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Abstract

Massively Parallel Sequencing (MPS) allows sequencing of entire exomes and genomes to now be done at reasonable cost,
and its utility for identifying genes responsible for rare Mendelian disorders has been demonstrated. However, for a complex
disease, study designs need to accommodate substantial degrees of locus, allelic, and phenotypic heterogeneity, as well as
complex relationships between genotype and phenotype. Such considerations include careful selection of samples for
sequencing and a well-developed strategy for identifying the few ‘‘true’’ disease susceptibility genes from among the many
irrelevant genes that will be found to harbor rare variants. To examine these issues we have performed simulation-based
analyses in order to compare several strategies for MPS sequencing in complex disease. Factors examined include genetic
architecture, sample size, number and relationship of individuals selected for sequencing, and a variety of filters based on
variant type, multiple observations of genes and concordance of genetic variants within pedigrees. A two-stage design was
assumed where genes from the MPS analysis of high-risk families are evaluated in a secondary screening phase of a larger
set of probands with more modest family histories. Designs were evaluated using a cost function that assumes the cost of
sequencing the whole exome is 400 times that of sequencing a single candidate gene. Results indicate that while requiring
variants to be identified in multiple pedigrees and/or in multiple individuals in the same pedigree are effective strategies for
reducing false positives, there is a danger of over-filtering so that most true susceptibility genes are missed. In most cases,
sequencing more than two individuals per pedigree results in reduced power without any benefit in terms of reduced
overall cost. Further, our results suggest that although no single strategy is optimal, simulations can provide important
guidelines for study design.
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Introduction

Over the past two decades, advances in genome technology

have greatly facilitated the discovery of genetic variation which

confer increased susceptibility to disease, first through genetic

maps of microsatellite markers which allowed mapping and then

positional cloning of relatively high-penetrance disease predis-

posing mutations in genes such as BRCA1 [MIM 113705] and

BRCA2 [MIM 600185], and then through the ability of high

throughput, relatively low cost platforms containing 300,000–

1,000,000 single nucleotide polymorphisms (SNPs) which have

greatly facilitated the identification of common genetic variants

conferring only modest increases in disease risk. To date, over

800 disease susceptibility loci in ,150 human diseases/traits

have been identified at genome-wide significance [1], thus

validating this approach. In addition, less frequent, moderate-

risk susceptibility alleles have been identified through resequen-

cing of candidate genes selected on the basis of biological

plausibility. However, it has also become clear that for many

diseases and human traits, the known loci explain only relatively

small fractions of the total genetic variance. While further

genome-wide association studies using ever-higher density arrays,

larger sample sizes and encompassing copy number variations

will account for some of the missing genetic effect, it is unlikely

that this proportion will increase markedly via this approach.

The latest improvement in technology can be directed towards

resolving this and identifying the missing heritability that seems a

general phenomenon in many human diseases. There are several

ways in which such technology can identify disease associated

genetic variation; through resequencing of genomic regions

implicated through GWAS in the hope/expectation of identify-

ing rarer variants associated with higher risk that are tagged by

the SNPs arrayed in the GWAS platforms [2], and through the

possible identification of rare high-penetrance mutations in

several disease susceptibility genes. Although it is impossible to

predict which of the above hypotheses are correct and it is

possible that the missing heritability will be explained by a

combination of them all, it is clear that this may now be tested

through the latest genomic technology. Massively Parallel

Sequencing (MPS) provides order of magnitude improvement

in throughput over Sanger sequencing enabling ‘‘genome-wide’’

sequencing applications in single sample preparations.
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Recently, Ng et al. elegantly demonstrated the utility of whole-

exome massively parallel sequencing in the identification of a gene

for a rare Mendelian disorder (Miller Syndrome) based on analysis

of only four unrelated individuals [3]. Here the authors benefited

from the fact that not only did the four individuals have mutations

in the same gene, but that all four had the same mutation. This

considerably facilitated the task of proving that these mutations

were in fact causal for the disorder. In another case it was the

observation of multiple (causal) variants in the same gene that was

the key observation leading to the identification of the suscepti-

bility gene [4]. Subsequently whole-exome sequencing has been

used to identify genes for other rare Mendelian diseases whose

genetic basis was previously unknown (reviewed in Ng et al. [5]),

typically using only a small number of individuals. However, to

date, the success in rare Mendelian diseases has not been

replicated in common diseases, even those with a demonstrated

large genetic component.

How then can we best use these new sequencing capabilities to

find rare high-penetrance disease-associated variants for common/

complex diseases? The challenges in moving from the Mendelian

situation to multi-factorial diseases or other human traits are

many. First and foremost among these is genetic heterogeneity, in

which mutations in many such relatively rare, but high-risk, genes

give rise to nearly identical phenotypes. For example, in breast

cancer, although BRCA1 and BRCA2 account for many of the

striking multiple-case breast cancer families, recently it has become

apparent through candidate gene resequencing studies that very

rare mutations in at least five additional genes contribute to the

unexplained familial aggregation [6]. Nevertheless, it is clear that

the genetic basis of the majority of high-risk breast cancer

pedigrees remains unresolved. A more extreme example is

delineated by McClellan and King [7] for hereditary deafness in

which no fewer than 48 genes have been demonstrated to have

mutations predisposing to this condition. In addition to multiple

loci, it appears to be a general feature of most populations that

there are a large number of different highly penetrant mutations in

any given disease susceptibility gene; In BRCA2 for example, at

least 2000 distinct pathogenic mutations have been reported, along

with ,800 other sequence variants whose pathogenicity is still

uncertain (Breast Cancer Information Core database [8]).

Another complication for studies of common complex diseases is

that even when a gene is segregating in a family and is responsible

for the majority of the cases, there are likely to be one or more

affected individuals that do not share the predisposing mutation

since the disease is common by definition. Although often these

may be distinguished from ‘genetic cases’’ by such factors as age at

onset, severity, disease subtypes, etc. these phenocopies still cause

complications for the study of complex traits by MPS. There is also

the possibility that some apparent high-risk families are the result

of aggregation of many common moderate-risk loci segregating

within the family, mimicking an autosomal dominant pattern of

inheritance, and/or an unusual cluster of environmentally caused

(non-familial/genetic) cases of the disease.

While a number of others have investigated strategies for the

statistical analysis of rare variants from candidate gene or whole

exome/genome resequencing studies [9–13], there has not been a

similar consideration of family-based designs in which the

detection of comparatively higher penetrance alleles are the

objective.

In general the success of sequence-based approaches (whether

whole exome or whole genome or other targeted strategy) for

identifying susceptibility genes will depend on the genetic

architecture of the underlying disease. Some have argued that

most of the so-called ‘missing heritability’ is due to as yet

undiscovered relatively common variation with very small effects,

while others have argued that evolutionary forces are more likely

to generate large numbers of very rare mutations in key sets of

genes, each conferring relatively high risks of disease [7], In a

recent editorial, Cirulli and Goldstein [14] argue that until whole

genome sequencing costs are sufficiently low to allow case-control

approaches to be sufficiently powered, ‘‘the primary engines of

discovery’’ are likely to be sequencing of individuals in families

having multiple affected individuals; and selecting individuals from

extremes of a trait distribution. Further, they outline the utility of

using shared variants in families followed by further co-segregation

studies of candidate variants, as well as bioinformatics analyses to

narrow down the list of potential disease-associated variants. They

concluded that ‘‘The development of appropriate test statistics that

combine these different lines of evidence is a current priority for

the field’’.

In this paper, we illustrate these concepts using a simulated two-

stage whole-exome MPS experiment of a hypothetical common

disease and derive some general guidelines and considerations for

the design of such studies.

Methods

Assumptions
The assumed genome. We first assume that there are

25,000 genes in the genome, each of which may have rare genetic

variation unrelated to the disease. In our simulations, we take an

entirely agnostic view and assume that each of these genes may

harbor disease predisposing variants as well as unrelated variants.

That is, we will not select genes of interest for a second stage based

on pathways or function (although from a practical point, we

might in fact prioritize for the analysis based on these factors).

Based on the empirical data derived from published whole-exome

sequencing studies [15], we assume that there are 400 rare

missense variants (rms) and 20 truncating/splice junction (TSJ)

non-disease related variants identified per sequenced exome.

For the ‘true’’ disease risk variants, we assume that these will be

detected with a sensitivity of 90% i.e., that 90% of the sequence

variants that are present in the genomic/exomic DNA will be

detected by the particular Exome Capture/MPS platform used.

We recognize that different types of variants (e.g., frameshifts vs.

single nucleotide substitutions) may in fact differ slightly in their

probability of detection; however, this is dependent on many

factors and is not likely to affect our overall results. Although some

current exon-capture systems do not cover the whole-exome,

newer and developing products are approaching full exome-

coverage, and with the addition of reverse strand sequencing of the

targeted capture of the exons missed by the available kits from

Agilent and Nimblegen, complete coverage of the exome will soon

be achieved. However, we have assumed a somewhat lower value

for sensitivity to account for other types of genetic variation that

may not be detectable by exome sequencing approach (e.g., deep

intronic variants causing a splicing abnormality; or cis-acting

regulatory elements). For simplicity we further assume that true

pathogenic mutations in each of the relevant disease genes are

comprised of 50% rare missense (rms) changes, and 50%

substitutions occurring either at consensus splice sites (both

intronic and exonic) or are nonsense mutations or small

insertions/deletions leading to premature truncation (TSJ). This

reflects the uncertainty of knowing in advance the mutational

spectrum of an unknown set of genes; for a subset of simulated

conditions, we have examined the effect of higher or lower

proportions of TSJ mutations. We further assume that each

variant detected has been assessed for sequence quality and has
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been tested against the relevant databases to ensure that it is rare

(,0.005). Lastly we assume that for the rare missense variants, we

can employ a filter based on bioinformatics sequence analysis of

conservation across species, severity of amino acid substitution,

predicted effects on splicing, etc. that will exclude two-thirds of

unrelated variants but only 10% of true pathogenic missense

variants. For example, we might require that missense variants

affect residues that are conserved in mammals and also be non-

conservative, which for the BRCA1 and BRCA2 genes results in

approximately these figures. This filter will reduce the number of

extraneous variants at the expense of missing some true variants.

Underlying Genetic Architecture
Because the underlying genetic architecture is likely to have a

big effect on the optimal strategies to identify disease loci, we

considered the following situations. First, we assumed that

combined, the total set of rare high risk variants in the genome

acting on the disease accounted for in aggregate a total of a

familial relative risk of 1.33. For many of the common cancers this

represents about 1/3 of the overall familial risk and approximately

half of the unexplained risk. For diseases with stronger familial

components such as many of the autoimmune disorders, this will

be a lower proportion of the total genetic variance, but could be

about the same proportion of the unexplained heritability since in

many of those diseases variation at the MHC accounts for a

substantial fraction. In our main simulations we assumed that the

frequency of the disease in individuals without a high-risk allele

was 0.02 and that the increased risk conferred by such mutations

was 56, 7.56, 106, 156, or 206 this baseline risk. In all cases we

assumed the combined frequency of such alleles in any given gene

was 0.0001. The descriptions of the models are shown in Table 1.

Based on this model, and assuming that the loci act multiplica-

tively on risk, it is straightforward to calculate the number of such

loci to achieve the desired overall familial risk of 1.33 as

N = log(1.33)/log(lRk) where lRk is the locus-specific familial risk to

first-degree relatives as calculated from the allele frequencies, and

genotype relative risks (see e.g., Skol et al. [16]) as shown in

Table 1.

Basic strategies to be compared
Our basic design for all the simulations to be examined in this

report is a two-stage design, where in the first stage, a relatively

small number of very high-risk pedigrees (presumed to be likely to

carry high-penetrance mutations in susceptibility gene) are

analyzed by whole exome (or whole genome) MPS, followed by

more conventional testing of candidate genes identified in stage I

in a larger set of families that may have less dramatic family

histories, by such techniques as High Resolution Melt analysis

(HRM) or Denaturing High Performance Liquid Chromatogra-

phy (DHPLC) which provide high-throughput mutation scanning

at relatively low cost. Within this framework we compare designs

in which one, two, or three individuals are sequenced per family.

In all cases, we select those individuals who are most likely to be

mutation carriers based on their phenotype and pedigree position.

Figure 1a shows the pedigree structure assumed for the stage I

analyses. Sequencing a single individual per family has lower up-

front sequencing costs and typically it is easier to find appropriate

families (we need only 1 sample with 3 ug of genomic DNA) in this

approach; however, potentially more genes need to be screened in

stage II. When multiple individuals are sequenced, there could be

a loss of power if one of the two sequenced individuals is a

phenocopy and only concordant variants are selected for further

study; in addition, there are the increased costs of sequencing two

or more individuals per family.

Filters applied to variants/genes
In order to reduce the number of genes not associated with

disease to be analyzed in the second stage, it will be necessary to

apply one or more additional filtering steps in addition to the

simple bioinformatics and frequency filters described previously.

We can distinguish three classes of filter: concordance of the

genetic variants and the disease in pedigrees; the requirement of

observation of variants in the same gene in multiple families; and

filters based on the type of variants observed. In addition, these

three filtering strategies can be combined; we could for example

only pass genes on to stage II that are observed to be concordant

in two families, one of which is a truncating variant.

Concordance Filter
For those situations in which we sample two or more individuals

from each pedigree, the first filter will be to pass only variants and

their respective genes for further validation if the variant is shared

between all sequenced individuals. The efficiency of this filter

depends on the degree of relationship between the individuals

sequenced. In general, for two individuals related by degree D, we

would exclude a proportion of (2D+122)/(2D+121) irrelevant

variants. For cousins, for example, we would exclude 14/15 (93%)

of such variants. When more than two individuals are sequenced,

the situation is more complicated, but using the same approach

similar probabilities can be calculated. In the case of the pedigree

in Figure 1a, 45/46 (98%) of all non-disease related variants would

be eliminated. Of course, it is also important that this process does

not eliminate true susceptibility genes. The fraction of excluded

true variants will depend on the genetic model, pedigree structure,

and pedigree phenotypes. For example, under model II, the two

cousins would be expected to be share a true disease susceptibility

allele segregating in the family 73% of the time and all three

sequenced individuals would be expected to share such an allele

67% of the time.

Multiple Pedigree Filter
Beyond this ‘‘concordance filter’’ which, in any case, does not

apply to the single individual sequence per pedigree approach,

another strategy for distinguishing between the true susceptibility

genes and genes containing spurious variants is the observation of

variants in the same gene in multiple families. This filter can be

tuned by requiring fewer or more observations in independent

pedigrees. In our simulations, we have considered the situation

where 1, 2, or 3 variants are required in a given gene for that gene

to be passed to stage II. It should be noted that these filters apply

only to variants that have passed the initial filters of sequence

quality, frequency, and the bioinformatics screen as applied to rare

Table 1. Genetic Models Examined.

Model GRR Penetrance FRR
No. of loci for
FRRtotal = 1.33

I 20 0.4 1.036 8

II 15 0.3 1.02 15

III 10 0.2 1.008 35

IV 7.5 0.15 1.0036 68

V 5 0.10 1.0016 179

Susceptibility allele frequency = 0.0001, sporadic rate = 0.02. GRR: genotype
relative risk; FRR: familial relative risk.
doi:10.1371/journal.pone.0023221.t001
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missense variants in which 90% of true variants pass but only 30%

of non-relevant variants are passed to the next step.

Variant type filter
Although the bioinformatics filter reduces the number of

missense/intronic variants that need to be considered, there were

still be a large number of these variants that pass these initial

filters. Given that truncating or consensus splice variants have a

higher likelihood, a priori, of being pathogenic, it seems sensible

that these could be given preference in choosing genes to

sequence. The difficulty is that for some disease genes, the

majority of pathogenic mutations are missense changes, which

would result in potentially missing these genes.

Table 2 summarizes the filters that will be examined in this

paper.

Stage II Criteria
Each gene that passes through the series of filters outlined above

will be sequenced in a set of families that are less highly selected

than in stage I, but depending on the disease, would still have a

reasonable probability of having a genetic basis. Figure 1b shows

the pedigree used for the stage II simulations. We assume that we

will use a low-cost, relatively high-throughput method such as

High Resolution Melt analysis (HRM) or Denaturing High

Performance Liquid Chromatography (DHPLC), or even poten-

tially a second round of targeted capture MPS that sequences all

the stage II genes at the same time and evaluates pools of samples

from the stage II families. We take as our criteria for stage II

confirmation of a given gene, that a qualifying rare missense or

truncating/splice variant is found in e.g, 3 or more of the stage II

families. Under this scenario, we can calculate the probability that

the index case in each pedigree carries a mutation in a disease

gene using e.g., the LINKAGE package [17,18], and then using a

simple binomial probability, calculate the probability that these

would appear in 3 or more of 250 independent trials. The

probabilities of the index case carrying a disease allele in one such

gene are 0.061, 0.040, 0.019, 0.011, and 0.005 for models I–V

respectively with corresponding probabilities of being validated

Figure 1. Pedigrees used in stage I and stage II. Panel A: pedigree structure for stage I. Individuals sequenced are indicated by an arrow: ID 8 is
sequenced when one individual is sequenced; IDs 8 and 11 when two are sequenced; IDs 8, 5 and 11 when three are sequenced. Panel B: pedigree
structure for stage II. ID 8 is analyzed.
doi:10.1371/journal.pone.0023221.g001
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with 3+ positive families are 1.0, 0.997, 0.86, 0.51, and 0.13,

respectively. To calculate the probability that a gene that is

unrelated to the disease of interest will meet the criteria of 3+
families having a qualifying variant in that gene we assume that

there is a 0.1% chance that such a variant will be found in that

gene given that we will apply the same frequency and bioinfor-

matics filters in this stage as before. Note that this is still a 5-fold

increase over the population allele frequency assumed for the

disease-causing variants. For example, under this assumption the

associated probability that a non-disease-related gene would have

3 or more qualifying variants in 250 pedigrees is 0.002. So even if

300 false genes are screened in stage II, the expected number of

false positives is less than 1 and the probability of more than 2 false

positives being validated in stage II is 0.023. Table 3 shows the

probabilities of being validated for both true susceptibility genes

and non-disease related genes for a range of sample sizes and

thresholds for the number of observed variants.

Evaluation of Strategies and Filters
In choosing a strategy/filter combination, our goal is to

maximize the number of ‘‘true’’ genes identified, at a minimum

of cost/labor expended. A big part of this cost will be the

unnecessary screening of false genes in a large number of

individuals in stage II. The cost function we used to evaluate the

strategies is as follows: We assume a cost of $4000 for each

sequenced exome and a cost of $10 for mutation screening an

average sized gene in each individual sample in stage II. For these

calculations we assumed the middle sample size from table 3 of

250 pedigrees in stage II. The overall cost of the study is then:

Cost of stage I : $4000 � Np � Ns

Cost of stage II : $10 � 250 �

number of genes passed to stage IIð Þ

where Np is the number of pedigrees in stage I, and Ns is the

number of individuals sequenced per pedigree in stage I. The total

cost is then the sum of the stage I and stage II costs. The essential

feature that we want to capture here is the trade-off between the

high cost of screening a single individual for the entire exome (or

genome) compared to the cost of screening individually many

promising candidate genes arising from the whole exome

approach.

Simulation Procedure
In order to assess the performance of the various strategies and

filters under the assumed genetic models, we performed a

simulation study as described below. The first step was to calculate

the probabilities that each person in the pedigree carried a true

risk allele under the given susceptibility model. We did this by

using the program SLINK [19,20] with 10,000 simulated

pedigrees, using parameters corresponding to each genetic model,

an assumed allele frequency of 0.0001 and complete linkage

disequilibrium and no recombination between the disease allele

and the presumed mutation (i.e., the disease allele is the variant

being simulated). Using these probabilities we then select (though

generation of a series of uniform-[0,1) random numbers) which of

the N true genes (if any) were segregating in each family. Next, in a

similar fashion the probability that the other individual sequenced

in the pedigree is also carrying the mutation is used to determine if

Table 2. Selected filters examined in the simulation.

Filter One Case per pedigree Two Cases per Pedigree

N1RV All genes with a RV All genes with a concordant RV

N1TS All genes with a TSJ All genes with a concordant TSJ

N2RV All genes with RVs in 2+ pedigrees All genes with RVs in 2+ pedigrees, at least one pedigrees
concordant

N2TS All genes with RVs in 2+ pedigrees, at least 1 RV is TSJ All genes with RVs in 2+ pedigrees, at least 1 RV is TSJ, at
least one pedigree concordant

N3RV All genes with RVs in 3+ pedigrees All genes with RVs in 3+ pedigrees, at least one pedigree
concordant

RV: rare variant; TSJ: truncating/splice junction variant.
doi:10.1371/journal.pone.0023221.t002

Table 3. Effect of different sample sizes and validation
thresholds on type I and type II error in stage II.

Number of variants needed for
validation

Model nPeds $2 $3 $4

Not Associated 150 0.010 0.0004 0.00002

250 0.026 0.002 0.0001

350 0.049 0.005 0.0005

I 150 1.0 0.99 0.98

250 1.0 1.0 1.0

350 1.0 1.0 1.0

II 150 0.98 0.94 0.85

250 1.0 1.0 0.99

350 1.0 1.0 1.0

III 150 0.78 0.54 0.32

250 0.95 0.86 0.70

350 0.99 0.96 0.90

IV 150 0.49 0.23 0.09

250 0.76 0.52 0.30

350 0.90 0.74 0.54

V 150 0.17 0.04 0.01

250 0.36 0.13 0.04

350 0.52 0.26 0.10

nPeds: number of pedigrees in stage II. Entries are the probability of meeting
the specified validation criteria for a given sample size and model. Models are
described in Table 1.
doi:10.1371/journal.pone.0023221.t003
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the pedigree is concordant for the chosen disease-associated

variant. Then we assign 400 rare missense and 20 truncating/

splice non-disease related variants randomly selected from 25,000

genes to each sequenced individual, keeping track of which of the

25,000 genes each variant is in, and where required, if it is

concordant in the pedigree. This is repeated for each pedigree in

the data set. Lastly we apply the designated additional filters to

determine under each scenario which genes are passed to stage II.

The previous steps were independently repeated 100 times and the

number of true and false genes passed to stage II recorded for each

replicate. These are then used to calculate the total cost of the

study.

Results

In the presentation of the results in the manuscript, we will focus

on the key aspects of the analysis and findings and only present

results for a selected set of filters and sample sizes (the detailed

results for all models, filters, and sample sizes can be found in

Table S1). Although in the tables to follow, we present only

averages across the 100 replicates, the standard deviations as

calculated from the 100 replicates were generally between 1 and 2

for the number of true genes identified and (as one would expect

from this type of counting process) roughly the square root of the

average number of false genes. For example for 30 pedigrees, and

the filter requiring two variants in the same gene, under model II

we identify on average 8.5 genes of the 15 true genes and 210 false

genes with respective standard deviations of 1.3 and 13.5.

It is instructive to look at the number of ‘‘false’’ genes that are

selected for screening in stage II, as this will in most cases have the

greatest impact on the overall cost of the study. Table 4 provides

these figures as a function of sample size for the five filters shown

in table 2 under the scenarios of sequencing one, two, or three

individuals per pedigree, and requiring at least one variant to be

concordant when multiple individuals were sequenced. Because

these false positives are independent of the disease model, they

only have random variation across the various models and thus the

figures provided are averages across the five models examined.

The first line of table 4 points out the clear need to employ some

sort of filtering strategy to reduce the number of potential genes

that would need to be analyzed in stage II; even if we sequence two

individuals and use concordance as a filter, for large numbers of

pedigrees, the number of genes is quite large. In all cases, it is

important to remember that these figures only include variants

that have already passed through frequency filters (e.g., are not

found in the 1000 Genomes Project database [21]) and

bioinformatics filter that we assumed would eliminate 70% of

non-disease related variants while passing 90% of true disease

genes on to validation in stage II.

Table 5 examines the effects of sample size, number of

individuals sequenced per pedigree, and filter on the number of

true genes found and total study cost for Model II, in which there

are 15 unknown disease genes in the genome, each conferring a

15-fold increased risk of disease.

Table 6 examines the study cost and the proportion of genes

identified in stage I for a fixed sample size of 60 exomes sequenced

(with differing numbers of sequenced individuals) for the five filters

and five models of disease. These results demonstrate that the

requirement that two or more pedigrees have variants in a given

gene can effectively reduce the cost, with or without the

concordance filter, and that the power lost due to this requirement

depends on the expected number of true genes and the sample

size. The higher the ratio of sample size to the expected number of

genes, the smaller the decrease in power. From the table we can

also see that requiring at least one variant be TSJ is another

effective filter, under the assumption that half of the true disease

variants are of this type. Note also that for models with many

disease loci but where each has a smaller effect on disease risk,

fewer genes are identified using any of the designs with cost

,$1M, especially when considering the number of genes that are

contributing. For example in the model IV where there are 68

susceptibility genes each conferring a relative risk of disease of 7.5-

fold, the best designs only identify slightly over 10% of these 68

loci.

Only considering truncating variants may be a good strategy

depending on the proportion of pathogenic variants that are of this

type. In examining the results presented thus far, it is important to

remember that we assumed that 50% of all disease alleles were

assume to be those that result in a truncated (or null) protein or

could be assumed to severely influence normal splicing of the gene.

Because this may certainly vary between different disease genetic

architectures, we have examined the effect of varying this

proportion for select models. Here we will only consider two

filters, and focus on the intermediate model with 15 genes each

with rare alleles conferring a risk of 156over population rates. In

these cases we examine the effect of varying the proportion of

pathogenic mutations in each gene that are of the TSJ variety from

the 0.5 that we have assumed thus far, and look at values of 0.3

and 0.7 to determine the effect of this proportion on the efficiency

of the various strategies. Table 7 shows the effect of these different

assumptions on the number of true disease genes identified in stage

I.

Discussion

In this set of simulations we have attempted to show some of the

more important aspects and principles of design of studies

involving MPS of common human disease. Our overall approach

is modeled on the two-stage GWAS design in which cases and

controls are assayed on a dense (500KR1M) SNP chips, followed

Table 4. Number of false genes passed to stage II for various
filtering strategies, averaged across the five disease models.

Filter Ns

Np =
10

Np =
20

Np =
30

Np =
40

Np =
60

N1RV 1 1359 2641 3857 5006 7119

2 174 346 520 687 1022

3 87 175 262 347 518

N1TS 1 199 396 591 785 1169

2 25 50 75 100 149

3 12 24 38 50 74

N2RV 1 34 138 305 527 1111

2 15 60 133 225 460

3 12 45 96 159 316

N2TS 1 9 37 83 144 309

2 4 17 37 65 138

3 3 13 28 48 102

N3RV 1 0 5 16 36 117

2 1 5 18 41 123

3 1 6 20 43 124

Np: number of pedigrees in stage I; Ns: number of individuals sequenced per
pedigree in stage I; Filters are described in Table 2.
doi:10.1371/journal.pone.0023221.t004
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by a second stage in which a smaller number of SNPs consisting of

the top N (e.g., 10,000) SNPs (ranked by p-value) are tested on a

(usually) larger independent set of cases and controls. For MPS

studies our overall design is a first stage in which whole-exome

sequencing is performed on samples from individuals in excep-

tionally high-risk families (or other extreme phenotype). In our

case, the second stage is not a set of SNPs or variants, but a screen

by sequencing of a relatively small number of genes that meet the

criteria applied in the first stage, and in a larger number of

individuals using a relatively inexpensive high-throughput screen-

ing strategy using methods such as HRM, DHPLC, or even

targeted capture MPS. Within this framework we have attempted

to look at the trade-off between the power to detect true disease

loci against the vast number of false positives that will be generated

in any MPS experiment. More importantly, we have examined the

efficacy/efficiency of a variety of filtering strategies in reducing the

number of false positives without dramatically affecting the power

to detect the true disease susceptibility loci. Liu and Leal have also

explored the strategies for two-stage designs in the context of

whole-exome sequencing of a series of cases and controls with

individual interesting variants or genes evaluated in a second stage

[22]. In their case, the two primary strategies compared were to

evaluate individual variants in the second stage or to evaluate

through re-sequencing the genes in which those variants were

identified. They concluded that sequence-based replication is

generally advantageous if the stage I sample size is relatively small,

as many variants will not be identified in the initial sequencing.

The methods proposed by ourselves [13] and Price et al [10] both

incorporate filters based on allele frequency and in silico analysis of

sequence variants in order to create a more powerful aggregate test

of the hypothesis that rare variants in a gene are contributing to

disease risk than methods based on simply counting the numbers

of variants observed in cases and controls as in e.g., [11]. The

problem we address here differs from the case-control design

examined in the above studies in at least two aspects. First, our

assumption is that the individual disease alleles are much rarer

than those proposed above and would not be amenable (even in

aggregate) to a case-control approach; and second, we are

considering the whole exome rather than a specific gene or

pathway as is typically done in the case-control situation as

analyzed above. It is not clear how these methods would work

when applied to 20,000 genes; it is likely that the required sample

size to detect the (even large) effects of many such alleles with

correction for the multiple comparisons inherent in such a

genome-wide approach would be prohibitive. Kryukov et al.

[23] have specifically examined the power of whole-exome

sequencing studies using extreme phenotypes and concluded that

for reasonable affect sizes, detecting the effects of rare alleles in

individual genes would be possible, although the sample sizes

would be in the 1000s for whole-exome sequencing and the

number of individuals that would need to be phenotyped to

provide adequate selection of extremes would be substantially

larger. Thus we focused our paper on the problem of vanishingly

rare variants of large effect and the use of family studies to identify

the specific genes harboring such variants.

Given that there are a large number of possible genetic

architectures underlying each disease, and in most of these cases

we can only make educated guesses about the true genetic basis.

However, in the analyses presented here we have explicitly or

implicitly assumed several key features. First, we assume that a

substantial proportion of the ‘‘missing’’ genetic variance is due to

individually rare alleles that confer moderate to high increased risk

of disease (5–20 fold). Second, we have assumed that the pedigrees

available for whole exome sequence analysis will be likely to be

segregating a pathogenic mutation in one such gene, although not

all cases in the pedigree are necessarily due to this mutation (i.e.,

phenocopies). Additionally we have assumed that each sequenced

exome will contain a large number of rare missense variants that

are independent of disease and a smaller number of protein

truncating variants, even after filtering by frequency and by in silico

analyses. We have assumed that this filter would reduce the

number of rare missense variants by 70%; although this may seem

somewhat arbitrary we note that our experience in analyzing a

number of genes, shows that this level of filtering is easily

achievable even using available multiple species protein sequence

alignments. Further such a filter can be easily adjusted to provide

more (or less) stringent filtering by requiring different degrees of

evolutionary sequence conservation and/or more radical changes

of the affected residue.

Taken as a whole, the results presented in Tables 4, 5, 6, and 7

demonstrate that while the choice of an appropriate strategy will

depend on a variety of factors, the optimal degree of filtering will

depend on the sample size as well as the choice of the number of

individuals sequenced in each pedigree; there is no single optimal

strategy. As Table 4 shows, when stringent filtering based on

multiple variants in the same gene in different pedigrees is applied

(e.g., N3RV) the number of false positives is approximately the

same for a fixed number of pedigrees no matter how many

individuals are sequenced, indicating that the concordance aspect

is not as important since a given variant has to only be concordant

in a single pedigree and so there is a balance between the number

of exomes sequenced and the additional filtering, whereas for the

looser filter N1RV there are large differences in the number of

false genes as a function of the number of sequenced per pedigree.

Table 4 also demonstrates that requiring multiple rare variants

that are potentially pathogenic (based on a simple bioinformatics

Table 7. Number of true genes identified as a function of proportion of pathogenic mutations that are type TSJ.

Np(Ns) = 20(1) Np(Ns) = 20(2) Np(Ns) = 40(1)

nTrue Cost nTrue Cost nTrue Cost

Filter = N2RV pTSJ = 0.5 5.2 4.4 5.2 3.2 10.6 15.0

Filter = N1TS pTSJ = 0.3 4.9 a 3.3 a 7.9 a

Filter = N1TS pTSJ = 0.5 7.1 10.9 5.2 3.0 10.7 21.5

Filter = N1TS pTSJ = 0.7 8.7 a 6.7 a 12.5 a

pTSJ: proportion of pathogenic mutations that are type TSJ; Np: number of pedigrees in stage I; Ns: number of individuals sequenced per pedigree in stage I. nTrue:
number of true susceptibility genes passed to the validation in stage II; cost is in 100k USD.
aCost does not vary with pTSJ, therefore the number should be equal to that for Filter = N1TS pTSJ = 0.5. Filters are described in Table 2.
doi:10.1371/journal.pone.0023221.t007

Sequencing Strategies for Complex Diseases

PLoS ONE | www.plosone.org 9 August 2011 | Volume 6 | Issue 8 | e23221



filter) in the same gene as a filter for selection to stage II

sequencing is a very effective strategy in reducing the number of

false positives (and hence the cost). Of course, this will also reduce

the number of true genes identified, with the magnitude depending

on the true underlying genetic architecture.

Under the models examined, one point that is evident from our

results is that as the number of pedigrees increases, the cost of

doing the study increases more rapidly than the increase in the

number of susceptibility genes identified, particularly when only a

single individual is sequenced per pedigree. This is true under a

variety of different filtering strategies.

Often the choice of strategy will be determined by the

availability of a sufficient number of suitable pedigrees and,

beyond that by the ability to get sufficient quantity and quality of

DNA from the appropriate members of the pedigree in the two or

three individuals per pedigree case. In many cases it is easier to get

larger number of pedigrees suitable for analysis in stage II. In this

regard, it is useful that there are designs that are more or less

equivalent in terms of cost and number of true genes identified

using each strategy. In choosing which cases within a pedigree to

sequence in stage I, there is typically a trade-off between power

and false positive rate. If they are too closely related (e.g. siblings),

the concordance filter cannot effectively exclude false positive

genes; on the other hand, if they are too distantly related,

particularly without intervening affected relatives and a common

disease, the probability that the two individuals are not sharing a

true high-risk mutation is increased, and the concordance filter will

have a higher likelihood of rejecting a true disease gene.

We have made both explicit and implicit assumptions in our

simulations, including the numbers of genes in the genome, the

distribution of variants across those genes, the proportion of

pathogenic variants of a given type, and the sensitivity of MPS

sequencing in detecting true pathogenic variants. Although

inaccuracies in these assumptions may affect some of the finer

details of our results, we believe that the overall conclusions of our

study are sound. Clearly the biggest factor influencing our ability

to identify novel susceptibility alleles for complex human disease is

the underlying genetic architecture which unfortunately is

essentially unknowable, although often epidemiological and other

data such as linkage studies, can provide some rough guides. If

much of the genetic variance is due to many rare alleles of

relatively modest effect in many different genes, and if the disease

is common, it is likely that different approaches will have to be

developed to identify these genes.

Our study shows that the choice of the appropriate design and

filtering strategies will likely depend on many factors, and there is

no ‘‘one-size fits all’’ recommendation. The choice of design

depends on funds available, the ability of identifying high-risk

families such as that typified in our simulations, as well as the

ability to obtain DNA samples from the best individuals within

each pedigree. Sequencing three cases per family does not add

much additional variant filtering compared with the two

individuals per pedigree case, and thus does not meaningfully

reduce the overall cost. However, this strategy does result in lower

power as a result of the exclusion of true genes due to the higher

probability of one of the three cases being a phenocopy.

Nevertheless, we note that there may be situations where it would

be desirable to sequence three cases if, for example, only siblings

were available. Nevertheless, our results provide some general

guidelines that indicate that a reasonable fraction of moderate to

high penetrance genes can be identified for complex diseases with

practical and economical study designs. As costs of MPS

sequencing drop for both whole exome and whole genome

approaches, different strategies may become economically feasible.

In particular, it may be possible to perform the second stage on

larger numbers of genes using targeted sequence capture, or all

available families could be screened in the first stage. In either

case, there will still be a need for effective filtering strategies,

particularly in the case of whole genome sequencing. Although the

strategy employed and the sequencing method employed are

clearly important, the key to success in identifying novel

susceptibility for common disease will ultimately rely on the

availability of large series of well-characterized families with many

cases of the disease of interest and with the appropriate collections

of biospecimens available for study. We recommend that before

embarking on whole-exome or whole-genome studies in complex

human diseases, careful consideration be given to the concepts

discussed in this paper under a set of disease-specific plausible

genetic models. We encourage interested readers to use the data in

the supplemental data to repeat these analyses using relative costs

of exome sequencing to candidate gene screening and sample sizes

that are pertinent to their situation. To assist in this effort, the

simulation program used in this study is available from the authors

on request.

Supporting Information

Table S1 Simulation results for all disease models, filters and

sample sizes.

(XLS)
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