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Abstract

Genome analysis provides a powerful approach to test for evidence of genetic variation within and between geographical
regions and local populations. Copy number variants which comprise insertions, deletions and duplications of genomic
sequence provide one such convenient and informative source. Here, we investigate copy number variants from genome
wide scans of single nucleotide polymorphisms in three European population isolates, the island of Vis in Croatia, the islands
of Orkney in Scotland and the South Tyrol in Italy. We show that whereas the overall copy number variant frequencies are
similar between populations, their distribution is highly specific to the population of origin, a finding which is supported by
evidence for increased kinship correlation for specific copy number variants within populations.
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Introduction

Copy Number Variation (CNV) is defined here as DNA

segments of 1 kb or longer in length and present at variable copy

number in comparison with a reference genome [1]. CNVs are

commonly found in the genomes of human and other species [2–

5]. To date, 35% of the human genome demonstrates evidence of

coverage by CNVs (Database of Genomic Variants, DGV, http://

projects.tcag.ca/variation/). It is suggested that CNVs, in the form

of deletions, insertions, duplications and complex multi-site

variants, may contribute to human phenotypic variation, either

directly by gene dosage and proportionate variation in gene

expression [6], and/or indirectly through a) position effects on

expression levels per se or developmental patterns of expression, or

b) by affecting recombination rates and thus genome evolution [1].

Indeed, several studies have reported evidence for a direct

contribution of CNVs to complex disease phenotypes in human

populations, such as Schizophrenia and Autism [7–9], and in

other species [10–16].

Copy number variation can be directly assayed by quantitation

of hybridisation to specialist oligonucleotide [17,18] or clone

arrays [19] or by direct genome sequencing [20,21], but also

conveniently extracted from single nucleotide polymorphism

(SNP) array data [22–24]. As well as being applied to the search

for genetic contribution to disease phenotypes, several studies have

provided global estimates of CNV frequency and distribution in

HapMap samples [1,6] and large population cohorts [22,25–27],

but relatively little attention has been given to potential variation

within major population groups. Comparisons of CNV frequency

and distribution between independent studies have also been

hampered by discrepancies in study design, platform choice and

analytical methods between studies.

Geographical population isolates are valuable resources for the

dissection of complex genetic traits and disease outcomes [28–30].

Genetic isolates have reduced genetic heterogeneity, as measured

by fewer net mutations and numbers of polymorphic SNPs

compared with outbred populations [29]. Furthermore, by virtue

of population bottlenecks, genetic drift and high kinship, each

isolate will have a different evolutionary history and thus different

genetic makeup. For example, isolate populations have been

reported to show increased linkage disequilibrium and reduced

haplotype diversity relative to outbred populations, consistent with

reduced effective population size and increased genetic relatedness

[31].

Here, we take the opportunity provided by the EUROSPAN

project [32] which brings together several groups working on the

genomic and phenotypic analysis of population isolates across

Europe. Our objective was to make use of high density genome-
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wide genotyping data to describe and compare frequencies of each

CNV and their distribution within and between these population

isolates, and thus determine to what extent CNVs can be used as

measures of relatedness and identifiers of population origin. Using

Illumina whole genome data with more than 300,000 SNPs from

each of three European population isolates, spanning from

Northern to Southern Europe, we detected 4016 CNVs in 1964

individuals, which clustered into 743 copy number variable

regions (CNVRs). The frequency and distribution of these CVNRs

was compared and shown to differ significantly between the

Orcadian, South Tyrolean and Dalmatian populations. Consistent

with the inference that this indicated population-specific CNVR

identity and origin, we also demonstrated that CNVR variation

within each population can be used to measure genetic

relatedness.

Results

Overview of copy number variation in Dalmatian,
Orcadian and South Tyrolean populations

The study samples were recruited from three populations across

Europe, namely the Island of Vis, Croatia, Orkney Islands,

Scotland and South Tyrol, Italy (Figure 1). 2789 individuals who

passed quality control were included in the analysis. To generate

more informative results [33], we utilized two algorithms,

QuantiSNP [24] and cnvPartition to detect CNV events from

SNP genotyping data. The combined analysis of CNV calling by

QuantiSNP and cnvPartition software (see Methods) identified

4016 autosomal CNVs in 1964 individuals, out of the total 2789

samples, which makes 70.4% of them CNV carriers, with an

average number of 2.05 detectable CNVs per carrier. 7.8% of the

all autosomal SNPs were covered by CNVs. A correlation of SNP

density and CNV length was observed, with higher SNP density in

shorter CNVs and lower SNP density in longer CNVs (p,2.2*10).

Fewer CNVs were detected on average in Orcadians (0.91

CNV per person) than in South Tyroleans (1.77 per person) or Vis

islanders (1.43 per person). Equal numbers of amplification and

deletion events were detected in each of the populations (Table 1).

The overall length distributions of observed CNVs were also very

similar between the three population isolates (Figure 2). Most

CNVs were small in length (94.1% of the CNVs were between

1 kb to 300 kb, mean length was 205.1 kb, Table 1 and

Figure 2).The lengths of amplifications (259 kb) were significantly

greater (Mann-Whitney U test, P,2.2*10216) than those of

deletions (142.4 kb) (Table 1). 3778 out of 4016 CNVs (94.1%)

overlapped with CNVs reported in the Database of Genomic

Variants.

The 4016 CNVs were clustered into 743 non redundant

CNVRs (Table S1) which covered a total of 187.95 Mb (6.6%) of

the 22 autosomes. 649 CNVRs (87.3%) overlap reported CNVs in

DGV. Most of the CNVRs contained either only deletions or only

amplifications, but 59 regions harbored both types of variants

(Table 2). In these ‘gain-and-loss’ CNVRs, all of them contained at

least one pair of CNVs whose boundaries were not equivalent

from two individuals.

CNV frequency and CNV sharing among populations
Each CNVR was found in from 1 to 253 individuals, which

made the overall frequency range of CNVRs to be from 0.00051

to 0.12882 (median = 0.00102). The CNVs identified were

generally of low frequency. 337 CNVRs (45.4%) were detected

in only one individual and 321 (43.2%) were shared by between 2

and 10 individuals. Only 37 CNVRs (5%) were present at a

frequency .1% in all three population isolates.

Different patterns of CNV frequency were observed in different

populations (Figure 3); 588 CNVRs (79.1%) were specific to just one of

the three population isolates: 244 of them were detected only in

Dalmatians, 112 only in Orcadians and 239 only in South Tyroleans;

Figure 1. Geographic distribution of study samples.
doi:10.1371/journal.pone.0023087.g001

Copy Number Variation in Population Isolates
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96 CNVRs were shared by two of the three populations (57 between

South Tyroleans and Dalmatians, 25 between South Tyroleans and

Orcadians, and 14 between Dalmatians and Orcadians); and 59 were

present in all three populations, non of which were novo. Less than half

of these population-specific CNVRs (279 out of 588) were reported

previously, according to DGV. Rare CNVs were found to be mostly

restricted to a single population, while more frequent CNVs were often

shared by two or three populations (Figure 4a). A gradual increase of

population mixture was observed as the frequency of CNVRs

increased: more common CNVRs were often shared in more than

one population whereas lower frequency CNVRs were more likely to

present in a single population (Figure 4b). The more frequent CNVRs

in one population (population frequency.1%) were often observed to

be also frequent in other populations. In South Tyrol, the frequencies

of more common CNVs closely correlated with those of Dalmatian

and Orcadian CNVs (Pearson’s r = 0.73, P = 7.5*10218 and r = 0.43,

P = 0.005, respectively); the frequent Dalmatian CNVs also correlated

with the frequent Orcadian and South Tyrolean CNVs (Pearson’s

r = 0.62, P = 0.001 and r = 0.65, P = 5.2*1024, respectively), but there

was no significant correlation between Orcadian and either Dalmatian

or South Tyrolean CNVs of frequency.1% (Pearson’s r = 0.38,

P = 0.1347 and r = 0.22, P = 0.4046, respectively).

Of the 588 population specific CNVRs, more than half (337

CNVRs) contained only one CNV event. The mean length of

CNVs in those population specific CNVRs was 250.3 kb, 205.5 kb

and 195.6 kb in length, for Vis, Orkney and South Tyrol,

respectively, which were on average longer than the ones for

shared CNVRs (mean length 198.4 kb) (P = 0.04).

Haplotype and SNP tagging for CNVs
To determine if the CNVs in our study sample were tagged by

SNPs and to explore haplotype structure around CNVs, we

carried out correlation analysis on the common CNVRs in Vis and

Orkney samples (population frequency.1%): 2 of the 7 CNVRs in

Vis, 1 of the 17 in Orkney and 15 of the 47 in South Tyrol were

population specific, respectively. No tagging SNPs were found for

any of these CNVRs with r2.0.8. 36 of these CNVRs overlapped

CNVRs discovered in a large scale survey of tagging SNP for

CNVs in UK samples [34]. Tagging SNPs were found in only 8 of

these 36 regions. Haplotype block detection was performed for the

7 Vis and 17 Orkney CNVRs with SNPs 3 Mb upstream and

downstream of each CNVR boundary. One CNVR (CNVR271,

Chr6:67058287–67111682), could be placed in a haplotype block

with 5 adjacent SNPs in all three populations. In addition, two

population-specific CNVRs (CNVR367, Chr8:15987084–

16065839 and CNVR386, Chr8:106005821–106293050) formed

two haplotype blocks with nearby SNPs in the South Tyroleans.

Genetic Clustering of individuals according to CNV
genotypes

406 CNVR loci were observed multiple times in 1893

individuals (664 Dalmatians, 354 Orcadians and 875 South

Tyroleans). Each of those loci were coded for these individuals as

‘‘CNV locus’’ or ‘‘non-CNV locus’’, then software programme

Structure [35] was used to determine how the individual clustered

according to their possession of CNV. Graphical representation of

Table 1. Characteristics of Copy Number Variants (CNVs) in Dalmatian, Orcadian and South Tyrolean populations.

Population Sample size
CNV carriers (percentage of
carriers in population)

Number of
CNVs

CNVs per
person Amplifications Deletions

CNV mean
length (kb)

Vis 965 702 (72.7%) 1384 1.43 803 581 216

Orkney 691 367 (53.1%) 630 0.91 324 306 192.6

South Tyrol 1133 895 (79.0%) 2002 1.77 1033 969 201.6

Combined 2789 1964(70.4%) 4016 1.44 2160 1856 205.1

doi:10.1371/journal.pone.0023087.t001

Figure 2. Distribution of CNV lengths in the three genetic isolate populations.
doi:10.1371/journal.pone.0023087.g002
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membership in clusters for K = 2, 3 and 4 is shown in Figure 5.

The distribution of the probability of the data between successive

values of K showed a peak at K = 3, therefore it is inferred that the

most likely number of genetic clusters for these individuals was

three, with clusters roughly corresponding to the three geograph-

ical locations. 369 of 875 South Tyroleans (42%) were assigned to

Cluster 1 (284 of them had membership coefficients$0.5 for that

cluster), 350 of 664 (52.7%) Dalmatians assigned to Cluster 2 (259

of them had membership coefficients$0.5 for that cluster) and 179

of 354 (50.6%) Orcadians assigned to Cluster 3 (136 of them had

membership coefficients$0.5 for that cluster) (Table S2).

Gene content
To test whether the detected CNVs were biased in any way

towards genetic regions or were evenly distributed across the

genome, the gene content of CNVs in the data set were

investigated. 2211 CNVs in 441 CNVRs overlapped UCSC

known genes. The mean number of genes covered by a CNV was

4.8, which was greater than the average gene content on

autosomes (P = 0.00574). After introducing SNP density as a

covariate into this regression model, the significance still remains

(P = 0.00042). This result suggested a higher concentration of

genes in CNVs. It was also found that the population specific

CNVs overlapped more genes (on average 3.1) than that with the

CNVs shared in more than one population (on average 2.3.

p = 3.097*1025). No elevated G+C content was detected (on

average 40.41% in CNVRs) compared with the autosomal average

G+C content (40.35%).

Distribution along chromosomes
To test whether there was any bias in the overall chromosomal

distribution of CNVs, we compared CNV density in pre-specified

chromosomal regions (i.e. peri-telometric regions, defined as the

10 Mb region from the two most distal SNP on both chromosome

ends and sub-centromeric regions, defined as the 10 Mb region

from the two SNPs which were most close to centromere) to that in

the rest of the chromosome. A trend was observed towards

enrichment in peri-telomeric and/or sub-centromeric regions

(Figure 6).

Segmental duplications and CNVRs
Of the 743 CNVRs, 222 (98.1 Mb, 3.4% of all autosomes)

overlap reported segmental duplications (SDs) or putative

rearrangement hotspots: 102 CNVRs (41.3 Mb) overlap SDs but

did not expand into the intervening regions between two SDs on

the same chromosome; 153 CNVRs (68.5 Mb) were located in

between two SDs of known rearrangement hotspots; the remaining

488 CNVRs (89.9 Mb) were not in SD regions or known

rearrangement hotspot regions; of these 488, 409 (62.2 Mb) were

population-specific.

Though no difference in G+C content was detected in CNVRs

in general, a small increase of G+C content (41.79%) was found in

CNVRs outside SDs, compared with that of CNVRs which

overlap SDs (39.76%) (P = 1.78*1027).

The proportion of CNVRs overlapping SDs was significantly

lower for population-specific CNVRs (154 out of 588, 26.2%) than

for shared CNVRs (68 of 155, 43.8%) (chi squared test,

P,2.06*10216).

Kinship correlation of CNVs
We were interested to test whether carriers of shared CNVs

showed more than average relatedness and developed a method to

do so by incorporating a kinship coefficient, k, into the analysis (see

Methods). The kinship coefficient is a parameter not dependent on

population frequencies that measures the overall genetic similarity

relative to some base population between a pair of individuals. For

each CNVR with at least two carriers, the pair-wise kinship

coefficients were calculated for all carrier pairs, then the value of

those kinship coefficients were compared to the population mean

of pair-wise kinship coefficients of all pairs of individuals in the

corresponding population. It was observed that for most CNVRs

(63.4% in Vis, 76.8% in Orkney and 83.4% in South Tyrol), CNV

carriers had higher values of kinship coefficients compared to the

Table 2. Copy Number Variable Regions (CNVRs) in the three genetic isolate populations.

Population
Number
of CNVRs

CNVRs overlapping
reported regions

Number of
deletion only
CNVRs

Number of
amplification
only CNVRs

CNVRs of both
deletion and
amplification

CNVR
mean
length (kb)

Vis 365 332 184 164 17 304.5

Orkney 210 193 93 105 12 281.8

South Tyrol 380 334 156 207 17 256.9

Combined 743 649 323 361 59 253.0

doi:10.1371/journal.pone.0023087.t002

Figure 3. Venn diagram showing the number of CNVR shared
between the three European genetic isolate populations.
doi:10.1371/journal.pone.0023087.g003
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population mean, indicating that carriers of shared CNVs are

indeed more related to each other. (Table 3)

Many CNVs with higher mean kn could be found to segregate in

known families. Two examples were presented to illustrate the

segregation of CNVs in pedigrees (Figure 7). CNVR686, an

amplification on chromosome 19, was detected in 6 individuals

who all turned out to had come from the same family (Figure 7 a)

and b)). The inheritance pattern of this CNVR appeared to be

autosomal dominant. CNVR54, a amplification on chromosome

2, was detected in 8 individuals. 4 of them were from the same

known family, 2 of them were parent-offspring from another

family while the other two were singletons (Figure 7 c) and d).

Discussion

We profiled Copy Number Variation in three population

isolates from UK, Italy and Croatia and representing a North-

South, West-East geographical cline and components of the

genetic diversity across Europe. This comparison of CNV

characteristics was made possible by virtue of common choice of

genotyping platform and copy number detection methods.

In common with previous reports from various populations and

cohorts, we found that the great majority of individuals (70%)

carried at least one CNV. CNVs were also widespread in the

genome: 6.6% in length of all autosomal regions showed evidence

Figure 4. CNVR sharing in Dalmatian, Orcadian and South Tyrolean populations. (a) The population make up for each shared CNVR
(shared by at least two individuals): each vertical bar represents for a CNVR, the height of each bar is the number of CNV carriers for each CNVR;
colour blocks depict the proportions of CNV carriers from each of the three populations, green = Vis, red = Orkney, blue = South Tyrol. (b) Summary of
population presentations for CNVRs of different frequencies: each bar represents a group of CNVRs of a certain frequency (from occurring twice to
more than 10 times), different colours indicate the proportion of CNVRs private to only one population (in dark grey), CNVRs present in 2 populations
(in grey) and CNVRs present in all 3 populations (in light grey).
doi:10.1371/journal.pone.0023087.g004
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of CNV in one or more samples. The proportion of SNPs covered

by CNVs was 7.8%. The density of SNPs in CNVRs was 175.3

SNPs per Mb, while that in non-CNVRs was 117.1 SNPs per Mb

(p,2.2*10216). The lower density of SNPs in regions outside of

detected CNVRs indicates that CNVs which reside in the SNP-

sparse regions might not be captured on the commercial SNP

genotyping platforms which lack coverage in certain chromosomal

regions. The SNPs distribute more sparsely in longer CNV regions

compared to those in shorter regions, therefore the boundaries

determined for longer CNVs were less certain, which reflects the

limitation of the HumanHap 300K arrays in terms of SNP

coverage. A number of detected CNVRs were represented by both

gains and losses. These ‘gain-and-loss’ CNVRs could reflect cases

where the reference genome contains both CNV alleles, but

individual genomes are homozygous for one or other allele. If true,

then gains and losses within the same CNVRs should have

equivalent boundaries. However, in all observed cases the gain-

and-loss CNVRs in fact contained at least one pair of CNVs from

two individuals whose boundaries are not equivalent. Although

precise boundary determinations were subject to some technical

uncertainty, it does appear that these gain-and-loss CNVRs most

likely reflect recurrent CNV changes at the same locus, which are

initiated and/or resolved at slightly different points.

Similar to other genetic polymorphisms such as microsatellites

and SNPs, we show here that CNVs differ greatly among different

populations. Indeed, the majority of CNVRs (588 out of 743

CNVRs) were restricted to one population and were often of very

low frequency, their non-sharing across populations could be due

to sampling variances or the fact that they were recent and/or

possibly deleterious events. On the other hand, only the most

frequently occurring CNVs, which were likely of more ancient

origin, were shared between the three population isolates,

consistent with a more ancient and neutral evolutionary histories,

and also their geographic separation. The longer length and

higher gene content of the population-specific CNVRs compared

to those of the common CNVRs also supported the hypothesis that

they may be more deleterious and therefore kept to low

frequencies, or, those are more recent mutations that have had

insufficient time to experience disruptive recombination events.

Whether SNPs can serve as a good proxy for CNVs has long

been debated [1,36]. Some studies suggested that deletion

polymorphisms are generally in strong linkage disequilibrium

and segregate on ancestral SNP haplotypes [34,37,38] while some

others argue that although a number of CNVs are in strong

linkage disequilibrium with nearby markers, accurate genotypes

can only be captured for a small proportion of the tested CNVs

[1]. We attempted to investigate LD between SNPs and CNVs,

but due to the general low frequencies of the CNVRs in our

populations, only a small number were available for testing. No

tagging SNPs were found for 7 CNVRs in Vis, 17 CNVRs in

Figure 5. Genetic Clustering of individuals according to CNV genotypes. Cluster membership according to analyses of genotypes at 406
CNVR loci in 1893 individuals, for K = 2, 3 and 4. Each inferred cluster is represented by a different color. Cluster 1, Cluster 2 and Cluster 3 refers to Vis,
Orkney and South Tyrol, respectively.
doi:10.1371/journal.pone.0023087.g005

Figure 6. The schematic distribution of CNVs on all autosomes, in a physical map. The length of each chromosome arm is adjusted to be
100 Mb. Each bar comprises CNVs in a 1 Mbp bin on the chromosomes.
doi:10.1371/journal.pone.0023087.g006
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Orkney and 47 CNVRs in South Tyrol. These CNVRs were also

found to be poorly tagged by SNPs in the WTCCC samples [34].

Haplotype analysis revealed only three tagged CNVR, of which

one CNVR (CNVR271, Chr6:67058287–67111682) was notable

for being shared by all three populations. Analysis of an expanded

set of CNVRs is warranted before firm conclusions on this issue

can be drawn.

The CNV profiles in Vis and South Tyrol were more similar to

each other compared to that of Orkney, in terms of number of

shared CNVRs, correlation of CNV lengths and frequency. This

may reflect their relative close geographical distances: Orkney is at

59 degrees north, whereas Vis and South Tyrol are both in

Southern Europe.

Genetic clustering analysis formally demonstrated that CNVs

can be used to classify the three population groups studied here

and we can predict that the same will be true for other human

populations, providing a potentially useful and applicable genomic

tool for ancestry and evolutionary studies.

Consistent with other recent studies [39,40], we found that

CNVs tended to cluster in peri-telomeric/sub-centromeric regions,

and commonly overlapped with segmental duplications and

recombination hotspots, again consistent with the idea that they

may serve well as ancestry markers.

As in many other studies [41–43], a higher gene content was

discovered in CNVRs. It is argued that there is a high G+C

content in gene rich regions [43], which are more frequently

subject to copy number change. However, no elevated G+C

content was detected in the observed CNVRs in this study.

Although high gene content could be due to the bias of SNP

choice in commercial genotyping arrays, after correcting for SNP

density, the significance still remained. Some have argued that

most of these genes are under negligible selective constraint; the

CNVs influencing disease genes might have been eliminated by

purifying selection. We also noted a significantly higher gene

content within recent, population specific CNVRs. Further studies

are warranted to test whether these are due to length of population

specific CNVs being longer or they are under positive selection or

can be linked (or elevated/diminished) to quantitative traits

specifically in population isolates.

Finally, we show by the application of kinship coefficients that

the majority of rare CNVs are passing through germ-lines rather

than being de novo variants, and therefore are heritable and provide

an index of relatedness. The inheritance of CNVs could be

observed in actual pedigrees, which confirmed the increased

relatedness between CNV carriers. The similar relationship

between genetic variants and kinship was observed in a study of

the same population in Vis, which found kinship inferred from

pedigree information was consistent with segregation of SNPs in

the population [44].

Illumina HumanHap300 SNP genotyping platforms were used

to determine copy number variant events in our analysis. Despite

the relatively lower SNP content of the 300K microarray

compared with products such as Illumina Human 1 M and

Affymetrix snp 6.0, the power of our method to detect CNVs from

the 300K platform was adequate, and we were able to detect a

large number of CNV events in the three isolated populations and

draw conclusion of the differences between individuals from

distinct communities in the context of CNV. However, it is argued

that due to insufficient coverage of informative probes in certain

chromosome regions (eg. gene sparse and segmental duplication

regions) and the inability to discriminate higher number of copies

(copy number.4) of a duplicated region for most CNV calling

algorithms for SNP arrays, it is hard to accurately quantify the true

extent of human copy number variation [23]. In light of whole

genome sequencing project such as the 1000 Genome Project

(http://www.1000genomes.org/), which provides a resource of

whole genome sequences of multiple individuals [45], it is believed

that we can benefit from high quality CNV detection directly from

sequence data of samples, to better understand the diversity of

CNVs within and between populations. In the meantime, mining

the widely available SNP arrays coupled with family data of CNV

calling represents a useful way of validating CNV calling and

studying evolutionary history of CNVs.

Materials and Methods

Ethical approval and consent
Ethical approval was given for the patient recruitment in Vis,

Orkney and South Tyrol by the relevant Research Ethics

Committee of the Faculty of Medicine, University of Zagreb,

Croatia, the Local Research Ethics Committee of NHS Orkney

and the North of Scotland Research Ethics Committee in

Aberdeen, and the Local Research Ethics Committee South

Tyrol, respectively. In all three sites, volunteers gave written

informed consent to all parts of the study with the research

medical doctors or research nurse or research co-ordinator

present to answer questions. They were made aware that they

need not take part in all parts of the study and are free to

withdraw at any time without consequences for them. In Orkney

and Tyrol, volunteers chose whether to consent to their family

doctor being contacted in the event of incidental findings coming

to light. [32]

Study sample
2789 individuals with data passing quality control (QC) from

the island of Vis, Croatia (the Vis study [31], n = 965), the Orkney

Isles, Scotland (The Orkney Complex Disease Study, ORCADES

[27], n = 691) and South Tyrol, Italy (The Genetic Study of Three

Population Micro-isolates in South Tyrol, MICROS [46],

n = 1133) are included in the CNV analysis. The Orkney Complex

Disease Study (ORCADES) is an ongoing family-based, cross-

sectional study in the isolated Scottish archipelago of Orkney.

Table 3. Mean kinship coefficients of CNV carriers for CNVRs in three populations.

Population Vis Orkney South Tyrol

Mean kpop(±s.d) 0.00040260.008027 0.00106160.013336 0.00129160.0137502

Range of Mean kn 0 to 0.3125 0 to 0.3125 0 to 0.3125

Total CNVRs (of more than one carrier) 172 112 205

No. CNVRs with pnadj,0.05 (%) 109(63.4%) 86(76.8%) 171(83.4%)

kpop, pair-wise kinship coefficients in one population. kn, pair-wise kinship coefficients of CNV carriers for the nth CNVR. pnadj is the adjusted p value to describe
significance of the differences of kinship coefficients among CNV carriers compared to the population mean pair-wise coefficients.
doi:10.1371/journal.pone.0023087.t003
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Genetic diversity in this population is decreased compared to

Mainland Scotland, consistent with the high levels of endogamy

historically. Data for participants aged 18–100 years, from a

subgroup of ten islands, were used for this analysis. The Dalmatian

samples were recruited in the two villages of Vis and Komiza on

Vis Island. The islands off the Dalmatian coast of Croatia have

been the subject of extensive anthropological studies and those of

more remote inhabitance, such as Vis Island, display an unusually

high degree of isolation, which is supported by genetic structure

study using short tandem repeat (STR) markers [31]. The Italian

Figure 7. Two examples of segregation of CNVs in pedigrees: CNVR686 and CNVR54. (a) The kinship matrix of 6 carriers for CNVR686. They
are all from the same population. The mean kinship coefficient of any pair of these 6 carriers is k691 = 0.175, which is significantly higher than the
population mean (adjusted p value,0.001) (b) The carriers for CNV686 placed in pedigree. Squares indicate male sex, circles indicate female sex.
Filled squares or circles indicate CNV carriers. A cross through a square or a circle indicates the individual is either deceased or ungenotyped. (c) The
kinship matrix of 8 carriers for CNVR54. They are all from the same population. The mean kinship coefficient of any pair of these 8 carriers is
k55 = 0.078, which is significantly higher than the population mean (adjusted p value,0.001) (d) The inheritance of CNV54. The key to the pedigree
presentation is the same as for section (b).
doi:10.1371/journal.pone.0023087.g007
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samples were recruited from the villages of Stelvio, Vallelunga and

Martello in the South Tyrol, a mountainous region split between

Italy and Austria. The geographical structure, historical and

political events of this region resulted in the isolation of the

population. Heterogeneity even between valleys of the same ethnic

group was found, which was confirmed by phylogenetic analysis.

These studies followed similar study procedures as part of the EU

FP7 EUROSPAN study [32].

All three projects were approved by the relevant ethics

committees. Data collection was carried out between 2003 and

2007 in the three locations. Informed consent and blood samples

were received from all study participants.

Genotyping
The Dalmatian samples were genotyped on the Illumina

Infinium HumanHap 300 v1 platform while the Orcadian and

South Tyrolean samples were genotyped on the Human Hap 300

v2 platform (Illumina, San Diego, CA, USA). Individuals with less

than 90% call rate were removed. Sex checks and IBD sharing

between first- and second-degree relative pairs were performed

with the PLINK program (http://pngu.mgh.harvard.edu/pur-

cell/plink/) [47], and individuals with discordant pedigree and

genomic data or falling outside expected ranges were removed

from the study. SNPs on the sex chromosomes were excluded.

Finally 300,938, 309,200 and 308,396 SNPs remained in

Dalmatian, Orcadian and South Tyrolean datasets, respectively.

CNV calling
For each individual, the Log2R ratio and B allele frequency of

each SNP were processed by QuantiSNP and cnvPartition

software to generate CNV calls.

The two independent sets of CNV calls made for the same

individual were then assessed. The output from QuantiSNP and

cnvPartition both provide information for each CNV on the

chromosome number and chromosomal coordinates of the start

and end of each CNV (breakpoints). One sample processing .35

CNVs detected by cnvPartition was excluded from the further

analysis. Genomic coordinates of each CNV detected in each

person were mapped to hg18 sequence assembly using LiftOver

(http://genome.ucsc.edu/cgi-bin/hgLiftOver).

SNP coverage in centromeric regions is very low, thus CNVs

called in these regions are likely to be false positive. For this reason

all the CNVs spanning centromeres were excluded from the

analysis (according to the coordinates of centromeres on each

chromosome). CNVs smaller than 1 kb or larger than 3 Mb were

excluded.

QuantiSNP and cnvPartition outputs were combined to

produce a list of sample wise CNVs. A confirmed CNV call was

made if 1) the CNV was identified by both methods at the same

locus and the overlap indicated by both methods exceeds 50% in

length; 2) the type of a copy number change event (copy number

loss or copy number gains) called by both methods was consistent

and 3) overlap length was between 1000 bp and 3 Mbp. The

boundaries of a CNV were taken as the beginning and end of the

overlapped section.

To locate CNVs on chromosomes, individual-wise CNVs were

merged into Copy Number Variable Regions (CNVRs). A CNVR

is the maximum region shared among all individuals carrying a

CNV at the same locus.

Sensitivity and specificity of CNV detection
The method to assess sensitivity and specificity of CNV

detection on the Illumina genotyping platform is described in a

previous study [48]. False positive rate estimation was based on

simulation of chromosome 1 data from a male sample. This

sample was chosen because it passed all QC criteria recommended

by the program authors (standard deviation of LRR,0.3 and

standard deviation of BAF,0.15) and did not contain an

unusually high number (.35) of putative CNVs detected (either

by QuantiSNP or cnvPartition). The LRR and BAF for all SNPs

on chromosome 1 were shuffled, then QuantiSNP was run on such

randomized chromosome 1 data to make CNV detection. This

process was repeated 1000 times. At LBF (a posterior measure of

confidence in the call) filter set to 10, QuantiSNP detected 1 false

positive CNV per 23,381,000 SNPs (1000 simulated chromosomes

of 23381 SNPs).

False negatives were estimated by taking chromosome X

segments from the same male individual, as these are hemizygous

genotypes which could serve to represent deletions. LRR and BAF

of 20 SNPs were selected from randomized chromosome X data

and replaced LRR and BAF of 20 consecutive SNPs at a random

location on each randomized chromosome 1. This artificially

constructed chromosome was examined by QuantiSNP. This

process was repeated 1000 times. 20 SNPs were chosen for the

length of each pseudo deletion as the mean length of DNA

segments spanning 20 SNPs (211 kb) on chromosome 1 was

similar to the mean length of CNVs detected for all actual samples

in our study. At an LBF cut-off of 10, the false negative rate was

2.6% (974 out of 1000 pseudo deletions were detected). The

sensitivity to detect shorter CNVs was lower.

To further reduce the false positive rate and detect CNV calls

with more certainty, a second algorithm, cnvPartition was applied

to the same samples in our study. Only those CNVs detected by

both algorithms could be included. 82% of QuantiSNP calls

overlap those from cnvPartition.

Haplotype and SNP tagging
9 and 22 CNVRs from Vis and Orkney, respectively, each with

a population frequency of .1%, were analyzed with Plink (http://

pngu.mgh.harvard.edu/,purcell/plink/) [47]. SNP genotyping

data was exported from BeadStudio and merged with CNV

genotypes of the same individuals. Tagging SNPs were investigat-

ed with a window size of 3 Mb spanning each CNVR. For each

CNVR, the adjacent SNPs 1 Mb upstream and downstream to the

genomic location of each CNVR were selected in haplotype

analysis.

Genetic clustering analysis
Genetic clusters of a selected set of CNVRs, in which each

CNVR was shared by two or more individuals, were inferred by

the software Structure [35], under assumptions of admixture,

correlated allele frequencies and no prior population information.

For each number of clusters (K) from 2 to 4, a burnin length of

10,000 iterations followed by 10,000 Markov Chain Monte Carlo

iterations was used. The second order rate of change of

logarithmic probability of data between subsequent K values was

estimated to identify the optimal number of clusters in the data.

Analysis of CNV kinship correlation
The kinship coefficient is a measure of overall genetic similarity

relative to some base population in two diploid organisms.

For each population, P, with T individuals in total, suppose

there are N CNVRs: CNVR1, CNVR2, …, CNVRN, each with

M1, M2,…,MN CNV carriers ({M}. = 2 and {M},T). For the

nth CNVR (1#n#N), CNVRn, there are Mn people carrying the

same CNVR.
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Extract a sub kinship matrix from the population kinship matrix

with those carriers C1, C2, …, CMn for CNVRn:

C1, C2, C3, . . . , CMn,

C1 0:5 - - . . . -

C2 k12 0:5 - . . . -

C3 k13 k23 0:5 . . . -

..

. ..
. ..

. ..
. ..

.

CMn k1 Mn k2 Mn k3 Mn . . . 0:5

This is a Mn*Mn matrix, which is symmetrical around the

diagonal line. Let kij denote the pairwise kinship coefficient

between individuals Ci and Cj (i = {1,2,3,…Mn},

j = {1,2,3,…Mn}). At the diagonal line of this matrix, ki-

j|i = j = 0.5, because when considering the probability of a random

chosen allele to be IBD between two identical genomes, the same

allele can be drawn twice.

In this sub-matrix for CNVRn, let Kn denote the non-redundant

collection of all pair-wise kinship coefficients between any two

individuals out of all Mn carriers.

Kn~ k12ð Þ, k13, k23ð Þ, k13, k23, k33ð Þ, . . .f

k1Mn, k2Mn, k3Mn,..., k Mn{1ð ÞMn

� ��

Let Kpop denote the non-redundant collection of all pair-wise

kinship coefficients between any two individuals out of all T

individuals in the population

Kpop~ k12ð Þ, k13, k23ð Þ, k13, k23, k33ð Þ, . . .f
k1T , k2T , k3T ,...,k T{1ð ÞT
� ��

Therefore Kn has (Mn21)! elements and Kpop has (T21)!

elements.

Then a t-test is performed to test the difference of means

between Kn and Kpop. The probability, pn is calculated to indicate

significance of this difference. A permutation procedure is taken to

adjust pn: another Mn*Mn matrix is randomly drawn from

population kinship matrix, with the pair-wise kinship coefficients

Krandom~ k12ð Þ, k13, k23ð Þ, k13, k23, k33ð Þ, . . .f

k1Mn, k2Mn, k3Mn,...,k Mn{1ð ÞMn

� ��

A p value, pperm is obtained from a t-test of comparing means of

Krandom and Kpop. The same random process repeats 1000 times,

result in 1000 Pperm values. pn is then ranked among the permutated

p values, the adjusted pn, pnadjust is the number of permutated p

values which do not exceed pn, divided by the number of

permutations.

Statistical analysis
The reference CNV list was downloaded from DGV. The

record of known genes and recombination rates in the human

genome was downloaded from the UCSC genome browser. Intra-

and inter-chromosomal segmental duplications (SDs) of .90

identity and .1 kb in length, which cover 150.8 Mbp of human

genome (5.3%) [49,50] were downloaded from Segmental

Duplications Database (http://humanparalogy.gs.washington.

edu/, build 36).

All calculations and alignments were performed with the R

2.10.1 software package. The test of difference in means was

conducted using student’s t-test for normalized data or the non-

parametric Mann-Whitney U test, significant threshold set to 0.05.
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