
Overview

The 2010 Rosetta Developers Meeting: Macromolecular
Prediction and Design Meets Reproducible Publishing
P. Douglas Renfrew3,6, Gabrielle Campbell5, Charlie E. M. Strauss1,6*, Richard Bonneau2,3,4,6*

1 Los Alamos National Labs, Bioscience Division, Los Alamos, New Mexico, United States of America, 2 Computer Science Department, Courant Institute for Mathematical

Sciences, New York University, New York, New York, United States of America, 3 Department of Biology, Center for Genomics and Systems Biology, New York University,

New York, New York, United States of America, 4 Computational Biology Program, New York University, New York, New York, United States of America, 5 Business Strategy

and Development, Association of American Medical Colleges, Washington, D.C., United States of America, 6 The Rosetta Commons, url: http://www.rosettacommons.org/

The Rosetta framework for macromo-

lecular modeling, prediction and design is

a widely used code (over 7,000 registered

groups) with a large, dynamic developers

community (over 200 members). The

Rosetta community, including Rosetta

developers and users from industry and

academia, meets once a year to discuss the

science being done to improve Rosetta,

new applications of the Rosetta code to

biological and chemical problems, and the

code development itself. This special

collection (RosettaCon 2010) presents a

selection of developments in the Rosetta

community drawn from RosettaCon 2010.

However, this collection is more than a

proceedings: this special collection will

focus on the publication of both the science

and the reproducible computational work-

flow associated with each invited paper’s

protocol. Each paper in this collection is

accompanied by an annotated archive

containing the code, scripts and data-sets

needed to carry out the computational

protocol described in the paper. Example

use-cases that directly correspond to each

paper are also provided. We call these

workflow archives ‘‘protocol captures’’. By

publishing complete protocols and work-

flows we hope to both publish state-of-the

art computational structural biology meth-

ods and provide an example of how a

federated computational collaborative can

reproducibly publish and disseminate sci-

ence based on complex multi-layered

protocols.

Introduction

The complexity and scale of computa-

tional biology protocols have tracked the

exponential growth of measurements in

systems-biology and high-throughput

structure determination. Reproduction of

the computational protocols underlying

important works can be prohibitively

difficult outside the constructed computa-

tional environment of the original authors.

This impedes transmission, pedagogy, and

validation. Typical macromolecular mod-

eling protocols involve multiple levels of

prediction and design: for example the

design of a protein complex that binds a

specific DNA sequence will typically

iterate amongst algorithms specialized for

sequence design, docking, and structure

prediction. Many algorithms are stochastic

so the results of many Monte-Carlo

simulations must be analyzed for ensemble

properties. Searches of large sequence

databases for homologous proteins [15]

may need to be pre-cached or results from

multiple secondary structure prediction

methods may need to be merged [16].

External codes each require their own

installation and databases. Distributing a

monolithic code to perform such multi-

layered tasks is rarely feasible and might

not even allow reproduction if required

files or external tools are missing, or

complex post-processing steps are required

to determine the best designs or models.

In this collection we focus on computa-

tional structural biology protocols that use

Rosetta [1,2,3,4,5,6,7,8,9,10][26]. Rosetta

was originally developed for de novo fold

prediction [1,2,3,4,5] but has been ex-

panded to include methods for design,

docking, experimental determination of

structure from partial datasets, protein-

protein interaction design and prediction,

enzyme design, RNA structure prediction

and protein-DNA interaction prediction

and design [6,7,8,9,10]. The code is

developed by the RosettaCommons. This

working collaborative is composed of over

15 academic groups and thus the code is

being applied to a very wide diversity of

problems. Recent examples of Rosetta’s

application to challenging problems in-

clude: enzyme design, design of novel

nucleases, design of new protein topolo-

gies, proteome wide de novo structure

prediction, prediction and engineering of

protein-protein and protein-DNA and

protein-surface interfaces, and others.

Since these works describe new cutting-

edge research, and are not focused solely

on the algorithms or workflows employed,

the published results typically contain

method descriptions with inconsistently

stated protocols and dependencies.

RosettaCon 2010 featured three main

types of contributions: 1) new features that

enabled new applications (vaccine design,

enzyme design [11]), 2) new code devel-

opments [12,13] that improve accessibility

to the code and support the large devel-

opment team including a refactoring of the

code (Rosetta 3.0) and bindings to popular

scripting languages (PyRosetta), and 3)

new core scientific developments (multi-

state protein design, modeling and design

of symmetric protein complexes). This

collection aims to make several of these

latest Rosetta macromolecular modeling

protocols accessible to all. Articles describ-

ing 16 of the most important contributions

to the conference ranging from new

applications, core science, and even re-

flections on Rosetta’s current weaknesses

Citation: Renfrew PD, Campbell G, Strauss CEM, Bonneau R (2011) The 2010 Rosetta Developers Meeting:
Macromolecular Prediction and Design Meets Reproducible Publishing. PLoS ONE 6(8): e22431. doi:10.1371/
journal.pone.0022431

Editor: Vladimir N. Uversky, University of South Florida College of Medicine, United States of America

Published August 31, 2011

Copyright: � 2011 Renfrew et al. This is an open-access article distributed under the terms of the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

Funding: Funding was provided by National Science Foundation DBI 0820757, The arabidopsis folding
project; National Institutes of Health (NIH) I U54CA143907-01 Physical Sciences Oncology Center, Multi-Scale
Complex Systems Transdisciplinary Analysis of Response to Therapy (MC-START); NIH RC4 AI092765-01,
Elucidation of the transcriptional network underlying the Th17 lineage program. The funders had no role in
study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: bonneau@cs.nyu.edu (RB); cems@lanl.gov (CEMS)

PLoS ONE | www.plosone.org 1 August 2011 | Volume 6 | Issue 8 | e22431

are included in this collection. Frequently

an overall process in Rosetta is built from

multiple invocations of the Rosetta soft-

ware with differing command line argu-

ments or inputs, as well as auxiliary tools,

specific data-bases, large input data files,

and complex post processing steps. Our

goal in this special issue is to attempt the

capture of all these protocols in a suffi-

ciently complete and formal way that

enables outside groups to carry out the

complete workflow described in the paper.

It should be noted that this special issue

is itself a social experiment (encouraged by

the far-looking editors at PLOS) in which

we grapple with how best to capture a

dynamically evolving set of processes in a

way that does not overly burden the

authors, works across a distributed com-

munity without a central authority for

methods capture, is timely, and is suffi-

ciently self-consistent that readers will

invest their time in the results. Simply

put, if we make the process of capturing

protocols too formal and brittle authors

and readers will not participate. Not every

protocol can be captured as a method

from first principles. Not every data set

can be encapsulated or kept current

automatically. Thus we try to divide

processes into incremental sets with de-

fined inputs and outputs. We think that

this may advance the baseline in publish-

ing protocols in a robustly reproducible

manner for our community and, as we

learn from this experience, mature over

subsequent efforts by our community.

Each of the articles in this collection are

accompanied by an archive containing

links to the exact version of the code used

in the paper, all input data, links to

external tools, and an example script to

illustrate the use of the code to carry out

the protocol described in the paper. Each

paper has this archive (called a protocol

capture) as well as a detailed procedural

section in the methods section of each

paper to describe the proper use of the

code with reference to the archived code,

scripts, tools and data. Our efforts in this

collection are a start on the road to

reproducible publication of complex com-

putational analysis. Below we briefly

review the history and working structure

of the RosettaCommons (the developers

body that makes all of this possible), the

content of the special issue, and the

structure of the Protocol Capture archives

that will accompany each article.

The Rosetta Commons

The RosettaCommons is a multi-group

community that develops and maintains

Rosetta and also meets regularly to

define and coordinate research directions

for the Rosetta community (http://www.

rosettacommons.org/). The RosettaCom-

mons is a non-profit entity that uses

money from licensing the code to in-

dustry to support development of the code

and dissemination of the code to groups

outside the ‘‘commons’’. Members of

RosettaCommons share code pre-publica-

tion via a code repository shared by 17

research groups (200 developers), share a

large system that validates the large code

base with hundreds of scientific bench-

marks and unit tests, and have used the

RosettaCommons to organize several de-

veloper meeting, PI meetings and collab-

orative works to define the research

directions of the group and the labs within

the group. The RosettaCommons has

allowed the group to re-factor the code

completely multiple times without break-

ing up the constructive collaboration from

which we all benefit from.

We describe the RosettaCommons

model, not to imply that this is the optimal

solution, but to simply describe a solution

that has worked for a diverse and dynamic

community for over ten years. The

Rosetta group, with its needs for real-time

sharing and co-development, presented

unique challenges to anyone attempting

to design an intellectual property structure

for this collaborative. These challenges

were not met by the standard models in

place at the time the collaborative was

instantiated. It was clear from early on

that the group developing the software was

very dynamic and committed to the

development project. The multi-institu-

tional nature of the collaborative develop-

ment, paired with a focus on long-term

sustainability, pushed the boundaries of

standard licensing programs.

The first two licensing options consid-

ered were: release of the code-base under

an open source license or a commercially

oriented licensing program that allowed

non-exclusive licensing. The community

had a strong interest in accelerating

adoption of the software across the

academic and commercial community,

but had concern about the complexity of

the code and hoped to lead the direction of

development. The biggest hurdle to clear

from a dissemination standpoint was

consolidating all of the rights from devel-

opers, and working with the different

universities’ copyright and patent policies.

Moving into an open-source licensing

framework would have enabled adoption

by academic users, but, depending on the

license used, may have made any control

of the software development rather chal-

lenging. The complexity of the code also

raised concerns about releasing the source

code for modification and the potential

negative implications on use and perfor-

mance. Lastly, the group felt (at the

inception of the collaborative in 2001)

that it would be difficult to fund code

maintenance activities, and that without

the ability to generate revenue for the

licensing and supporting of Rosetta mod-

ules the effort would flounder.

In conjunction with multiple institu-

tions, the University of Washington led the

creation of a formal community of devel-

opers that allowed open-sharing and

modifications of code among the Rosetta

Commons participants. Significantly while

the barrier for entry to the Commons was

kept low, license agreements to those

outside the community maintained control

over how the software was used and/or

modified and restricted any further dis-

semination. To foster this community

foundation, all developers waived personal

royalties and instead directed their royalty

shares to the Rosetta Commons, a central

management point for the community

devoted to the development and dissemi-

nation of the code. These funds were used

to support a project manager, shared

hardware, and the annual Rosetta Com-

mons meeting attended by Rosetta Com-

mons contributors. Individuals who con-

tributed to the code base were required to

sign an agreement acknowledging ground

rules and copyright assignment (by their

respective institutions). Institutions with

developers contributing to the code base

agreed, on joining the commons, to waive

their right to assert intellectual property

rights against any Rosetta developers or

licensees. Those institutions maintained

ownership of the copyright and patents

and granted permission to the University

of Washington for licensing the software

modules to additional academic and

commercial users. These agreements pro-

vided a foundation for the intellectual

property and licensing framework.

With this framework in place the

academic and commercial licensing pro-

gram quickly developed as the code

matured and the community diversified

(academics were also immediately provid-

ed free access to the source code). The

commercial licensing program generated

revenue that contributed support to a

project manager and the annual Rosetta

developers meeting in Leavenworth,

Washington, including travel costs for all

attendees. Feedback from commercial and

academic users provided the developers

with a test community for development.

With the academic users able to use the

RosettaCon 2010: Reproducible Publishing

PLoS ONE | www.plosone.org 2 August 2011 | Volume 6 | Issue 8 | e22431

source code (for free) but not disseminate

it, the Rosetta Commons maintained

control over the code base while enabling

adoption across the academic community.

The high expectations of the Rosetta

Commons participants from each other,

the commitment of the developers to the

Rosetta Commons community, and the

willingness of the universities to enter an

unusual multi-university software develop-

ment collaborative (while waiving royalties

from commercial licensing) enabled the

success of this community framework.

RosettaCon 2010, code, science,
and applications

This special issue focuses on three types

of papers described briefly below. In each

area we highlight one of the papers to

demonstrate how the protocol capture (the

workflow) will aid other groups trying to

carry out similar analysis. In each case we

highlight the aspects of the workflow

beyond just installing Rosetta and the

command line arguments.

New Rosetta applications
Several articles describe specific appli-

cations in biology or chemistry, including

de novo enzyme design, modeling classes of

protein loops, design of temperature

sensitive mutations, and design of peptides

to inhibit large surface area protein

interactions. The article describing the

design of temperature sensitive mutations

is a prime example of the need for the

publishing of complete workflows: models

of target proteins are made, models for all

possible mutations are relaxed (to accom-

modate mutations) and scored, and lastly a

machine learning procedure is used to

select mutations likely to confer a temper-

ature sensitive behavior to the protein.

The protocol capture associated with this

paper contains all auxiliary code (includ-

ing scripts to make initial models and

machine learning code and packages).

Rosetta basic science
A main focus of the Rosetta developers

meeting is the development of new

functionalities and the improvement of

existing capabilities. The 2010 meeting

was no exception, and several of the

contributions in this collection are Rosetta

basic science papers of this type. Examples

include: incorporation of non-canonical

amino acids in Rosetta design, multi-state

design, new Rosetta kinematics, new

protein docking protocols, and anchored

design. A particularly interesting paper in

this vein is the paper by Das (‘‘Four small

puzzles that Rosetta can’t solve’’) provides

four very clear examples of where Rosetta

structure prediction needs to be improved.

Each example has the full protocol that

lead to the incorrect prediction fully

described as well as the correct (‘‘native’’)

structure; thus these protocols are key

elements in defining and judging future

improvement in Rosetta and other codes.

Rosetta code development
Multiple articles in this collection de-

scribe new code refactoring, extensions or

improvements to the implementation of

Rosetta. Several articles discuss the crea-

tion of multi-purpose high level interfaces

to the components of Rosetta. Examples

include an XML scripting interface for

Rosetta, an interactive python interface to

the Rosetta code, and an object oriented

API for generating Rosetta fragments.

Rosetta uses, as part of several protocols,

fragments of other known structures.

These fragments are particularly useful

for modeling long loops and protein

structure prediction. Gront et al. describe

a new code for predicting fragments.

Having a published workflow for this step,

building fragments, is important, as it is

core to several of the published protocols

and is nontrivial (involving a specialized

database [14], auxiliary tools such as PSI-

BLAST [15] and PSIPRED [16] and has

several configurable options).

Reproducible methods via capture
of multi-level computational
macromolecular prediction and
design protocols

This special collection provides the larger

community direct access to the exact

protocols used in each of the papers in this

collection. The construction is intended to 1)

allow other community members and

Rosetta users to exactly reproduce the work;

2) allow competing groups to validate and

improve upon on the work; 3) make it

rapidly accessible to new users with similar

biological applications. The area of enabling

reproducible publishing of science is not new

and much recent work has focused on

several ideas for how to facilitate reproduc-

ible scientific publishing. Those ideas can be

divided loosely into two main areas of work:

1) reproducible publication of data and

results linked to publications [17,18,19]

and 2) reproducible publication of workflows

and analysis performed as part of a

publication (e.g., Vistrails, myExperiment,

Open Lab Book) [20,21,22,23,24,25]. This

issue focuses on the second set of issues, the

publication of all aspects of complex struc-

tural bioinformatics protocols.

There are several well-developed sets

of ideas in this domain and we focus on

one solution out a great many possible

solutions. As suggested in the SIGMOD

2011 Repeatability Experiment (http://

www. sigmod2011. org /calls_papers_sigmo-

d_research_repeatability.shtml) best practice

solutions to the problem of reproducibly

publishing workflows and complex compu-

tational protocols follow a spectrum that,

very roughly, progresses from simple retro-

spective solutions that can be implemented

after a analysis has been performed (e.g., a

comprehensive archive containing a script

that executes the workflow and an archive of

all inputs and example outputs for error

checking), to systems that automatically log

and manage computational workflows as

they are created and provide automated

tools for sharing, comparing, and searching

workflows. These solutions provide systems

for creating workflows that allow developers

to add new procedures and (in some cases)

construct and test new workflows via a

graphical user interface [24]. Another possi-

ble solution is to perform all analysis for a

paper or other work on a virtual machine

(e.g., virtual box, http://www.virtualbox.

org/) and then distribute the virtual machine

(essentially ensuring that all OS, file system,

inputs, and other dependencies are exactly

identical between the described analysis and

the one that is distributed). This approach

has the advantage of being the exact analysis

performed, but the disadvantage of perpet-

uating hidden or accidental dependencies.

In this case we chose the retrospective

solution and each paper will be accom-

panied by a protocol capture. Each

protocol capture conforms to a template

distributed to all authors that contains

each of the following template files or

directories:

INSTRUCTIONS

This is a text file with simple instruc-

tions for populating the temple and testing

the execution of each script and Rosetta

command line. Instructions include re-

quirements for auxiliary code and Rosetta

version identifiers.

inputs/
A directory in the archive containing all

data needed for the example run. It is

important to note that each archive will

not be limited by the disk-space limits

usually placed on supplemental material

(e.g., if the author used a search of all

structures in the PDB then this database

will be included in the input/section of the

protocol capture).

RosettaCon 2010: Reproducible Publishing

PLoS ONE | www.plosone.org 3 August 2011 | Volume 6 | Issue 8 | e22431

outputs/
All output of scripts and Rosetta as

structured in the analysis described in the

paper. It is expected that this be the result

of the example script and command lines

(x Rosetta version) given in the scripts/

directory of the archive.

README

Authors provide a README file that

describe the sequential use of the protocol

scripts, auxiliary data-files and dependen-

cies. References and instructions for build-

ing the code in the repository are also

provided.

run_example (multiple)
Although the scripts/directory provides

the main capture of the protocol and is the

main mechanism allowing people to

reproduce the work, we also require

authors to provide Rosetta command lines

as a means of helping readers to isolate

Rosetta specific aspects of the protocol (as

these will be a major focus of each paper).

scripts/
This directory will contain scripts (nest-

ed in many cases) that execute the analysis

described in the paper. This section is

typically the most useful section of the

protocol capture. All protocols will be

verified as part of the review process to

ensure that the scripts provided run

properly on computers other than the

authors.

UPLOAD

This text file provides instructions for

uploading the archive to the Rosetta

Commons source code repository (which

will serve the protocol captures in parallel

with the journal website).

For an example protocol capture see the

supplemental sections of the articles in this

collection. For the simple template we

distributed to all authors see the supple-

ment to this article. Several of the papers

in this collection describe multiple, nested

or forked workflows and in these cases

multiple validated protocol captures are

provided.

Methods sections for each paper should

also include a section entitled ‘‘Detailed

Workflow’’ that described the protocol

capture and carefully walks the reader

through using the code via example

command lines and references to the

protocol capture that are sequential and

complete. The regular methods section

should be extensive and refer to the code

and the workflow more than is usual for a

research article. Think ‘‘Joy of Cooking’’.

Conclusion

As organizers of this collection we want

to thank the Rosetta Community for

embracing our attempt to enhance the

reproducibility of published applied com-

putational research. The articles presented

here could have been published elsewhere

on their own scientific merits at the cost of

streamlined, less accessible, methods. By

agreeing to adopt a consistent set of

publication standards for capturing their

protocols these authors have created

something that we hope will be highly

accessible to readers interested in actually

using the methods for themselves. Al-

though this special issue falls short of the

ultimate reproducible publication solu-

tions that are on the horizon we hope that

this effort will help establish the value of

the practical, user-centric, capture of

complex state of the art macromolecular

modeling and design computational pro-

tocols. It is inevitable that many successful

federated enterprises will require retro-

spective capture during their periods of

most active research. By linking a retro-

spective, but reproducible executable,

archive to each paper, and by annotating

each protocol we hope to ensure that all

papers in this collection are completely

reproducible by outside groups. We have

tried to divide long pipelines into stages,

each with defined inputs and outputs, as

future applications are likely to require just

certain components of any existing pipe-

line. We hope that this and similar models

can link the reward of publishing with the

reproducible dissemination of code and

workflows. In many ways our solution is a

social construct built in part on a solid

base of constructive collaborative spirit

(i.e. the RosettaCommons). It is difficult to

say what is next for the Rosetta developers

community. It less difficult to predict that

as we continue to grow and face new

implementation, funding, dissemination

and (most importantly) scientific challeng-

es, we will face them together and we will

continue to strive to make the work more

reproducibly accessible. For a current list

of Rosetta developers and participating

labs see: http://www.rosettacommons.

org/.

Acknowledgments

We would like to thank Dennis Shasha for

helpful discussions about reproducible publish-

ing and for sharing ideas about how the Rosetta

Commons can best use tools for publishing

workflows.

Author Contributions

Conceived and designed the experiments: RB

PDR CEMS GC. Performed the experiments:

RB PDR CEMS GC. Analyzed the data: RB

PDR CEMS GC. Contributed reagents/mate-

rials/analysis tools: RB PDR CEMS GC. Wrote

the paper: RB PDR CEMS GC.

References

1. Bonneau R, Strauss CE, Rohl CA, Chivian D,

Bradley P, et al. (2002) De novo prediction of

three-dimensional structures for major protein

families. J Mol Biol 322: 65–78.

2. Bonneau R, Tsai J, Ruczinski I, Chivian D,

Rohl C, et al. (2001) Rosetta in CASP4: progress

in ab initio protein structure prediction. Proteins

Suppl 5: 119–126.

3. Bradley P, Malmstrom L, Qian B, Schonbrun J,

Chivian D, et al. (2005) Free modeling with

Rosetta in CASP6. Proteins 61 Suppl 7: 128–134.

4. Simons KT, Bonneau R, Ruczinski I, Baker D

(1999) Ab initio protein structure prediction of

CASP III targets using ROSETTA. Proteins

Suppl 3: 171–176.

5. Simons KT, Kooperberg C, Huang E, Baker D

(1997) Assembly of protein tertiary structures

from fragments with similar local sequences using

simulated annealing and Bayesian scoring func-

tions. J Mol Biol 268: 209–225.

6. Das R, Qian B, Raman S, Vernon R, Thompson J,

et al. (2007) Structure prediction for CASP7 targets

using extensive all-atom refinement with Roset-

ta@home. Proteins 69 Suppl 8: 118–128.

7. Butterfoss GL, Kuhlman B (2006) Computer-

based design of novel protein structures. Annu

Rev Biophys Biomol Struct 35: 49–65.

8. Kuhlman B, Baker D (2000) Native protein

sequences are close to optimal for their structures.

Proc Natl Acad Sci U S A 97: 10383–10388.

9. Chevalier BS, Kortemme T, Chadsey MS,

Baker D, Monnat RJ, et al. (2002) Design,

activity, and structure of a highly specific artificial

endonuclease. Mol Cell 10: 895–905.

10. Kortemme T, Joachimiak LA, Bullock AN,

Schuler AD, Stoddard BL, et al. (2004) Compu-

tational redesign of protein-protein interaction

specificity. Nat Struct Mol Biol 11: 371–379.

11. Thyme SB, Jarjour J, Takeuchi R, Havranek JJ,

Ashworth J, et al. (2009) Exploitation of binding

energy for catalysis and design. Nature 461:

1300–1304.

12. Leaver-Fay A, Tyka M, Lewis SM, Lange OF,

Thompson J, et al. (2011) ROSETTA3: an object-

oriented software suite for the simulation and design

of macromolecules. Methods Enzymol 487:

545–574.

13. Cooper S, Khatib F, Treuille A, Barbero J, Lee J,

et al. (2010) Predicting protein structures with a

multiplayer online game. Nature 466: 756–760.

14. Berman HM, Battistuz T, Bhat TN, Bluhm WF,

Bourne PE, et al. (2002) The Protein Data Bank.

Acta Crystallogr D Biol Crystallogr 58: 899–907.

15. Altschul SF, Madden TL, Schaffer AA, Zhang J,

Zhang Z, et al. (1997) Gapped BLAST and PSI-

BLAST: a new generation of protein database

search programs. Nucleic Acids Res 25: 3389–3402.

16. Jones DT (1999) Protein secondary structure

prediction based on position-specific scoring

matrices. J Mol Biol 292: 195–202.

RosettaCon 2010: Reproducible Publishing

PLoS ONE | www.plosone.org 4 August 2011 | Volume 6 | Issue 8 | e22431

17. Bourne P (2005) Will a biological database be

different from a biological journal? PLoS Comput
Biol 1: 179–181.

18. (2011) Beyond the pdf workshop. Available:

https://sites.google.com/site/beyondthepdf/.
Accessed 2011 Sep 10.

19. Koop D, Santos E, Mates P, Vo H, Bonnet P,
et al. (2011) A provenance-based infrastructure to

support the life cycle of executable papers.

Proceedings of the International Conference on
Computational Science In Press.

20. Goecks J, Nekrutenko A, Taylor J (2010) Galaxy:
a comprehensive approach for supporting acces-

sible, reproducible, and transparent computation-

al research in the life sciences. Genome Biol 11:

R86.

21. Giardine B, Riemer C, Hardison RC, Burhans R,

Elnitski L, et al. (2005) Galaxy: a platform for

interactive large-scale genome analysis. Genome

Res 15: 1451–1455.

22. Bourne PE (2010) What do I want from the

publisher of the future? PLoS Comput Biol 6:

e1000787.

23. Manegold S, Manolescu I, Afanasiev L, Feng J,

Gou G, et al. (2009) Repeatability & workability

evaluation of sigmod 2009. SIGMOD Record 38:

40–43.

24. Callahan SP, Freire J, Santos E, Scheidegger CE,

Silva CT, et al. (2006) VisTrails: visualization

meets data management. SIGMOD 2006 1:

745–747.

25. Goble CA, Roure DCD (2007) myExperiment:

social networking for workflow-using e-scientists.

WORKS ’07: Proceedings of the 2nd workshop

on Workflows in support of large-scale science 1–

2.

26. Rohl CA, Strauss CE, Misura KM, Baker D

(2004) Protein structure prediction using Rosetta.

Methods Enzymol 383: 66–93.

RosettaCon 2010: Reproducible Publishing

PLoS ONE | www.plosone.org 5 August 2011 | Volume 6 | Issue 8 | e22431

