cell lines other than KB and its derivative, HONE-1 cells

were treated with BPR1K653 and cellular contents were analyzed by

microcopy and flow cytometry. Both immunofluorescence micros-

copy and flow cytometric analysis clearly showed that BPR1K653

promoted the formation of polyploidy (populations .4N) in HONE-

1 cells in a concentration-dependent manner (Figure 3D and E).

BPR1K653 reduces Histone H3 phosphorylation and
cyclin B1 expression in both MDR1-negative and
-positive cancer cells

Western blot analysis was performed to reconfirm that the

effectiveness of BPR1K653 is not affected by the MDR1 expression

in cancer cells. Histone H3 is a direct substrate of Aurora-B kinase,

and endo-replicating cells usually show reduction of the expression

of cyclin B1. In this experiment, inhibition of Histone H3

phosphorylation and down-regulation of cyclin B1 expression were

shown in both KB and KB-VIN10 cells treated with the same

concentrations, 12 (IC50), 24 (26 IC50) and 36 nM (36 IC50) of

BPR1K653 in a concentration-dependent manner (Figure 4A and

B). Consistent with these findings, VX680 treatment (i.e. 170 nM

and 255 nM) also inhibited the phosphorylation of Histone H3 and

the expression of cyclin B1 in KB cells (Figure 4A). However, same

VX680 treatment could not induce the above molecular changes in

the MDR1-expressing KB-VIN10 cells. Verapamil treatment

(10 mM) was shown to restore the sensitivity to VX680 in KB-

VIN10 cells, as indicated by a reduction in the Histone H3

phosphorylation and cyclin B1 expression (Figure 4B).

To determine whether BPR1K653 also reduces Histone H3

phosphorylation and cyclin B1 expression in cancer cell lines other

than KB and its derivative, HONE-1 cells was treated with

BPR1K653 and intracellular proteins were analyzed by Western

blotting. Western blot analysis clearly demonstrated that both the

phosphorylation of Histone H3 and expression of cyclin B1 were

decreased in BPR1K653-treated HONE-1 cells (Figure 4C).

BPR1K653 induces apoptosis in both MDR1-negative and
-positive cancer cells

Previous studies revealed that targeting Aurora kinases induces

cell endo-replication and subsequent cell apoptosis [14]. To

Table 3. BPR1K653 exhibits anti-proliferative activity against various MDR1/MRP1-positive cancer cells.

Treatments (nM)

Cell line Resistance
MDR1/MRP1
status BPR1K653 VX680 VX680 + verapamil PHA-739358 PHA-739358 + verapamil

KB (parental) negative 1264 85631 57 4006100 184

KB-VIN10 vincristine MDR1 q 1464 (1) 14006140 (16) 6060 (1) .25,000 (.63) 1,4006200 (8)

KB-S15 paclitaxol MDR1 q 1164 (1) 272620 (3) 4668 (1) 4700 (12) 436 (2)

KB-7D VP-16 MRP1 q 19 (1.2) - - - -

NTUB1 (parental) negative 864 7366 44 4056134 144

NTU0.017 paclitaxol MDR1 q 1064 (1) 676661078 (93) 121624 (3) .50,000 (.123) 1,3806700 (10)

Fold differences as compare to the IC50 in the respective parental cells are listed in brackets ( ).
doi:10.1371/journal.pone.0023485.t003

Figure 2. Level of MDR1 expression correlates to the level of
resistance of VX680/PHA739358 in KB-VIN10 and KB-S15
cancer cells. Total mRNA was extracted from cells, and RT-PCR was
performed to detect the expression of MDR1 in KB, KB-VIN10 and KB-
S15 cells. GAPDH was used as internal control.
doi:10.1371/journal.pone.0023485.g002
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determine whether BPR1K653 is able to induce apoptosis in both

MDR1-positive and -negative cancer cells, KB and KB-VIN10

cells were treated with BPR1K653 and apoptotic properties were

analyzed by Annexin-V, real-time caspase-3/-7 activity imaging

and TUNEL assays. Here, both cytoplasmic volume and the size

of nucleus were increased in the BPR1K653-treated KB and KB-

VIN10 cells, indicating that BPR1K653 induced cell endo-

replication as expected (Figure 5A and C, and Figure S1A).

Translocation of the phosphatidylserine molecule from the inner-

leaflet of cell membrane to the outer membrane indicates the

occurrence of early apoptosis. Results of the Annexin-V assay

showed that BPR1K653 induced the translocation of the

phosphatidylserine molecule in both KB and KB-VIN10 cells, as

indicating by the green fluorescent label (Figure 5A). BPR1K653

also induced the caspase-3/-7 activity and DNA fragmentation in

both KB and KB-VIN10 cells under the same treatment

conditions (Figure 5B, C, D, and Figure S1A). In contrast,

VX680 only induced the translocation of the phosphatidylserine

molecule, caspase-3/-7 activity and DNA fragmentation in KB

cells and not in the MDR1-expressing KB-VIN10 cells (Figure 5A,

B, C and D). Moreover, cleavage of PARP was only shown in the

MDR1-expressing KB-VIN10 cells treated with either BPR1K653

or VX680/verapamil (co-treatment), and not with VX680 alone,

as revealed by the Western blot analysis (Figure 5E).

BPR1K653 also induced apoptosis in HONE-1 cells, as

indicated by the induction of caspae-3/-7 activity in vitro (Figure

S1B).

BPR1K653 suppresses the growth of both human MDR1-
negative and -positive cancer xenografts in vivo

Although the above results showed that BPR1K653 exhibits

potent anti-cancer effect in vitro, experiments were performed to

determine whether BPR1K653 is also able to inhibit the activity of

Aurora kinases and the growth of both MDR1-negative/positive

tumors in vivo. KB cells were grown as s.c. tumors in nude mice.

When well-established KB xenografts were palpable with tumor

size of ,75 mm3, mice were randomized into vehicle control and

treatment groups of five animals each. The treated mice received

either 15 mg/kg of BPR1K653 or 30 mg/kg of VX680 i.p. for 5

days/week for 2 consecutive weeks. Results of the immuno-

histochemical analysis of the tumor tissue sections showed that

administration of BPR1K653 reduced the amount of phosphor-

Histone H3 positive cells present in tumor tissues as compared to

the control (10% vs 60%) (Figure 6A). A decrease in the rate of

tumor growth in mice treated with either BPR1K653 or VX680 5

days/week for 2 consecutive weeks was also observed. There was a

,73% decrease in tumor volume on day 30 in the animals treated

with BPR1K653 (P,0.05). In addition, there was a ,68%

decrease in tumor volume on Day 30 in the animals treated with

VX680 (P,0.05; Figure 6B). BPR1K653 was well-tolerated at the

dosage of 15 mg/kg with no signs of toxicity in the KB xenograft

tumor model as the loss of body weight after treatment was less

than 10% in the treatment group as compare to the control group

(Figure 6C). To determine whether the inhibition of tumor growth

in BPR1K653-treated mice was related to the increases of

apoptotic cancer cell populations, tumors were surgically removed

from the mice 12 days post-treatment and tissue sections were

analyzed by TUNEL assay. Results of the TUNEL assay showed

that the amount of apoptotic cells present in the tumor tissue of

BPR1K653-treated mice was significantly higher than those in the

control mice (55% vs 7%) (Figure 6D). This is consistent with the

result of the above in vitro experiment that BPR1K652 is able to

induce cancer cells apoptosis.

Notably, BPR1K653 is also as effective toward MDR1-

expressing tumor xenograft as it is in cultured MDR1-expressing

cells. Here, KB-VIN10 tumor xenograft was used to evaluate the

efficacy of BPR1K653 against MDR1-expressing tumor in vivo.

Due to the slow growing properties of KB-VIN10, the treated

mice received either 15 mg/kg of BPR1K653 or 30 mg/kg of

VX680 i.p. for 5 days/week for 3 consecutive weeks instead of 2

weeks as in KB-implanted mice. In comparison to the control

mice, growth of KB-VIN10 tumor was significantly inhibited in

mice treated with 15 mg/kg of BPR1K653. There was a ,50%

decrease in tumor volume on Day 42 in the animals treated with

BPR1K653 (P,0.05). In contrast, VX680 did not exhibit

significant tumor growth inhibitory effect in mice transplanted

with KB-VIN10 cells (Figure 6E). Moreover, BPR1K653 was well-

tolerated at the dosage of 15 mg/kg (5 days/week for 3

consecutive weeks) with no signs of toxicity in the KB-VIN10

xenograft tumor model as the loss of body weight after treatment

was less than 10% in the treatment group as compare to the

control group (Figure 6F). Thus, BPR1K653 exerts potent anti-

tumoral efficacy toward both MDR-negative and MDR-express-

ing tumor xenografts.

Pharmacokinetics of BPR1K653 in rats
Finally, pharmacokinetic studies of BPR1K653 were accessed

over a 24 h period to examine plasma concentrations of

BPR1K653 after a single intravenous administration (Table 4).

After a single administration of BPR1K653 at a dosage of 5 mg/

kg to rats, BPR1K653 achieved a maximum plasma concentration

of 10 mM (5463 ng/mL) at 2 min after dosing, and the estimated

BPR1K653 plasma concentration remained at a concentration of

3.9 nM (2.1 ng/mL) 24 h after dosing. The plasma half-life, total

body clearance, and volume of distribution at the steady state (Vss)

were 3.960.7 h, 49.3610.6 mL/min/kg and 10.665.1 L/kg,

respectively.

Discussion

Aurora kinases have emerged as key regulators of mitosis and

evidence indicates abnormalities in their expression and activity are

closely related to the development and progression of various

cancers. In this study, we have developed a novel pan-Aurora kinase

inhibitor BPR1K653 and further demonstrated its efficacy in

targeting various types of cancers in vitro. Our pervious x-ray co-

crystallography studies had demonstrated the physical interactions

between the precursor compound of BPR1K653 and Aurora

kinases [42], and the current in vitro kinase inhibition study has

confirmed the target specificity of BPR1K653. Consistent with the

molecular changes observed in cells treated with Aurora-B kinase

specific siRNA oligos and with different pan-Aurora kinase

inhibitors such as VX680 and SNS-314 [14,43,44], BPR1K653

treatment also induces endo-replication of cells and reduces amount

Figure 3. BPR1K653 induces endo-replication in both MDR1-negative and MDR1-expressing cancer cells. (A, B and C) KB and KB-VIN10
cells were treated with BPR1K653 and VX680 for 48 h. (A) Nucleus were stained blue with Hoechst dye and microtubules were labeled red with the
Alexa FluorH-tagged anti-tubulin antibody. (B and C) Cells were incubated with propidium iodide and subsequently analyzed by flow cytometry. (D
and E) HONE-1 cells were treated with BPR1K653 for 48 h. (D) Nucleus were stained blue with the Hoechst dye. (E) Cells were incubated with
propidium iodide and subsequently analyzed by flow cytometry.
doi:10.1371/journal.pone.0023485.g003
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of phosphorylated Histone H3 present in cells. In addition,

BPR1K653 is able to induce cancer cell apoptosis but not

autophagy (Figure S2), which is the common result in cells treated

with Aurora kinase inhibitors [43]. Interestingly, BPR1K653 is

active in all of the tested p53-wildtype/-negative/-mutant cancer

cell lines at low nano-molar concentrations (IC50,20 nM), despite

limited ability of another pan-Aurora kinase inhibitor VX680 to

induce endo-replication and subsequent apoptosis has been shown

in cancer cells with normal p53-dependent post-mitotic checkpoint

function in other study [14]. Taken together, BPR1K653 is

selectively inhibiting Aurora kinases, and unlike VX680, it is able

to target various types of cancer cells regardless of their p53 status.

Drug resistance is a common problem in the management of

neoplastic diseases, and the effectiveness of many chemothera-

peutic drugs is limited by the fact that they are substrates for the

efflux pump MDR1 (P-gp170). For example, the Aurora kinase

inhibitor AZD1152/AZD1152-HQPA (Barasertib) was shown to

be the substrate of MDR1 [24]. Moreover, our reference Aurora

kinase inhibitors, VX680 (Tozasertib) and PHA-739358 (Danu-

sertib), were previously shown ineffective in targeting the MDR1-

expressing SA-Dx5 (doxorubicin resistant), MB-231-PTX and

H460-PTX (both paclitaxel resistant) cancer cells by other

investigators [25]. In this study, BPR1K653 was shown to be

equally effective against two KB-derived MDR1-positive cancer

cell lines (KB-VIN10 and KB-S15) and one NTUB1-dervided

MDR1-positive cancer cell line (NTU0.017) in vitro. This feature is

distinct from those of the well-characterized Aurora kinase

inhibitors, VX680 and PHA-739358, because our tested MDR1-

positive cancer cells are more resistant to these chemotherapeutic

agents than their parental MDR1-negative cells. Indeed, co-

incubation of the MDR1 inhibitor, verapamil, was shown to be

effective in re-sensitizing the MDR1-expressing cancer cells to

both VX680 and PHA-739358, whereas the same treatment could

not enhance the sensitivity to BPR1K653 in neither MDR1-

negative (KB and NTUB1) nor MDR1-expressing cells (KB-

VIN10, KB-S15 and NTU0.017). Importantly, BPR1K653 is also

effective in inhibiting the growth of both MDR1-negative KB and

MDR1-expressing KB-VIN10 cancer cells in vivo, further support-

ing the hypothesis that over-expression of the common drug efflux

pump MDR1 could not interfere with the efficacy of BPR1K653

in targeting cancer cells. Since chemotherapeutic compounds such

as paclitaxel, vincristine (anti-microtubule agents), doxorubicin

(DNA intercalating agent), tretinoin (all-trans retinoic acid),

mitoxantrone, VP-16 (topoisomerase II inhibitors) and imatinib

(tyrosine kinase inhibitor) are all substrates of the drug efflux pump

MDR1, the use of BPR1K653 may be beneficial in patients that

are resistant to the above compounds after prolonged therapeutic

treatments [30,31,32].

It has been known that most newly-developed anti-cancer

compounds that perform well in vitro, do not progress to the clinical

stage due various factors such as unfavorable pharmacokinetic

properties and reduced potency in vivo. In this study, we have

shown that BPR1K653 exhibits favorable pharmacokinetic

properties in vivo. The maximum achievable plasma concentration

of BPR1K653 (10 mM, 5463 ng/mL) after a single administration

at a dosage of 5 mg/kg to rat is more than 80-fold and 200-fold

above the in vitro kinase inhibition IC50 of Aurora-A and -B kinase

respectively. Even though at 24 h after dosing, the plasma levels of

BPR1K653 (2 ng/mL) was still high enough to inhibit the activity

of both Aurora-A and Aurora-B kinase. In addition, the high

Volume of distribution at the steady state (Vss) value (10.6 l/kg)

indicates that the distribution of BPR1K653 into deep compart-

ments, including tumor and tissues is expected. Taken together,

these favorable pharmacokinetic properties suggest that

BPR1K653 dosing once a day is sufficient for continuous

inhibition of the activity of both Aurora-A and Aurora-B kinase.

In conclusion, BPR1K653 is a potent pan-Aurora kinase

inhibitor that is able to target cancer cells regardless of their

tissue origins, MDR1 or p53 status. These key features distinguish

this compound from other previously developed Aurora kinase

inhibitors and anti-cancer compounds. At the molecular level,

results of this study suggest that BPR1K653 can be used as a tool

to study the molecular functions of Aurora kinases in the MDR1-

induced drug resistant cancer cells in the future. As BPR1K653

exhibits favorable pharmacokinetic properties in animal models,

further evaluations are warranted to determine whether

BPR1K653 is also effective in clinical situations.

Materials and Methods

Ethics statement
The animals used in this study were housed and the experiments

were carried out at an International Association for Assessment

and Accreditation of Laboratory Animal Care-accredited animal

facility at the National Health Research Institutes, Tainan,

Taiwan R.O.C.. The Institutional Animal Care and Use

Committees for Biotechnology and the National Health Research

Institutes approved uses of animals in these studies (approval

number: NHRI-IACUC-099070).

The Aurora-kinase inhibitor BPR1K653
Our previous structure-activity relationship studies (SAR) and

X-ray co-crystallographic analysis had indentifed novel furano-

pyrimidine as Aurora kinase inhibitor [42]. The pan-Aurora

kinase inhibitor BPR1K653 (Figure 1A) was synthesized from 4-

chloro-6-phenylfuro[2,3-d]pyrimidine, which was originally ob-

tained via a well-established 3-step process [42].

Cell culture
Human cervical carcinoma KB cells (this cell line was originally

believed to be derived from an epidermal carcinoma of the mouth

but has now been shown to have HeLa characteristics, purchased

from ATCCH), nasopharyngeal carcinoma HONE-1 cells [45],

colorectal carcinoma HT29 cells (purchased from ATCCH), oral

squamous cell carcinoma OECM-1 cells [46], leukemia MV4-11

cells (purchased from ATCCH), myeloma IM9 cells [47] were

maintained in RPMI 1640 medium supplied with 5% fetal bovine

serum. Human lung adenocarcinoma A549 cells and NTUB1

bladder cancer cells were maintained in RPMI supplied with 10%

fetal bovine serum. KB-derived MDR1-expressing cell lines (i.e.

KB-VIN10 and KB-S15) and NTUB1-dervided MDR1-express-

ing cell line (i.e. NTU0.017) were maintained in growth medium

supplemented with 10 nM vincristine, 15 nM and 17 nM

paclitaxel respectively. KB-VIN10 cells were generated in pervious

Figure 4. BPR1K653 down-regulates Histone H3 phosphorylation and cyclin B1 expression in both MDR1-negative and MDR1-
expressing cancer cells. (A) KB cells were treated with BPR1K653 and VX680 for 48 h and expression of various proteins were determined by
Western blot analysis. Relative band intensities were shown. (B) KB-VIN10 cells were treated with either BPR1K653 or VX680 with/without verapamil
for 48 h, and expression of various proteins was determined by Western blot analysis. Relative band intensities were shown. (C) HONE-1 cells were
treated with BPR1K653 for 48 h, and expression of various proteins was determined by Western blot analysis. Actin was used as the internal control.
doi:10.1371/journal.pone.0023485.g004
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study by vincristine selection and displayed over-expression of P-

gp170/MDR1 [40,48,49]. KB-S15 and NTU0.017 cells were

generated in previous studies by paclitaxel selection and also

displayed over-expression of P-gp170/MDR1 [40,50,51]. KB-

derived MRP1-expressing cell line, KB-7D, was maintained in

growth medium supplemented with 7 mM VP-16. KB-7D cells

were generated in pervious study by VP-16 selection and displayed

over-expression of MRP1 [41].

Kinase inhibition assay
Aurora-A and Aurora-B kinase - The recombinant GST-tagged

Aurora-A (residues S123-S401) containing kinase domain was

expressed in Sf9 insect cells. The recombinant full length His-

tagged Aurora-B (residues M1,A344) was purchased from

Invitrogen (PV3970). The kinase assay were carried out in 96-

well plates with the tested compound at either 37uC (Aurora-A) for

90 min or 30uC (Aurora-B) for 120 min.

ALK – The recombinant His-tagged ALK (residues V1058-

P1620) containing kinase domain was expressed in Sf9 insect cells.

The kinase assay was carried out in 96-well plates with the tested

compound at 30uC for 120 min.

CHK1/2 – The recombinant His-tagged CHK1 (residues M1-

T476) or CHK2 (residues M1-L543) containing kinase domain

were expressed in Sf9 insect cells. The kinase assay was carried out

in 96-well plates with the tested compound at 30uC for 120 min.

c-Met – The recombinant GST-tagged c-Met (residues K956-

S1390) containing kinase domain was expressed in Sf9 insect cells.

The kinase assay was carried out in 96-well plates with the tested

compound at 30uC for 120 min.

EGFR – The recombinant GST-tagged EGFR (residues G696-

G1022) containing kinase domain was expressed in Sf9 insect cells.

The kinase assay was carried out in 96-well plates with the tested

compound at 37uC for 60 min.

FLT3 – GST-tagged FLT3-KDWT containing the FLT3 kinase

catalytic domain (residues Y567,S993) were expressed in Sf9

insect cells. The FLT3WT Kinase-Glo assays were carried out in

96-well plates at 30uC for 4 h with the tested compound.

VEGFR1/2 – The recombinant GST-tagged VEGFR1 (resi-

dues R781-I1338) or VEGFR2 (residues V789-V1356) containing

kinase domain were expressed in Sf9 insect cells. The kinase assay

was carried out in 96-well plates with the tested compound at

30uC for 120 min.

Composition of the reaction buffers used in different kinase

inhibitory assays is described in Figure S3.

Clonogenic assay
Two hundred cells in logarithmic growth phase were seeded in a

6-well plate. The cells were exposed to various concentrations of

the test drugs for a three-generation period. At the end of the

incubation period, cells were fixed and stained with 50% ethanol

containing 0.5% methylene blue for 30 min. The plates were

washed five times with water and allowed to air-dry. Colonies were

countered manually. The IC50 value resulting from 50% inhibition

of cell growth was calculated graphically as a comparison with the

growth of the control group. Each value represents the average of

at least three independent experiments run in triplicates.

Cell cycle analysis
Cell cycle progression was monitored using flow cytometry.

After drug treatment, cells were trypsinized, washed with PBS and

fixed in 80% ethanol at 220uC for 1 h. The fixed cells were

stained with propidium iodide (containing RNase) at room

temperature in the dark for 20 min. The DNA content was

determined by a fluorescence-activated cell sorting IV flow

cytometer (BD Biosciences, Franklin Lakes, NJ). For each analysis,

10,000 cells were counted and the percentage of cells in each

phase was calculated using the ModFit LT software (Verity

Software House, Topsham, ME). Experiments were repeated

independently at least three times.

RT-PCR of MDR1
Total RNA was extracted with using TRIzol reagent (Invitro-

gen, Carlsbad, CA) and complementary DNA was synthesized

from RNA with the SuperScriptTM First-Strand Synthesis System

(Invitrogen, Carlsbad, CA). Polymerase chain reaction was

performed with target-specific primers. MDR1 sense (forward)

primer: 59-GCCTGGCAGCTGGAAGACAAATRCACAAAA-

TT-39; MDR1 anti-sense (reverse) primer: 59-CAGACAG-

CAGCTGACAGTCCRAGAACAGGACT-39; GAPDH sense

(forward) primer: 59-ACCACAGTCCATGCCATCAC-39 and

GAPDH anti-sense (reverse) primer: 59 TCCACCACCCTGTT-

GCTGTA-39.

SDS-PAGE and Western Blot Analysis
Cells were lysed with ice-cold lysis buffer (10 mM Tris, 1 mM

EDTA, 1 mM DTT, 60 mM KCl, 0.5% NP-40 and protease

inhibitors). Total cell lysates were resolved on 10% and 12%

polyacrylamide SDS gels under reducing conditions. The resolved

proteins were electrophoretically transferred to PVDF membranes

(Amersham Life Science, Amersham, U.K.) for Western blot

analysis. The membranes were blocked with 5% non-fat milk at

room temperature for two hours, washed twice with TBST (1%

Tween) and then incubated with either anti-phosphorylated

Aurora-A/-B/-C kinase antibody (#2914S, Cell Signaling Tech-

nology, Danvers, MA), anti-Aurora-A and -B kinase antibody

(#ab1287 and #ab2254, Abcam, Cambridge, MA), anti-phos-

phorylated Histone H3 antibody (#9701, Cell Signaling Tech-

nology, Danvers, MA), anti-Histone H3 antibody (#9715, Cell

Signaling Technology, Danvers, MA), anti-Cyclin B1 antibody or

anti-Actin antibody (#sc-245 and #sc-130065, Santa Cruz

Figure 5. BPR1K653 induces apoptosis in both MDR1-negative and MDR1-expressing cancer cells. (A, B and C) KB and KB-VIN10 cells
were seeded on 8-well chamber slides overnight. (A) Cells were treated with either BPR1K653 or VX680 for 48 h. Translocation of the
phosphatidylserine molecule in cells was analyzed by Annexin-V-FLUOS assay and cells were viewed using an UV-enabled microscope. General cell
morphology was visualized by phase-contrast microscopy. (B) Cells were treated with either BPR1K653 or VX680 for 60 h and MagicRedTM-DEVD Real-
time Caspase-3/-7 Activity kit (Immunochemistry Technologies LLC) was used to detect the activation of caspase-3/-7 in cells, as indicated by the red
fluorescent emission. Nucleus was counter-stained blue by Hoechst 33342, and cells were viewed real-time using an UV-enabled inverted microscope.
(C and D) Detection of cells with DNA fragmentation by TUNEL assay. KB and KB-VIN10 cells were treated with either BPR1K653 or VX680 for 72 h.
DNA fragmentations were analyzed using the TMR-red In Situ Cell Death Detection kit. Nucleus with DNA fragmentation was stained red. Nucleus was
counter-stained blue by DAPI. Cells were analyzed by an UV-enabled microscope. (C) Representative photos were shown. (D) Labeled cells were
counted, and percentage of apoptotic cells was calculated as follows: Total amount of the red fluorescent labeled (DNA fragmented) nucleus
available 4 Total amount of the blue fluorescent labeled nucleus available6100. Experiments were repeated twice. (E) BPR1K653 induces the
cleavage of PARP in KB-VIN10 cancer cells. KB-VIN10 cells were treated with either BPR1K653 (26 IC50 of KB) or VX680 (26 IC50 of KB) with/without
verapamil for 72 h. The cleavage of PARP was determined by Western blot analysis. Actin was used as the internal control.
doi:10.1371/journal.pone.0023485.g005
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Biotechnology, Santa Cruz, CA) overnight at 4uC. Membranes

were washed twice with TBST then subsequently incubated with a

horseradish peroxidase-conjugated secondary antibody (Santa

Cruz Biotechnology, Santa Cruz, CA) for 1 hour at room

temperature. Immunoreactivity was detected by Enhanced

Chemiluminescence (Amersham International, Buckingham,

U.K.) and autoradiography. Experiments were repeated indepen-

dently at least two times.

Annexin V assay
Cells were cultured in chamber-slides, incubated with test

agents for 48 h, and washed twice with PBS. Cells were labeled

with Annexin-V-FLUOS reagent (catalog number

#11858777001, Roche, Indianapolis, IN) for 30 min at room

temperature. The cells were analyzed by fluorescence microscopy.

Real-time Caspase-3/-7 activity imaging
Caspase-3/-7 activity was analyzed with the MagicRedTM

DEVD real-time caspase activity detection kit (catalog number

#935, Immunochemistry Technologies LLC, Bloomington, MN).

Briefly, cells were cultured in chamber-slides and incubated with

test agents for various durations. Cells were then incubated with

the Caspase-3/-7 substrate MR-(DEVD2) in culture medium for

1 hour, and then co-incubated with Hoechst 33342 for 15 min.

Cells were viewed with a UV-enabled inverted-microscope at an

excitation wavelength of 540 nm–560 nm and emission at

610 nm. Experiments were repeated independently at least two

times.

Visualization of apoptosis by the TUNEL assay
Under in vitro conditions, cells were seeded and cultured in 8-

well chamber-slides, and treated with various compounds. The

treated cells were washed with PBS, fixed with 4% paraformal-

dehyde for 30 min on ice, and permeabilized with PBST at room

temperature. Apoptotic cells were stained by the TUNEL agent

using the TMR (red) In-Situ Apoptosis Detection Kit (catalog

number #12156792910, Roche Diagnostic, Mannheim, Ger-

many). Cells were counterstained with DAPI to detect the nucleus,

and examined by fluorescence microscopy. Amount of red

fluorescence labeled (DNA fragmented) cells were counted and

percentage of apoptotic cells were calculated as follows: Amount of

the red fluorescence labeled cells 4 Total cells available6100.

Experiments were repeated independently at least two times.

Under in vivo conditions, tumors were dissected from the

euthanized mice and instantly stored under 280uC. Tumor tissue

sections were prepared from the use of cryostats (Leica Micro-

systems, Buffalo Grove, IL), and subsequently fixed with ice-cold

methanol. Tissue sections were stained by the TUNEL reagent

using Fluorescent (green) In-Situ Apoptosis Detection Kit (catalog

number #11684795910, Roche Diagnostic, Mannheim, Ger-

many). Cells were counterstained with DAPI to detect nucleus,

and examined by fluorescence microscopy. Amount of green

fluorescence labeled (DNA fragmented) cells were counted and

percentage of apoptotic cells were calculated as follows: Amount of

green fluorescence labeled cells 4 Total cells available6100.

Experiments were repeated independently at least two times.

Animals and implantation of cancer cells
Male nude mice (5–6-weeks-old) were purchased from the

National Laboratory Animal Centre (Taiwan R.O.C.). The

animals were s.c. implanted with 56105 KB cells or 16106 KB-

VIN10 cells mixed with equal volume of Matrigel (Becton

Dickinson) in 0.1 mL at one flank per mouse via a 22-gauge

needle. Tumor growth was examined twice a week after

implantation, and the volume of tumor mass was measured with

an electronic caliper and calculated as 1/26length6width2 in

mm3.

Drug treatments and monitoring of the in vivo anti-
tumor activity

BPR1K653 was dissolved completely in a vehicle mixture of

DMSO/cremophor/saline (1:2:7). Selected dose of BPR1K653

was decided base on the following conditions: 1/2 of the dosage

that caused noticeable body weight loss (.10%) in the treated

mice during toxicity study. In the KB xenograft study, when the

size of a growing tumor reached $75 mm3, the xenograft tumor-

bearing nude mice were treated with either BPR1K653 or VX680

i.p. (5 mice per treatment group) at a dosage of 15 mg/kg or

30 mg/kg, respectively, for 5 days/week for 2 consecutive weeks.

Figure 6. Inhibition of human xenografts growth in vivo by BPR1K653. (A, B, C and D) Nude mice bearing human cervical carcinoma KB
xenografts were treated with vehicle control (X), 30 mg/kg VX680 for 5 days/week for 2 weeks (on days 6–10 and 13–17; m) or 15 mg/kg BPR0L075 for
5 days/week for 2 weeks (on days 6–10 and 13–17; N). (A) BPR1K653 treatment reduced the amount of the phosphor-Histone H3 positive cells present
in tumor tissues. Immuno-histochemical analysis of the expression of phosphor-Histone H3 in the tumor tissue sections 24 h after the second
BPR1K653 administration. Nucleus was stained blue/purple by hematoxylin and phosphor-Histone H3 was labeled in brown colour. Labeled cells
were counted, and percentage of the phosphor-Histone H3 positive cells present in tumor tissues was calculated as follows: Total amount of cells
with brown color labeled 4 Total amount of cells available6100. Experiment was repeated twice. A statistically significant difference in the amount of
phosphor-Histone H3 positive cells present in tumor tissues in mice treated with control versus BPR1K653 is denoted by ‘‘*’’. *p,0.05. (B)
Measurement of tumor volume. A statistically significant difference in tumor size in mice treated with control versus BPR1K653 and VX680 is denoted
by ‘‘*’’. *p,0.05. (C) Measurement of animal weight. (D) TUNEL analysis of the tumor tissue sections 12 days post-BPR1K653 treatment. Tumor tissue
sections were analyzed by the FITC In Situ Cell death detection kit and fluorescent microscopy. Tissue treated with DNase was used as the positive
control. Green fluorescence labeled nucleus indicates the induction of DNA fragmentation. Experiment was repeated twice. Quantitative analysis was
shown. A statistically significant difference in the amount of apoptotic cells present in tumor tissues in mice treated with control versus BPR1K653 is
denoted by ‘‘*’’. *p,0.05. (E and F) Nude mice bearing the P-gp170/MDR-expressing KB-VIN10 xenograft was treated with vehicle control (X), 30 mg/
kg VX680 for 5 days/week for 3 weeks (on days 12–16, 19–23 and 26–30; m) or 15 mg/kg BPR0L075 for 5 days/week for 3 weeks (on days 12–16, 19–23
and 26–30; N). (E) Measurement of tumor volume. A statistically significant difference in tumor size in mice treated with control versus BPR1K653 and
VX680 is denoted by ‘‘*’’. *p,0.05. (F) Measurement of animal weight. Data are the mean 6 SD of tumor volume (mm3) at each time point (n = 5;
*P,0.05).
doi:10.1371/journal.pone.0023485.g006

Table 4. Pharmacokinetic proflile of the Aurora kinase
inhibitor, BPR1K653.

Plasma half life (t1/2) 3.9 hours

Total body clearance (CL) 49.3 mL/min/kg

Volume of distribution at the steady state (Vss) 10.6 (ng/kg)

Area under the curve (AUC(0-inf)) 1752 ng/mL*h

*In rats (dosage of BPR1K653 - 5 mg/kg, i.v.).
doi:10.1371/journal.pone.0023485.t004
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In KB-derived MDR1-overexpressing KB-VIN10 xenograft study,

mice were treated with either BPR1K653 or VX680 (5 mice per

treatment group) at a dosage of 15 mg/kg or 30 mg/kg

respectively for 5 days/week for 3 consecutive weeks. The control

group (5 mice) was treated with vehicle mixture only. Tumor size

and animal body weight were measured every three days after

drug treatment. Toxicity was evaluated based on the body weight

reduction. At the end of the experiments (tumor size of the control

.2000 mm3), animals were euthanized with carbon dioxide.

Immunohistochemistry
Tumors were harvested and instantly stored at 280uC. Frozen

cryostat sections were fixed with ice-cold methanol for 10 min.

After washing with PBS, endogenous peroxidase was blocked using

3% hydrogen peroxide in TBS for 5 min. Immunostaining process

was carried out according to the user’s manual of the ABC

Peroxidase Staining Kit (Pierce Biotechnology, Rockford, IL).

Briefly, the tissues were incubated with a protein-blocking solution

for 20 min, and subsequently stained with an anti-phosphorylated

Histone H3 (Ser10) polyclonal antibody for 1 hour at room

temperature. Then, the samples were incubated with the ABC

reagent for 30 min, and subsequently incubated with the metal

enhanced DAB substrate. The sections were counterstained with

hematoxylin.

Pharmacokinetic studies of BPR1K653 in rats
Male Sprague-Dawley rats weighing 300–400 g each (8–12

weeks old) were obtained from BioLASCO, Taiwan Co., Ltd.,

Ilan, Taiwan. Animals were surgically prepared with a jugular-

vein cannula one day prior to dosing and fasted overnight (,18–

20 h) prior to dosing. Water was available ad libitum throughout

the experiment. Single 5 mg/kg dose of BPR1K653, as a DMA/

PEG (20/80, v/v) solution, was separately administered to groups

of 3 rats each intravenously by a bolus injection via the jugular-

vein cannula. At 0 (prior to dosing), 2, 5, 15 and 30 min, and at 1,

2, 4, 6, 8 and 24 h after dosing, a blood sample (0.15 mL) was

collected from each animal via the jugular-vein cannula and stored

in ice (0–4uC). Plasma was separated from the blood by

centrifugation (14,000 g for 15 min at 4uC in a Beckman Model

AllegraTM 6R centrifuge) and stored in a freezer (220uC). All

samples were analyzed for the parent drug by LC-MS/MS. LC/

MS/MS conditions: The chromatographic system consisted of an

Agilent 1200 series LC system and an Agilent ZORBAX Eclipse

XDB-C8 column (5 mm, 3.06150 mm) was connected to a MDS

Sciex API3000 tandem mass spectrometer, which was equipped

with a Turbo VTM ESI in the positive scanning mode at 600uC.

Data was acquired via the multiple reactions monitoring (MRM)

system. The MS/MS ion transitions were monitored at m/z of

541.4/106.4 for BPR1K653. The collision energy of 58.0 V was

used for the analyst, BPR1K653. A gradient HPLC method was

employed for the separation. Mobile phase A consisted of water

containing 0.1% formic acid, and mobile phase B consisted of

acetonitrile. The gradient profile was shown as follows (min/%B):

0.0–1.2/5, 1.3–3.9/95, 4.0–5.0/5. The flow rate was set to be

1.5 mL/min. The auto-sampler was programmed to inject 15 mL

sample aliquots in every 5 min. The retention time of BPR1K653

was 2.39 min. Plasma concentration data were analyzed with non-

compartmental method.

Statistical analysis
For all statistical analysis, values were expressed as mean 6 SD.

Values were compared using Student’s t-test. P,0.05 was

considered significant.

Supporting Information

Figure S1 BPR1K653 induces cell endo-replication and
apoptosis. (A) BPR1K653 induces endo-replication and subse-

quent DNA fragmentation in both KB and KB-VIN10 cells. Cells

were treated with either DMSO or BPR1K653 for various

durations, and nucleus was stained with Hoechst 33342. (B)

BRP1K653 induces caspase-3/-7 activity in HONE-1 cancer cells.

Cells were treated with either BPR1K653 for 60 h and

MagicRedTM-DEVD Real-time Caspase-3/-7 Activity kit (Immu-

nochemistry Technologies LLC) was used to detect the activation

of caspase-3/-7 in cells, as indicated by the red fluorescent

emission. Nucleus was counter-stained blue by Hoechst 33342,

and cells were viewed real-time using an UV-enabled inverted

microscope. General cell morphology was visualized by phase-

contrast microscopy.

(TIF)

Figure S2 BPR1K653 did not interfere with the process
of autophagy in cancer cells. KB cells were treated with either

DMSO (negative control) or BPR1K653 (48 h or 72 h) under full

serum conditions. Cells cultured drug-free under reduced serum

conditions were used as a positive control. Expression of various

proteins was determined by Western blotting. The level of

conversion of LC3-I to LC3-II provides an indicator of autophagic

activity.

(TIF)

Figure S3 Details of the composition of the reaction
buffers used in different kinase inhibition assay.

(DOC)
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