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Abstract

As one of the most important reversible protein post-translation modifications, ubiquitination has been reported to be
involved in lots of biological processes and closely implicated with various diseases. To fully decipher the molecular
mechanisms of ubiquitination-related biological processes, an initial but crucial step is the recognition of ubiquitylated
substrates and the corresponding ubiquitination sites. Here, a new bioinformatics tool named CKSAAP_UbSite was
developed to predict ubiquitination sites from protein sequences. With the assistance of Support Vector Machine (SVM), the
highlight of CKSAAP_UbSite is to employ the composition of k-spaced amino acid pairs surrounding a query site (i.e. any
lysine in a query sequence) as input. When trained and tested in the dataset of yeast ubiquitination sites (Radivojac et al,
Proteins, 2010, 78: 365–380), a 100-fold cross-validation on a 1:1 ratio of positive and negative samples revealed that the
accuracy and MCC of CKSAAP_UbSite reached 73.40% and 0.4694, respectively. The proposed CKSAAP_UbSite has also been
intensively benchmarked to exhibit better performance than some existing predictors, suggesting that it can be served as a
useful tool to the community. Currently, CKSAAP_UbSite is freely accessible at http://protein.cau.edu.cn/cksaap_ubsite/.
Moreover, we also found that the sequence patterns around ubiquitination sites are not conserved across different species.
To ensure a reasonable prediction performance, the application of the current CKSAAP_UbSite should be limited to the
proteome of yeast.
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Introduction

As one of the most important reversible protein post-

translational modifications (PTMs), ubiquitination occurs when

ubiquitin (Ub) is covalently attached to lysine (K) residues of

targeting proteins (i.e. ubiquitylated substrates). Three enzymes

are implicated in the process of ubiquitination, including Ub-

activating (E1), Ub-conjugating (E2) and Ub-ligating (E3)

enzymes, and the types of ubiquitination are diverse (e.g. the

targeting proteins can be linked with a single Ub or poly-Ub

chains) [1–4]. Ubiquitination has been reported to be involved in

regulating a variety of basic cellular processes, including the

degradation of protein [5,6], gene transcription, DNA repair and

replication, intracellular trafficking and virus budding [1].

Meanwhile, increasing evidences have also demonstrated that

the change of the ubiquitination system is closely related with

cellular transformation, immune response and inflammatory

response [7]. Of the aforementioned functional roles, the

regulatory function of the Ub-proteasome system is certainly of

utmost significance for cellular homeostasis. About 80% of the

cellular proteins are degraded by the Ub-proteasome system [8].

To decipher the mechanism of Ub-proteasome system or other

regulatory roles of ubiquitination at the molecular level, an initial

but crucial step is to identify ubiquitylated substrates and the

corresponding ubiquitination sites [1]. Researchers have employed

several experimental methods to purify ubiquitylated proteins such

as the use of affinity-tagged Ub, Ub antibodies and Ub-binding

proteins, and high-throughput mass-spectrometry (MS) technique

[9,10]. So far, hundreds of ubiquitylated proteins and the

corresponding ubiquitination sites have been experimentally

determined [10,11], which have been further compiled into some

user-friendly databases such as UbiProt (http://ubiprot.org.ru/)

[12], SCUD (http://scud.kaist.ac.kr) [13] and SysPTM (http://

www.sysbio.ac.cn/SysPTM) [14]. Although the specific molecular

mechanism of Ub conjugation reaction to ubiquitylated substrates

remains elusive [2], the accumulated data have strengthened our

fundamental understanding of the sequence/structural character-

istics around ubiquitination sites. Catic and co-workers (2004)

systematically analyzed 135 ubiquitination sites in 95 yeast

proteins [15]. From the structural context, they found that

ubiquitination sites preferred to be exposed at the molecular

surface and reside in loop regions [15]. Regarding the sequence

context, they also discovered a sequence motif ‘KEEE’, which may

be frequently employed for the attachment of Ub in yeast [15]. In

2010, Radivojac et al also analyzed the structural context of

ubiquitination sites and confirmed that these sites were preferen-

tially located in intrinsically disordered regions [2].

Considering that ubiquitination is rapid and reversible, the

large-scale identification of ubiquitylated proteins and ubiquitina-

tion sites is labor-intensive and time-consuming. Parallel to the
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experimental identification of ubiquitination sites, there is still a

serious need for bioinformatics methods to predict potential

ubiquitination sites in query proteins. Similar to the development

of other PTM site predictors [16–19], the input for an

ubiquitination site predictor is generally presented by a sequence

fragment of 2n +1 residues with the residue K in the central

position (i.e. the window size is equal to 2n+1). An appropriate

feature construction or encoding scheme of the sequence fragment

is further required for the processing of a prediction algorithm.

Finally, a predictor can be established by some statistical- or

machine learning-based algorithms.

Up to now, several ubiquitination site prediction methods have

been developed elegantly. Tung and Ho (2008) [3] developed an

ubiquitination site predictor (UbiPred) using a Support Vector

Machine (SVM) with 31 informative physicochemical features

selected from the published amino acid indices [20]. In 2010,

Radivojac et al also proposed a random forest-based predictor

called UbPred, in which 586 sequence attributes were employed as

the input feature vector [2]. Very recently, Cai et al developed a

nearest neighbor algorithm-based ubiquitination site predictor

[21]. They identified key components from 541 features and used

the incremental feature selection method procedure to maximize

the predictor performance [21]. It is worth mentioning that the

practical applications of these established predictors have already

been exploited and some prediction results have been converted

into new biological findings. For instance, UbPred was employed

for a proteome-wide ubiquitination site prediction in yeast [2].

Based on the prediction results, it was established that highly

ubiquitylated proteins were enriched among transcription/enzyme

regulators and proteins involved in cell cycle control [2].

The overall performance of the aforementioned three exciting

predictors is still not fully satisfactory and there is still room to

improve the predictive accuracy. In this study, we focused on

developing a new ubiquitination site predictor by seeking a more

informative encoding scheme. After our preliminary assessment of

different encoding schemes, we found that the composition of k-

spaced amino acid pairs (CKSAAP) is suitable for representing the

sequence context surrounding the ubiquitination sites. CKSAAP

reflects the short range interactions of residues within a sequence

or a sequence fragment, which has been successfully employed for

the prediction of protein flexible/rigid regions [22], protein

crystallization [23], protein structural classes [24], membrane

protein types [25–27], mucin-type O- glycosylation sites [16],

palmitoylation sites [28], etc. With the assistance of SVM, we

proposed a predictor called CKSAAP_UbSite to detect ubiqui-

titnation sites in query proteins. Here, we present details on the

construction of CKSAAP_UbSite, the overall performance

assessment, and the intensive benchmark experiments against

some existing predictors. In particular, why CKSAAP is suitable

for the prediction of ubiquitination sites is also discussed.

Methods

Datasets
To construct CKSAAP_UbSite, 203 ubiquitylated substrates,

which were previously compiled by Radivojac et al [2], were

downloaded from http://www.ubpred.org/sgd_predictions.txt.gz.

These 203 proteins contained 272 experimentally validated

ubiquitination sites, which are regarded as positive samples.

Generally, all the remaining K residues that were not reported as

ubiquitination sites in these proteins can be regarded as negative

samples (i.e. non-ubiquitination sites). It should be clearly pointed

out that these remaining residues may contain ubiquitination sites

that are not experimentally identified yet. By employing the

similar strategy as the work of Radivojac et al [2], we extracted

4642 negative samples from the 124 mitochondrial matrix

proteins. Since there is no chance for the mitochondrial matrix

proteins accessible for the Ub-proteasome system [2], the

reliability of the 4642 negative samples can be guaranteed. Thus,

the 272 positive samples together with the 4642 negative samples

were compiled into an initial dataset. As already mentioned in the

Introduction section, each sample is represented by a sequence

fragment with a window size of 2n+1. According to our

preliminary computational experiments, the window size was

optimally set as 27 in this study. In order to avoid the

overestimation of performance caused by the sequence redundan-

cy, we took the threshold of 40% sequence identity to filter the

initial dataset. Briefly, the filtering ensured that any fragment pair

in all the remaining positive and negative samples shared a

sequence identity less than 40%. Finally, we obtained a filtered

ubiquitination site dataset containing 263 positive and 4345

negative samples (i.e. Radivojac_dataset), which was used to train

and test CKSAAP_UbSite (see Supporting Information Text S1).

Encoding schemes and feature selection
The CKSAAP encoding scheme. In this study, an

ubiquitination or non-ubiquitination site is represented by a

sequence fragment of 27 amino acids. Thus, the CKSAAP

encoding means the composition of k-spaced residue pairs in the

fragment. Taking k = 0 as an example, there are 400 0-spaced

residue pairs (i.e., AA, AC, AD,…, YY). Then, a feature vector

can be defined as

NAA

NTotal

,
NAC

NTotal

,
NAD

NTotal

, . . . ,
NYY

NTotal

� �
400

ð1Þ

The value of each feature denotes the composition of the

corresponding residue pair in the fragment. For instance, if the

residue pair AA appears m times in the fragment, the composition

of the residue pair AA is equal to m divided by the total number of

0-spaced residue pairs (NTotal) in the fragment. For k = 0, 1, 2, 3, 4

and 5, the value of NTotal is 26, 25, 24, 23 and 22, respectively. In

case a very few ubiquitination or non-ubiquitination sites are

located in the N- or C-terminal of protein sequences, the

corresponding values of NTotal should be adjusted accordingly.

Considering that the CKSAAP encoding was performed over

k = 0, 1, 2, 3, 4 and 5 in this study, the total dimension of the

CKSAAP-based feature vector is 2400.
The binary encoding scheme. To benchmark against the

CKSAAP encoding scheme, the binary encoding scheme was also

carried out. For the sites located in N- or C-terminal, the number

of residues may be less than 27. To ensure the binary encoding

with a unified dimension (i.e. each site should be represented by a

sequence fragment of 27 residues), we assigned a non-existing

amino acid O to fill in the corresponding positions. Thus, 21

different amino acids are considered in the binary encoding, which

are ordered as ACDEFGHIKLMNPQRSTVWYO. Briefly, each

amino acid is represented by a 21-dimensional binary vector, e.g.

A (100000000000000000000), C(010000000000000000000), … ,

O(010000000000000000001), etc. Because the central position is

always K, it is not necessary to be taken into account. Therefore, the

total dimension of the binary encoding scheme is 21626 = 546.
Feature selection. Since the proposed CKSAAP encoding

contains a large number of features, two well-established

dimensionality reduction methods, Chi-Squared (CHI) [25] and

Information Gain (IG) [22,24,25], were employed to rank the

corresponding features in CKSAAP. Please refer to the

Prediction of Ubiquitination Sites

PLoS ONE | www.plosone.org 2 July 2011 | Volume 6 | Issue 7 | e22930



literature[25] for more details about the CHI and IG-based

feature selections. To avoid the potential over-fitting problem, it is

worth mentioning that the feature selection procedures were

stringently conducted. In particular, the testing samples should

always be excluded from the feature selection procedures.

SVM learning
As a machine-learning method of binary classification, SVM

aims to find a rule that best maps each member of a training set to

the correct classification [29], which has been used for diverse

prediction/classification tasks related to protein bioinformatics

[30–33]. Using the CKSAAP encoding as input, the SVM was

trained to distinguish ubiquitination and non-ubiquitination sites

in this study. The implemented SVM algorithm was SVM-light

(http://svmlight.joachims.org/) and the applied kernel function

was the radial basis function (RBF). In order to maximize the

performance of the SVM algorithm, two parameters (i.e. the

regularization parameter C and the width parameter c) in the RBF

kernel were preliminarily optimized through a grid search strategy.

First, the range of C and c was empirically set to be [0.5, 8.0] and

[0.5, 16], respectively. Then, a step of 0.5 was assigned for C and

c, which resulted in a total number of 16632 = 512 grids. Finally,

all the 512 grids were evaluated to determine the optimal SVM

parameters.

Performance assessment of CKSAAP_UbSite
In this study, four measurements, i.e. Accuracy (Ac), Sensitivity

(Sn), Specificity (Sp), and Matthew correlation coefficient (MCC)

were used to evaluate the prediction performance. They are

defined as:

Ac~
tpztn

tpzfnztnzfp
ð2Þ

Sn~
tp

tpzfn
ð3Þ

Sp~
tn

tnzfp
ð4Þ

MCC~
tp|tn{fp|fnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tpzfpð Þ| tpzfnð Þ| tnzfnð Þ| tnzfpð Þ
p ð5Þ

where tp, fp, fn and tn represents the true positives, false positives,

false negatives and true negatives, respectively. To provide a

comprehensive understanding of the performance, we also used a

Receiver Operating Characteristic (ROC) curve [34,35], which

plots the true positive rate (i.e. Sn) as a function of the false positive

rate (i.e. 1-Sp) for all possible thresholds. Furthermore, the overall

performance of CKSAAP_UbSite can also be quantified by the

corresponding area under the ROC curve (AUC). Generally, the

closer the AUC value is to 1, the better the performance is.

Results and Discussion

Performance of CKSAAP_UbSite
The proposed CKSAAP_UbSite predictor was trained and

tested on a balanced dataset (i.e. 263 ubiquitination sites and 263

non-ubiquitination sites selected from Radivojac_dataset) through

a 100-fold cross-validation. Since the number of available non-

ubiquitination sites in Radivojac_dataset is much larger than that

of ubiquitination sites, we repeated the above training/testing

procedures 10 times by randomly changing the negative samples

(see Supporting Information Text S1 for more details about the 10

different sets of negative samples). To have a stringent assessment

of CKSAAP_UbSite, the same SVM parameters should be used in

these 10 different sets. Therefore, we conducted the grid search on

the 100-fold cross-validation through the 10 different sets. The

parameters C = 2.0 and c= 8.0, which resulted in the best

performance (i.e. the average Ac over all the cross-validation is the

highest), were considered as the optimal SVM parameters of

CKSAAP_UbSite. The average performance of CKSAAP_UbSite

is summarized in Table 1. The detailed performance measure-

ments for these 10 benchmark experiments are listed in

Supporting Information Text S2. In general, the performance of

CKSAAP_UbSite is reasonably good. The average Ac of

CKSAAP_UbSite reached 73.40% (Sn = 69.85%, Sp = 76.96%,

MCC = 0.4694) (Table 1). Furthermore, the ROC curve of

CKSAAP_UbSite was plotted in Figure 1 and the corresponding

value of AUC was 81.0%. At a less than 10% false positive rate

control, CKSAAP_UbSite can correctly identify about 52.5%

ubiquitination sites.

Because of the high dimension of the CKSAAP encoding, two

feature selection methods were conducted to find the most relevant

features and to reduce the dimensionality of the encoding. It was

observed that the improvements after both feature selections are

negligible (data not shown), which could be ascribed to the following

two aspects. First, SVM has a good tolerance to high dimensional

data (i.e. SVM is not sensitive to the so called ‘‘the curse of

dimensionality’’). Second, the number of positive samples is too small

and the selected features based merely on the training dataset could

not reflect the overall characteristic around the ubiquitination sites.

To facilitate the community’s research, a web server of

CKSAAP_UbSite was constructed and is freely available at

http://protein.cau.edu.cn/cksaap_ubsite/, which can be further

used for proteome-wide ubiquitination site identification. To

provide a more stable prediction result, 10 SVM predictors

corresponding to 10 different sets of negative samples were jointly

utilized. It should be emphasized that the optimal SVM

parameters (i.e. C = 2.0 and c= 8.0) was used to construct these

10 SVM predictors. For a query site, the final prediction score is

averaged over these 10 SVM outputs. In general, the predicted

ubiquitination sites at a low false positive rate are more

informative for practical applications. To quantitatively under-

stand the reliability of the prediction, we provided the threshold

values for two different confidence levels, which correspond to the

false positive rates of 2% and 10%, respectively. It should be

pointed out that the above two threshold values were based on a

Table 1. Comparison of CKSAAP_UbSite with the binary
encoding and UbPred.

Method Sn(%) Sp(%) Ac(%) MCC

CKSAAP_UbSitea 69.8561.67 76.9662.52 73.4061.71 0.469460.0347

The binary
encodinga

56.2362.21 60.0463.56 58.1462.30 0.163060.0486

UbPredb _ _ _ _ 72.00 _ _

aThe corresponding measurement was represented as the average value 6

standard deviation.
bThe corresponding value was cited from Radivojac et al (2010) [2]. ‘_ _’ means

the corresponding value is not available.
doi:10.1371/journal.pone.0022930.t001
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balanced dataset. In fact, the ubiquitination and non-ubiquitina-

tion sites in proteins are highly unbalanced. For example, the ratio

of ubiquitination to non-ubiquitination sites in Radivojac_dataset

is approximately 1:17. For practical applications, more stringent

threshold values should be suggested to guarantee the prediction

results at a low false positive rate control.

The significant features
Although the two feature selection methods did not result in

performance improvement, they allowed us to pick up most

important features (i.e. k-spaced residue pairs). According to the

output of the CHI- and IG- based feature selection methods, the

corresponding top-25 residue pairs are listed in Table 2. The

composition of the top-25 residue pairs were also presented in two

radar diagrams (Figure 2). As can be seen from Figure 2, the

composition of these top-25 features, either inferred from CHI- or

IG-based feature selection, are remarkably different in ubiquitination

and non-ubiquitination sites. Interestingly, there are 19 residue pairs

appearing in the two top-25 feature subsets, implying a good

consistency between these two feature selection methods. The

importance of these 19 residue pairs is also clearly and intuitively

characterized in Figure 3A. For instance, the feature ‘ExE’, which

represents the ‘EE’ residue pair spaced by any amino acid (i.e. 1-

spaced residue pair), is significantly enriched in position pairs (26/

24, 21/+1, +1/+3, +3/+5 and +6/+8) surrounding the ubiquitina-

tion sites. As another example, the important of ‘KL’ is also

represented by its depleted occurrence in some position pairs (23/

22 and +7/+8) around the ubiquitination sites. In addition to

providing some explanations about the powerfulness of the CKSAAP

encoding, the important residue pairs listed in Table 2 may also offer

some new clues for the sequence patterns around the ubiquitination

sites, which indeed deserve for further experimental validation.

Comparison with the binary encoding scheme
When compared with the binary encoding scheme by using the

same dataset (i.e. Radivojac_dataset), the proposed CKSAAP

encoding revealed about 15% higher Ac and a nearly 0.30

increment of MCC (Table 1). The better performance of the

proposed CKSAAP encoding was further illustrated by the ROC

analysis (Figure 1), in which CKSAAP_UbSite outperformed the

binary encoding by showing about 0.20 higher AUC value. All the

above results clearly showed that the CKSAAP encoding has a

significant advantage over the binary encoding in predicting

ubiquitination sites.

In general, the binary encoding characterizes the position-specific

feature of a sequence fragment. In other words, the binary encoding

would perform well in case that the fragments surrounding the

ubiquitination sites have some position-specific conservation patterns.

On the contrary, the CKSAAP encoding pays attention on the

collocation of amino acid pairs at different positions surrounding

ubiquitnation sites, which can also reflect the composition of short

linear motifs[36] to some extent. Often residing in disordered regions,

these short linear motifs contain three to eight residues, in which two

or three key residues are conserved [36]. The short linear motifs have

been widely reported to be involved in many biological processes such

as the communication of protein-protein interaction [36]. Compared

with the binary encoding scheme, the better performance of

CKSAAP_UbSite implied that short linear motifs maybe more

Figure 1. ROC curves of CKSAAP_UbSite and the binary
encoding scheme based on balanced ubiquitination and non-
ubiquitination sites. The performance of CKSAAP_UbSite and the
binary encoding scheme was assessed through a 100-fold cross-
validation strategy.
doi:10.1371/journal.pone.0022930.g001

Table 2. The top 25 features ranked by CHI- and IG- based
feature selection methods.

Top 25 features CHI IG

1 ExEa,b ExE

2 EQ KxxK

3 QxxxxxR EQ

4 NxN ExxE

5 ExQ NxN

6 SxxQ EE

7 ExxE ExxxxxE

8 DE KxL

9 EE ExxxxA

10 ExxxD KL

11 HxxxxxN DE

12 ExN LxK

13 ExxxxxE IxxxxxI

14 KxxK IxxxxxL

15 ExxxxA KK

16 PxY ExxxD

17 QxxN ExQ

18 ExxxE QxxxxxR

19 ExxxT SxxQ

20 DxxxxS ExxxE

21 SxN ExN

22 KxL DxxxxS

23 NE KxxxK

24 KL ExxxT

25 ExxA IxxxL

aThe feature ‘ExE’ represents a 1-spaced residue pair of ‘EE’, where x stands for
any amino acid. The same representation was applied to other k-spaced
residue pairs.

bThe k-spaced amino acid pairs in bold type mean they are consistently ranked
as the top-25 features by both feature selection methods.

doi:10.1371/journal.pone.0022930.t002
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important than position-specific patterns in recognizing ubiquitylated

substrates. Since the binary encoding scheme or position-specific

sequence features have been widely used in diverse PTM site

prediction tasks [37–39], we might also expect a better performance

of the CKSAAP encoding in the prediction of other PTM sites. In

fact, we have experienced a more powerful performance of the

CKSAAP encoding in mucin-type O-glycosylation site prediction

[16], while its performance in predicting phosphorylation and

sumoylation sites did not outperform the binary encoding scheme

(data not shown). It is also worth mentioning that the CKSAAP

encoding has been reported to predict the structural property of a

sequence fragment [22]. Therefore, the performance of CKSAA-

P_UbSite may further imply that some structural constraints are

required for ubiquitination sites.

Comparison of CKSAAP_UbSite with three existing
predictors

The proposed CKSAAP_UbSite was firstly benchmarked

against UbPred. Since CKSAAP and UbPred are based on the

Figure 3. Two Two-Sample-Logos of the position-specific residue composition surrounding the ubiquitination sites and non-
ubiquitination sites, which were inferred from Radivojac_dataset (A) and Cai_dataset_1 (B), respectively. These two logos were
prepared using the web server http://www.twosamplelogo.org/ and only residues significantly enriched and depleted surrounding ubiquitination
sites (t-test, P,0.05) are shown.
doi:10.1371/journal.pone.0022930.g003

Figure 2. The composition of the top-25 residue pairs resulting from two feature selection methods. The composition of each residue
pair is represented by a radial vector whose length is proportional to the composition concerned.
doi:10.1371/journal.pone.0022930.g002

Prediction of Ubiquitination Sites
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same dataset and they adopted the same ratio of positive to

negative samples (1:1), which allowed a comparatively fair

assessment between these two predictors. As shown in Table 1,

the performance of CKSAAP_UbSite is reasonably better than

UbPred by showing 1.4% higher prediction accuracy. To

complement the comparison, we also conducted a benchmark

experiment between CKSAAP_UbSite and UbPred on an

independent test dataset. The test set was compiled through our

literature reading, which covers 21 ubiquitylated proteins

experimentally reported in the past two years. The test set

contains 37 ubiquitination sites and 639 non-ubiquitination sites

(Supporting Information Text S3). To conduct a comparison on

this test set, these 21 proteins were processed via the web servers of

CKSAAP_UbSite and UbPred, and the results were characterized

by the ROC analysis. As shown in Figure 4, CKSAAP_UbSite

generally outperforms UbPred by showing a nearly 0.014 higher

AUC value, although CKSAAP_UbSite results in slightly lower

true positive rates at low false positive rate controls. Surprisingly,

both CKSAAP_UbSite and UbPred reveal dramatically lower

performance on this test set when compared with the correspond-

ing performance tested on Radivojac_dataset, implying that the

sequence patterns around ubiquitination sites in Radivojac_data-

set and the 21 proteins are remarkably different. Since these 21

proteins were mainly selected from the proteome of human, the

current CKSAAP_UbSite and UbPred predictors, which were

mainly inferred from yeast proteins, may be not fully suitable for

the ubiquitination site identification of these 21 proteins.

We also compared CKSAAP_UbSite with a newly predictor

developed by Cai et al (2011) [21]. Cai et al’s method was trained

and tested on a dataset of 364 ubiquitination sites and 1092 non-

ubiquitination sites (i.e. Cai_dataset_1), which covers ubiquitylated

substrates from diverse species. Approximately 50% and 35%

ubiquitylated substrates in Cai_dataset_1 were collected from the

proteomes of human and yeast, respectively. The ratio of

ubiquitination sites to non-ubquitination sites in Cai et al’s

method was set to 1:3 and the jackknife cross-validation was

conducted. Furthermore, Cai et al’s method was also tested in 12

independent proteins (i.e. Cai_dataset_2), which contain 14

ubiquitination sites and 267 non-ubiquitination sites. To have a

fair comparison between CKSAAP_UbSite and Cai et al’s

method, we retrained CKSAAP_UbSite on Cai_dataset_1 and

characterized the performance on the jackknife cross-validation.

To save computational time, the default parameters (C = 1.9405

and c= 1.0) of the RBF kernel in SVM training were employed in

this benchmark experiment. Meanwhile, we also tested the

performance on Cai_dataset_2. In general, CKSAAP_UbSite

outperformed Cai et al’s method considerably in both of the

jackknife cross-validation and the test on Cai_dataset_2 (Table 3).

Compared with the performance of CKSAAP_UbSite based on

Radivojac_dataset, the performance tested on Cai_dataset_1 and

Cai_dataset_2 is much poorer. To rule out the possibility that the

decreased performance was caused by the different ratios of

ubiquitination and non-ubiquitination sites, we also retrained and

tested the performance of CKSAAP_UbSite with a 1:3 ratio of

ubiquitination sites to non-ubiquitination sites in Radivojac_data-

set. Even with the same ratio of positive to negative samples as

Cai_dataset_1, CKSAAP_UbSite performed much better in

Radivojac_dataset than in Cai_dataset_1 (Table 3). Since

Cai_dataset_1 was selected from different proteomes, Radivo-

jac_dataset and Cai_dataset_1 have remarkably different sequence

patterns around ubiquitination sites (Figure 3A and B). In line with

the poor performance of UbPred and CKSAAP_UbSite in our

manually-curated test set (Figure 4), the decreased performance in

Cai_dataset_1 may imply that the sequence patterns around

ubiquitination sites are not conserved across different organisms.

Therefore, the development of organism-specific ubiquitination

site predictor is necessary to obtain the maximal performance.

We also compared CKSAAP_UbSite with the predictor

proposed by Tung and Ho (2008) indirectly. As reported by

Radivojac et al (2010), UbPred outperformed Tung and Ho’s

method when tested on some newly identified ubiquitination sites.

Moreover, Cai et al (2011) also benchmarked their method against

Tung and Ho’s method on the independent test set (i.e.

Cai_dataset_2) and showed higher MCC (Table 3). Since

CKSAAP_UbSite has been benchmarked to have better perfor-

mance than UbPred and Cai et al’s method, it is reasonable to

believe that CKSAAP_UbSite should also be more powerful than

Tung and Ho’s method. All the three existing methods are

statistical- or machine learning-based predictors and they

employed hybrid sequence features. Compared with these three

predictors, it is worth mentioning that the formula of the

CKSAAP encoding is much more concise, although the dimension

of the CKSAAP is still higher than the other feature vectors

employed in the three peer predictors. More importantly, the

reasonably good performance of CKSAAP_UbSite reflected that

the CKSAAP encoding can effectively capture the information of

enriched/depleted residue pairs around ubiquitination sites.

Conclusion
In order to detect ubiquitination sites in query proteins, we

developed a SVM-based predictor termed as CKSAAP_UbSite,

which has been benchmarked to have better performance than

some other existing predictors. With the ability of reflecting the

sequence patterns surrounding the ubiquitination sites, the

CKSAAP encoding has been proved to be particularly suitable

for the prediction of ubiquitination sites. To facilitate the

biological community, a web-server of CKSAAP_UbSite was

constructed, which can be freely accessible at http://protein.cau.

edu.cn/cksaap_ubsite/. Considering that the sequence patterns

around ubiquitination sites in different organisms are not

conserved, the real-world applications of the current predictor

should be limited to the proteome of yeast. With the increment of

Figure 4. Comparison of CKSAAP_UbSite and UbPred based on
an independent dataset of 21 proteins.
doi:10.1371/journal.pone.0022930.g004
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experimentally verified ubiquitination sites in the near future, we

forecast that more attention will be paid on the development of

organism-specific predictors in order to maximize the prediction

performance of ubiquitination sites.
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