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Abstract

Background: Diagnosis of Pneumocystis jirovecii pneumonia (PCP) is challenging, particularly in developing countries. Highly
sensitive diagnostic methods are costly, while less expensive methods often lack sensitivity or specificity. Cost-effectiveness
comparisons of the various diagnostic options have not been presented.

Methods and Findings: We compared cost-effectiveness, as measured by cost per life-years gained and proportion of
patients successfully diagnosed and treated, of 33 PCP diagnostic options, involving combinations of specimen collection
methods [oral washes, induced and expectorated sputum, and bronchoalveolar lavage (BAL)] and laboratory diagnostic
procedures [various staining procedures or polymerase chain reactions (PCR)], or clinical diagnosis with chest x-ray alone.
Our analyses were conducted from the perspective of the government payer among ambulatory, HIV-infected patients with
symptoms of pneumonia presenting to HIV clinics and hospitals in South Africa. Costing data were obtained from the
National Institutes of Communicable Diseases in South Africa. At 50% disease prevalence, diagnostic procedures involving
expectorated sputum with any PCR method, or induced sputum with nested or real-time PCR, were all highly cost-effective,
successfully treating 77–90% of patients at $26–51 per life-year gained. Procedures using BAL specimens were significantly
more expensive without added benefit, successfully treating 68–90% of patients at costs of $189–232 per life-year gained. A
relatively cost-effective diagnostic procedure that did not require PCR was Toluidine Blue O staining of induced sputum ($25
per life-year gained, successfully treating 68% of patients). Diagnosis using chest x-rays alone resulted in successful
treatment of 77% of patients, though cost-effectiveness was reduced ($109 per life-year gained) compared with several
molecular diagnostic options.

Conclusions: For diagnosis of PCP, use of PCR technologies, when combined with less-invasive patient specimens such as
expectorated or induced sputum, represent more cost-effective options than any diagnostic procedure using BAL, or chest
x-ray alone.
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Introduction

Pneumocystis jirovecii causes a fungal pneumonia (PCP) affecting

HIV-infected and other immunocompromised persons worldwide

[1]. Although highly active anti-retroviral therapy (HAART) and

PCP prophylaxis, usually with cotrimoxazole (CTX), have reduced

the burden of PCP among AIDS patients in developed countries

[2,3,4,5], PCP remains an important cause of HIV-related

morbidity and mortality throughout much of the developing

world [1]. The prevalence of PCP among HIV-infected African

children with pneumonia ranges from 10 to 49% [6,7,8,9,10], with

mortality as high as 80% [11]. Among African adults, in whom the

disease is often misdiagnosed as smear-negative TB [12,13,14],

increases in PCP diagnoses have been noted during the past 15

years [15,16,17,18,19,20]. In Southeast Asia, PCP prevalence

among HIV-infected children and adults with pneumonia has

been reported to be as high as 66% [21,22,23]. Among HIV-

uninfected persons, those at risk of PCP include persons receiving

immunosuppressive therapies, such as renal transplant patients

(estimated cumulative PCP incidence: 0.4%) [24,25], patients

undergoing immunosuppressive therapy for connective tissue

disorders [26], and children with chronic lung diseases [27].

Mortality from PCP among HIV-uninfected patients can be as

high as 40% [1].

Laboratory-based diagnosis of PCP is a two-step procedure,

involving specimen collection and pathogen detection (referred to

hereafter as the ‘diagnostic procedure’). Specimens can be

collected from oral washes (OW), expectorated (ES) or induced

(IS) sputum, tracheal secretions, broncho-alveolar lavage (BAL), or

transbronchial biopsies from patients; the latter two require

bronchoscopy. Several different methods can be employed for

pathogen detection on all specimen types, including immunoflu-

orescence microscopy (IFA), Pneumocystis cyst wall stains [Toluidine

Blue O (TBO) and calcofluor white (CW)], Pneumocystis trophozoite

stains [Grocott’s methenamine silver stain (GMS), Diff-Quick

(DQ), and Papanicolaou], or single-round polymerase chain
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reaction (PCR), nested PCR (nPCR), or quantitative real-time

PCR (rtPCR) [15,28,29,30] to amplify genomic DNA.

However, accurate diagnosis of PCP poses multiple challenges.

While the procedures to obtain oral washes and sputa are less

invasive than that for BAL, they are also less effective at obtaining

sufficient numbers of organisms for visualization with diagnostic

stains. In contrast, the cost and invasiveness of bronchoscopy and

the technical skill it requires render it unfeasible in many areas of

the world. Pathological interpretations of stained slides are

subjective and nonspecific; sensitivity is dependent on the burden

of pathogen in the sample, the specimen type employed, and the

skill and experience of the technician examining the sample.

Among the pathogen detection methods, the most sensitive is

PCR; however, it may be technologically and economically

impractical for much of the developing world. Because of these

factors, clinicians often use chest x-rays and clinical evaluations as

the sole diagnostic method for Pneumocystis pneumonia. Although

many studies have evaluated the test characteristics of different

diagnostic methods [28,29,30,31,32,33,34,35,36,37,38,39,40,41,

42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,-

63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80], compar-

isons of costs and outcomes have not been presented.

This report reviews available diagnostic procedure options for

PCP, as well as the cost-effectiveness of each option as a function

of procedural cost, sensitivity, and specificity. The outcome

measures of interest are the proportion of PCP patients successfully

treated and the cost per life-year gained. The analysis is considered

from the perspective of the health care payer in developing

countries (typically the government). The results should help guide

decision-making with respect to diagnostic options for PCP in the

developing world.

Methods

Assumptions
Patient population and setting. This analysis is conducted

among ambulatory HIV-infected patients in South Africa.

Test qualities and diagnostic costs. Estimates of sensitivity

and specificity of diagnostic procedures used in the model are

shown in Table 1 and are based on reports from the literature

(chest x-ray alone, oral wash with DQ, PCR, nested PCR, and

rtPCR; expectorated sputum with GMS, TBO, CW; induced

sputum with DQ, GMS, TBO, IS, IFA, PCR, nPCR; BAL with

DQ, GMS, TBO, CW, IFA, PCR, nPCR, rtPCR) [29,30,31,36,

38,39,40,44,47,48,49,50,52,54,55,57,59,60,61,62,63,64,65,66,67,

68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84], or estimated

by the authors (oral wash with IFA, GMS, CW, TBO; expectorated

sputum with DQ, IFA, PCR, nPCR, or rtPCR; induced sputum

with rtPCR). Although all of the above-referenced literature was

consulted, for diagnostic procedures involving any form of PCR,

only studies which targeted the mitochondrial large subunit

ribosomal RNA were used for estimations of sensitivity and

specificity [28,29,36,48,51,54,55,57,63,64,67,68,69,71,72,75,76,78,

85,86]. For tests for which data did not exist in the literature,

estimations of test characteristics were based on interpolation and

pre-existing knowledge of the sensitivity and specificity of other tests

in the same diagnostic category (e.g., we assumed that expectorated

sputum with DQ, for which we did not find published reports,

would be intermediate in sensitivity between oral wash with DQ and

induced sputum with DQ, for which we were able to reference

published reports.)

Estimates of costs include required materials and personnel time

(Tables S1 and S2). Total costs for diagnostic procedures are

included in Table 1. Estimated salaries for laboratory and health

care workers are available in Appendix S1. Except where stated,

all cost and time estimates were provided by the National Institute

of Communicable Diseases in South Africa.

Others. The value referred to as ‘prevalence’ refers

specifically to the prevalence of disease among patients with

signs and symptoms of PCP who would normally warrant testing

at a given hospital or clinic. It does not refer to the population

prevalence of disease. This value will differ regionally; some

hospitals or clinics might test all patients with respiratory disease

and negative AFB smears, while others will test only patients who

have a chest x-ray typical for PCP.

Table 1. Model inputs and costs: Sensitivity and specificity of
diagnostic procedures, based on estimates derived from
existing studies (see text) or, when reference studies not
available, from author estimation.

Diagnostic Specimen collection Sensitivity Specificity Cost (USD)

CXR None 0.86 0.40 $40.00

DQ Oral wash 0.30 1.00 $2.32

Expectorated sputum 0.60 1.00 $2.22

Induced sputum 0.75 1.00 $8.72

Bronchoalveolar lavage 0.75 1.00 $77.12

GMS Oral wash 0.30 1.00 $4.21

Expectorated sputum 0.52 0.95 $4.11

Induced sputum 0.70 0.96 $10.61

Bronchoalveolar lavage 0.82 0.98 $79.01

TBO Oral wash 0.30 1.00 $0.93

Expectorated sputum 0.71 1.00 $0.83

Induced sputum 0.75 1.00 $7.33

Bronchoalveolar lavage 0.80 1.00 $75.73

CW Oral wash 0.30 1.00 $2.94

Expectorated sputum 0.33 1.00 $2.84

Induced sputum 0.57 1.00 $9.34

Bronchoalveolar lavage 0.78 1.00 $77.74

IFA Oral wash 0.30 1.00 $20.79

Expectorated sputum 0.50 1.00 $20.69

Induced sputum 0.81 1.00 $27.19

Bronchoalveolar lavage 1.00 1.00 $95.59

PCR Oral wash 0.71 0.99 $8.78

Expectorated sputum 0.85 0.99 $8.68

Induced sputum 0.94 0.99 $15.18

Bronchoalveolar lavage 1.00 0.94 $83.58

nPCR Oral wash 0.83 1.00 $10.32

Expectorated sputum 0.91 1.00 $10.22

Induced sputum 1.00 1.00 $16.72

Bronchoalveolar lavage 1.00 0.89 $85.12

rtPCR Oral wash 0.89 0.94 $13.84

Expectorated sputum 0.92 0.94 $13.74

Induced sputum 0.95 0.90 $20.24

Bronchoalveolar lavage 0.99 0.80 $88.64

CXR: Chest x-ray; DQ: Diff-Quick; GMS: Grocott’s Methenamine Silver Stain; TBO:
Toluidine Blue O; CW: Calcofluor white stain; IFA: Immunofluorescence; PCR:
Polymerase chain reaction; nPCR: nested PCR; rtPCR: real-time (quantitative)
PCR.
doi:10.1371/journal.pone.0023158.t001
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Three models are also presented, with prevalences set at 5%,

20%, and 50%. Treatment failure, whether related to insufficient

adherence to treatment or breakthrough infections during

treatment to which the patient is adherent, is assumed to occur

among 10% of patients (Table S3).

Treatment costs are based on a single, 21-day regimen with oral

CTX (Table S3). Patients are assumed to not be taking CTX at

the time of diagnosis.

Life-years gained. In studies carried out before the year

2000, median survival time after AIDS diagnosis among patients

in developing countries not on antiretroviral therapy was

calculated to be approximately one year [87]. In the absence of

treatment, PCP is generally accepted to lead to rapid death.

Therefore, we assumed that diagnosis and appropriate treatment

led to a single life-year gained among patients with PCP,

compared with patients who were not diagnosed correctly.

Model flow. An example of model flow with sample values is

depicted in Figure 1. ‘Ill patients’ refers to patients with PCP; ‘well

persons’ refers to persons without PCP (although persons in this

group likely have another illness, since they are undergoing testing).

At a given PCP prevalence among persons tested, the number of ill

patients correctly diagnosed is calculated as the sensitivity of the

diagnostic procedure (Table 1) multiplied by the total number of ill

patients. The number of well persons incorrectly classified as ill is

equal to the total number of well persons, minus the procedural

specificity (Table 1) multiplied by the total number of well persons.

The total number of persons classified as ill is the sum of these values.

Total diagnostic procedural costs are calculated as a sum of the health

care worker and laboratory staff costs and material costs for the

specimen collection and the diagnostic test procedures (Table 1 and

Tables S1 and S2).

All persons diagnosed as PCP-positive (correctly or incorrectly)

are assumed to receive a full course of treatment. Treatment

failure rates are considered as a combination of failure-to-adhere

and breakthrough infection rates (Table S3). The number of

patients who fail treatment is equal to the number of ill patients

correctly classified as ill who undergo treatment, multiplied by the

treatment failure rate. Because each patient is assumed to gain a

single year of life from correct treatment, total life-years gained is

equal to the number of ill patients correctly diagnosed minus those

for whom treatment did not successfully treat infection (Figure 1).

The proportion of ill patients successfully treated is represented

by the number of patients successfully treated divided by the

number ill, while the proportion unnecessarily treated is equal to

the number of well persons treated divided by the total number of

well persons. Total treatment costs are equal to the total number

of well persons and ill patients who receive treatment, multiplied

by the estimated treatment cost. Finally, the total diagnostic and

treatment cost per life-year gained (the cost-effectiveness ratio) is

equal to the sum of the total diagnostic costs and the total

treatment costs, divided by the number of ill patients successfully

treated. The incremental cost-effectiveness ratios of the most

effective options were then calculated.

Relapse rates are not considered. Start-up and indirect costs

(building costs, laboratory equipment purchase, electricity, train-

ing) are also not considered, as they will differ greatly by region

and available pre-existing infrastructure.

Sensitivity analyses. Sensitivity analyses were performed by

varying specific parameters, including treatment costs, treatment

failure rates, and costs of diagnostic procedures, over a range of

plausible values to determine the impact of uncertainty in the data,

and the robustness of results.

Figure 1. Model flow. ‘Ill patients’ refers to patients with PCP. ‘Well persons’ refers to persons without PCP, regardless of their health status
otherwise. Patients successfully treated are assumed to gain one life-year.
doi:10.1371/journal.pone.0023158.g001
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Results

Results from the analyses are presented in Table 2. Nearly all

laboratory-based diagnostic procedures have an estimated specificity

.90%; thus, few false positives occur even when employing the least

sensitive diagnostic procedures (Table 1) and specificity does not

contribute to the cost-effectiveness of most diagnostic procedures (the

exception is chest x-ray). In general, diagnostic procedures that resulted

in the highest proportion of patients successfully treated involved PCR,

nPCR, or rtPCR, regardless of the specimen type used for diagnosis.

Only one non-PCR-based laboratory diagnostic procedure (IFA with

BAL) resulted in successful treatment of $75% of patients, while all

PCR-based diagnostic procedures except one (PCR with OW) resulted

in successful treatment of $75% of patients (Table 2).

At a disease prevalence of 50%, eight diagnostic procedures had

average cost-effectiveness ratios #$25 per life-year gained; among

these, the most effective (in terms of proportion of PCP patients

successfully treated) were IS/TBO, ES/TBO, and ES/DQ

(successfully treating 68%, 64%, and 54% of PCP patients,

respectively, at $25, $6, and $11 per life-year gained, respectively).

Fifteen procedures had an average cost-effectiveness ratio of $26–

$100 per life-year gained; among these, the most effective

procedures were IS/nPCR, IS/rtPCR, and IS/PCR (resulting in

successful treatment of 90%, 86%, and 85% of PCP patients,

respectively, at $40, $51, and $39 per life-year gained). Above $100

per life-year gained, the most effective procedures were BAL/

nPCR, BAL/IFA, and BAL/PCR, all successfully treating 90% of

patients and costing $193, $216, and $189 per life-year gained,

Table 2. Model outputs: Average Cost effectiveness ratio (ACER) (total diagnostic and treatment cost per life-year gained) for each
diagnostic procedure.

Diagnostic Specimen
% of patients
successfully treated

ACER (5%
prevalence)

ACER (20%
prevalence)

ACER (50%
prevalence)

CXR None 77.0% $1,077 $270 $109

DQ Oral wash 27.0% $175 $46 $20

Expectorated sputum 54.0% $85 $24 $11

Induced sputum 67.5% $261 $68 $29

Bronchoalveolar lavage 67.5% $2,288 $574 $232

GMS Oral wash 27.0% $315 $81 $34

Expectorated sputum 46.8% $184 $48 $21

Induced sputum 63.0% $343 $88 $37

Bronchoalveolar lavage 73.8% $2,146 $539 $217

TBO Oral wash 27.0% $72 $20 $10

Expectorated sputum 64.3% $29 $10 $6

Induced sputum 67.5% $220 $57 $25

Bronchoalveolar lavage 72.0% $2,107 $529 $213

CW Oral wash 27.0% $221 $58 $25

Expectorated sputum 29.7% $194 $51 $22

Induced sputum 51.3% $367 $94 $39

Bronchoalveolar lavage 70.2% $2,218 $557 $225

IFA Oral wash 27.0% $1,543 $388 $157

Expectorated sputum 45.0% $923 $233 $95

Induced sputum 72.9% $749 $190 $78

Bronchoalveolar lavage 90.0% $2,127 $534 $216

PCR Oral wash 63.9% $279 $72 $31

Expectorated sputum 76.5% $231 $60 $26

Induced sputum 84.6% $363 $93 $39

Bronchoalveolar lavage 90.0% $1,864 $468 $189

nPCR Oral wash 74.7% $279 $72 $31

Expectorated sputum 81.9% $253 $65 $28

Induced sputum 90.0% $375 $96 $40

Bronchoalveolar lavage 90.0% $1,901 $477 $193

rtPCR Oral wash 80.1% $353 $90 $38

Expectorated sputum 82.8% $339 $87 $36

Induced sputum 85.5% $483 $123 $51

Bronchoalveolar lavage 89.1% $2,005 $503 $203

CXR: Chest x-ray; DQ: Diff-Quick; GMS: Grocott’s Methenamine Silver Stain; TBO: Toluidine Blue O; CW: Calcofluor white stain; IFA: Immunofluorescence; PCR: Polymerase
chain reaction; nPCR: nested PCR; rtPCR: real-time (quantitative) PCR.
doi:10.1371/journal.pone.0023158.t002
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respectively. Using a chest x-ray alone for diagnosis resulted in an

average cost-effectiveness ratio of $109 per life-year gained and the

successful treatment of 77% of patients. Although total costs varied

with disease prevalence, relative costs and cost-effectiveness ratios

did not (Table 2).

The scatterplot in Figure 2 demonstrates the relationship

between cost and outcomes of the individual diagnostic proce-

dures. The best outcomes (the highest proportion of patients

successfully treated as a result of proper diagnosis and subsequent

treatment) are achieved using procedures on the right-hand side of

the plot, while the least expensive procedures (per life-year gained)

are on the bottom of the plot. The most cost-effective procedures,

then, are those that cluster in the bottom right. These procedures

include any combination of induced sputum with PCR, nPCR, or

rtPCR; expectorated sputum with nPCR or rtPCR; and oral wash

with rtPCR, all resulting in the successful treatment of 80–90% of

PCP patients at relatively reduced costs per life-year gained

(Figure 2). The most expensive procedures per life-year gained,

represented as squares in the top right of the figure, all involve

BAL, and result in 68–90% of patients being successfully treated.

It is worth noting that the diagnostic procedure with the highest

cost per life-year gained (DQ/BAL, at $232 per life-year gained)

results in similar proportions of patients successfully treated (68%)

to the diagnostic procedure with the lowest cost per life-year

gained (ES/TBO, successfully treating 64% of PCP patients at $6

per life-year gained).

Incremental cost-effectiveness of selected options
We evaluated incremental cost-effectiveness among diagnostic

options which resulted in successful treatment of at least 2/3 (67%)

Figure 2. Scatterplot showing total costs for diagnostic procedures and treatment, per life-year gained, at 50% prevalence among
population tested. Triangles represent procedures involving oral washes; circles represent procedures involving expectorated sputum; lines
represent procedures involving induced sputum; and squares represent procedures involving BAL. All white data points outlined in black indicate
procedures using the Diff-Quick test (1–4); red indicates procedures using GMS (5–8); orange indicates procedures using TBO (9–12); light green
indicates procedures using calcofluor white (13–16); dark green indicates procedures using IFA (17–20); black indicates procedures using PCR (21–24);
purple indicates procedures using nPCR (25–28); and blue indicates procedures using rtPCR (29–32). Figure 2 Legend: 1: DQ/OW; 2: DQ/ES; 3: DQ/IS; 4:
DQ/BAL; 5: GMS/OW; 6: GMS/ES; 7: GMS/IS; 8: GMS/BAL; 9: TBO/OW; 10: TBO/ES; 11: TBO/IS; 12: TBO/BAL; 13: CW/OW; 14: CW/ES; 15: CW/IS; 16: CW/
BAL; 17: IFA/OW; 18: IFA/ES; 19: IFA/IS; 20: IFA/BAL; 21: PCR/OW; 22: PCR/ES; 23: PCR/IS; 24: PCR/BAL; 25: nPCR/OW; 26: nPCR/ES; 27: nPCR/IS; 28: nPCR/
BAL; 29: rtPCR/OW; 30: rtPCR/ES; 31: rtPCR/IS; 32: rtPCR/BAL; CXR: chest x-ray.
doi:10.1371/journal.pone.0023158.g002

Cost-Effectiveness of PCP Diagnostics

PLoS ONE | www.plosone.org 5 August 2011 | Volume 6 | Issue 8 | e23158



of PCP patients. After excluding both strongly dominated (less

effective and more expensive) and weakly dominated (equally

effective but more expensive, or equal in cost but less effective)

options, five procedures remained for inclusion in an incremental

cost-effectiveness analysis: induced sputum with TBO, PCR, or

nPCR; and expectorated sputum with nPCR or rtPCR (Table 3).

Using nPCR with expectorated or induced sputum provided a

relatively higher benefit at lower cost ($43 and $60 for each

additional life-year gained, respectively), compared with the next-

least-effective procedure (Table 3).

Sensitivity analysis
Variations in the cost of the diagnostic procedure had the most

impact on cost per life-year gained in sensitivity analyses.

Reducing the cost of the diagnostic procedures by 50% led to

an approximate 50% reduction in cost per life-year gained, while

doubling it led to approximately a two-fold increase in cost per life-

year gained (Table S4). Modifying other factors, including the

procedural sensitivity, specificity, treatment failure rates, or

treatment cost had little effect on the overall cost per life-year

gained. None of the analyses examined affected the relative cost-

effectiveness of the diagnostic procedures with respect to each

other.

Discussion

Cost-effectiveness analysis
Three metrics are relevant in this analysis for decision-making

and policy concerning diagnostic testing for PCP: (a) proportion of

PCP patients successfully treated, (b) proportion of well persons

unnecessarily treated, and (c) the total diagnostic and treatment

cost per life-year gained. An ideal test will maximize the first

metric and minimize the second, at the smallest – and most

feasible, for the implementing clinic or geographic region under

consideration – value of the third. Because all laboratory-based

diagnostic procedures considered in this analysis were highly

specific, the effect of (b) is negligible for this analysis; thus, we

presented the results as a function of (a) and (c).

Our results indicate that PCR methodologies are so sensitive

that, specimen type notwithstanding, they represent the most cost-

effective diagnostic options for PCP. When PCR methodologies

are available, they mitigate the need for obtaining highly invasive

specimens, such as BAL, which increase procedural sensitivity at

substantial increases in cost. However, if both PCR and machinery

for sputum induction are unavailable at a given site, the next-best

option could be ES/TBO, which is relatively inexpensive and

simple in terms of specimen collection and laboratory require-

ments for diagnosis. Although the use of chest x-ray alone for

diagnosis can lead to the successful detection and treatment of high

proportions of patients, the cost per life-year gained exceeds that of

other equally-sensitive or more sensitive methods for diagnosing

disease.

In general, the decision about which test is most useful in a

given region will depend on the estimated prevalence of PCP

among persons tested, local technical capacity, and available

financial resources. Individual patient characteristics may affect

decision-making, too; in an already-intubated patient, a BAL will

be meaningfully cheaper than it would be among non-intubated

patients, making the increased sensitivity in specimen collection

more economical as well as practical (as an intubated patient or an

infant will be unable to produce sputum). In addition, BAL might

facilitate the detection of other respiratory pathogens besides

Pneumocystis, such as TB or staphylococcus. Similarly, chest x-rays

can provide information beyond the ability to evaluate a patient

for signs consistent with PCP. However, for the diagnosis of PCP,

providing a patient can produce sputum, the model presented

suggests that there is little added value in carrying out a BAL over

an induced sputum procedure.

There are several limitations to this analysis. First, data were not

available on the sensitivity and specificity of all diagnostic

procedures, creating a need to estimate some values. Even for

procedures for which data were available, the degree of experience

of an administering clinician or laboratory technician could affect

the test’s sensitivity or specificity. Second, indirect costs are not

included in the model. The buildings, equipment, and technical

know-how needed to carry out more advanced molecular

diagnostics such as PCR are not currently in place in all countries.

Where this capacity does exist, it may be unevenly distributed

geographically and might not be accompanied by appropriate

quality assurance measures. Start-up costs to implement these

technologies could be prohibitive for some low-income countries,

and in these areas comparisons of the cost-effectiveness of the

various staining methods might be more useful than considerations

about which PCR methodology is optimal. Finally, we did not

account for differing diagnostic or treatment costs in different

countries or among different patient groups, which could affect

overall cost or cost-effectiveness of different diagnostic options.

However, it is worth noting that, although the costs of all

procedures might differ by country, the relative cost of procedures

is unlikely to differ greatly.

Other considerations
Existing international guidelines call for CTX prophylaxis of

PCP in patients whose CD4+ T cell counts drop below 350 cells/

mm [3]. CTX is also considered the treatment of choice for PCP.

Because diagnostics are not available throughout much of the

Table 3. Incremental cost-effectiveness of a subset of diagnostic procedures for Pneumocystis pneumonia, assuming 50% disease
prevalence.

Specimen collection and
diagnostic procedure

% of patients successfully
treated

Average cost per
life-year gained

Cost per additional life-year gained, compared
with next-least-effective procedure

IS/TBO 0.68 $25 $N/A

ES/nPCR 0.82 $28 $43

ES/rtPCR 0.83 $36 $804

IS/PCR 0.85 $39 $156

IS/nPCR 0.90 $40 $60

IS: Induced sputum; ES: expectorated sputum; TBO: Toluidine Blue O; PCR: polymerase chain reaction; nPCR: nested PCR; rtPCR: real-time (quantitative) PCR.
doi:10.1371/journal.pone.0023158.t003
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developing world and because CTX is relatively inexpensive and

can be effective in the treatment of other respiratory pathogens in

addition to PCP [88,89], clinicians in developing countries

frequently diagnose symptomatic patients empirically for PCP.

While this method may capture a high proportion of patients with

disease, it is highly nonspecific and thus may result in many

patients without PCP being treated for the disease. Why should we

consider this important? First, CTX has known toxic side effects:

HIV-infected patients in particular are at risk of adverse reactions

to CTX, including cutaneous reactions [90], fever, neutropenia,

thrombocytopenia, transaminase elevation [91], meningitis [92]

and anaphylaxis [93]. Second, non-judicious use of antimicrobials

has long been recognized as a precursor to increased drug-

resistance for a broad spectrum of pathogens. While reports of

Pneumocystis resistance to CTX are infrequent, some do exist, and

concern about resistance is increasing [94,95,96]. Perhaps as

importantly, treatment for other pathogens, including S. pneumo-

niae, malaria, Salmonella spp, Staphylococcus aureus, and Escherichia coli,

involve the use of CTX, and for these pathogens reports of CTX

drug-resistance are common [97,98,99,100,101,102,103].

The cost-effectiveness of diagnostic testing improves in areas of

higher disease prevalence; testing might become prohibitively

expensive in areas with very low prevalence of disease. However, a

diagnostic protocol that might seem financially unfeasible for

certain regions might be more feasible than suspected if the

prevalence of disease can be increased among the patients selected

for testing. One way to optimize test utility is to use a clinical

algorithm that improves the pre-test probability without incurring

substantial numbers of false negatives. Although no such algorithm

has been formally defined for PCP, clinical differences do exist

between HIV-infected patients with PCP compared with other

pneumonias; PCP patients have a more subacute onset of disease,

ground glass infiltrates on CXR [104], lower oxygen saturation,

lower CD4 cell counts, greater weight loss, more cyanosis, more

severe dyspnea, and higher respiratory rates than non-PCP

patients [15,105]. Utilizing one or a combination of these metrics

might be useful for increasing the prevalence of PCP among the

population to be tested (e.g., increasing the pre-test probability),

provided it did not miss substantial numbers of patients with PCP.

For any disease, when the cost of diagnosis exceeds the cost of

treatment (such as with PCP), the cost-effectiveness of empiric

diagnosis and treatment is directly proportional to the gap between

the diagnostic and treatment costs; thus, when treatment costs are

very low, it’s nearly always more cost-effective to diagnose and

treat patients empirically. In addition, because international

guidelines call for at-risk patients to be on ART and CTX

prophylaxis, the occurrence of PCP in a patient likely represents a

failure of the local health system to provide sufficient opportunities

for HIV patient care and treatment, an inability by the treating

clinic to meet these standards, an inability by the patient to adhere

to the recommended treatment regimen, or drug failure. Thus,

one could argue that efforts should be focused on improving access

to care for HIV patients or adherence to the standards laid out in

international guidelines with respect to ART and CTX treatment,

rather than on diagnosing the precise etiology of infections that

could otherwise have been prevented. This is a valid argument and

such efforts should be supported. However, given the suboptimal

conditions that currently exist with respect to meeting these

guidelines, there are benefits to accurate diagnosis, including

improvements in the understanding of the true prevalence of

disease, which is worthwhile for the purposes of prevention,

control, and allocation of resources. This analysis is not intended

to discourage PCP prophylaxis or diagnosis and treatment among

symptomatic patients in the absence of a laboratory-based

diagnosis, but rather to provide a basis for decisions on diagnostics

for PCP, should an institution desire to implement diagnostic

procedures. For these institutions, particularly in situations of high

disease prevalence, we demonstrate that the elevated sensitivity

and specificity of diagnosis enabled by the use of PCR technologies

could justify the additional costs of obtaining and using them. A

rough calculation demonstrates the power of replacing micro-

scope-based technologies with PCR technologies for the diagnosis

of PCP: in South Africa, the adult HIV infection rate is reported at

20%, with an estimated half a million new infections [106] and

approximately 250,000 persons starting ART each year [107].

Assuming a PCP prevalence of ,20% among HIV-infected

persons starting ART (PCP prevalence among HIV-infected

children is reported to be as high as 52% in South Africa

[7,8,18]), approximately 50,000 persons would start ART with

PCP. Using PCR technologies with expectorated sputum could

result in the successful treatment of between 8,350 and 27,650

more PCP infections (i.e., result in 8,350–27,650 more life-years

gained) than diagnosis with non-molecular-based technologies (or

empiric diagnosis and treatment).

Diagnostic procedural decisions cannot, in practice, be

simplified to numbers alone. Assuming clinicians were aware of

the diagnostic qualities of each test, they could make decisions

outside of the framework presented here, such as conducting

sequential tests (for example, a highly sensitive test followed by a

highly specific test) for diagnostic purposes. In addition, we realize

that most clinicians do not have an array of diagnostic options at

hand, and if a diagnostic protocol is to be implemented, it will be

done at a clinic, hospital, or regional level. However, examples of

molecular diagnostic technologies in resource-limited settings are

increasingly reported, for example with tuberculosis diagnosis

[108,109,110,111]. The fixed costs associated with building

structures and capacity to carry out these technologies will

decrease in proportion to their utility as these technologies

become cheaper and address to increasing arrays of pathogens.

As more patients develop PCP and concerns about CTX drug

resistance grow, it is worth considering whether changes in existing

diagnostic paradigms are warranted for PCP. Choosing subopti-

mal diagnostic methodologies – or no laboratory-based method-

ologies at all, for empirically-diagnosed disease - for a treatable

infection may no longer be justifiable, particularly in high-

prevalence areas. In recognition of the enormous increases in

diagnostic sensitivity available with more technologically complex

procedures such as PCR, we would encourage policymakers,

particularly those in regions where disease prevalence is high

among the population tested, to consider prioritizing the

development of the skills and infrastructure necessary to support

improved diagnostic methods. It is our hope that this analysis can

serve as a guide to help clinicians or policymakers make decisions

about the best use of limited resources.

Supporting Information

Table S1 Model inputs: Estimated personnel and time require-

ments and associated costs for specimen collection options for

Pneumocystis pneumonia. *Estimates not available from laborato-

ries; costs estimated by authors. BAL cost does not include cost of

intubation. See Appendix S1 for working year and salary

assumptions. {Time calculations based on procedure being

performed on one patient at a time. 1Oral wash involves patients

rinsing their oral cavities with a small volume of sterile saline and

gargling for one minute before expectorating into a cup.
2Expectorated sputum involves asking a patient to inhale deeply

several times before producing a deep cough from the chest.
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3Induced sputum involves inhaling 3% sterile saline for 15–30 min

using an ultrasonic nebulizer before asking the patient to

expectorate sputum. 4Bronchoalveolar lavage involves instilling

fluid into the lung and recovering the fluid using a bronchoscope.

(DOC)

Table S2 Model inputs: Personnel and time requirements and

associated costs for laboratory procedures for diagnosis of

Pneumocystis pneumonia. ¥Time estimated from starting sample

to result ready to be reported. {Cost for personnel time is

estimated as the amount of time a test takes excluding machine

running times. We assumed that an average of five samples could

be processed concurrently, dividing personnel-time costs by five.

*Estimates not available from laboratories; values estimated by

authors. CXR: Chest x-ray; DQ: Diff-Quick; GMS: Grocott’s

Methenamine Silver Stain; TBO: Toluidine Blue O; CW:

Calcofluor white stain; IFA: Immunofluorescence microscopy

assay; PCR: Polymerase chain reaction; nPCR: nested PCR;

rtPCR: real-time (quantitative) PCR.

(DOC)

Table S3 Model inputs: cost of treatment, treatment failure rate,

and prevalence of disease in the population.

(DOC)

Table S4 Sensitivity analysis: cost per life-year gained with

variations in diagnostic procedure cost, sensitivity, specificity,

treatment failure rates, and treatment costs. *Neither sensitivity

nor specificity was increased beyond a value of 1.00. Procedures

which in the base model were 0.90 or greater were capped at 1.00.

CXR: Chest x-ray; DQ: Diff-Quick; GMS: Grocott’s Methena-

mine Silver Stain; TBO: Toluidine Blue O; CW: Calcofluor white

stain; IFA: Immunofluorescence microscopy assay; PCR: Poly-

merase chain reaction; nPCR: nested PCR; rtPCR: real-time

(quantitative) PCR; Expect. sputum, expectorated sputum.

(DOC)

Appendix S1 Estimated salaries for laboratory workers, health

care workers, and clinicians involved in patient care and diagnosis

of PCP.

(DOC)
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