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Abstract

Aim: The diagnosis of hepatocellular carcinoma (HCC) in the early stage is crucial to the application of curative treatments
which are the only hope for increasing the life expectancy of patients. Recently, several large-scale studies have shed light
on this problem through analysis of gene expression profiles to identify markers correlated with HCC progression. However,
those marker sets shared few genes in common and were poorly validated using independent data. Therefore, we
developed a systems biology based classifier by combining the differential gene expression with topological features of
human protein interaction networks to enhance the ability of HCC diagnosis.

Methods and Results: In the Oncomine platform, genes differentially expressed in HCC tissues relative to their
corresponding normal tissues were filtered by a corrected Q value cut-off and Concept filters. The identified genes that are
common to different microarray datasets were chosen as the candidate markers. Then, their networks were analyzed by
GeneGO Meta-Core software and the hub genes were chosen. After that, an HCC diagnostic classifier was constructed by
Partial Least Squares modeling based on the microarray gene expression data of the hub genes. Validations of diagnostic
performance showed that this classifier had high predictive accuracy (85.88,92.71%) and area under ROC curve
(approximating 1.0), and that the network topological features integrated into this classifier contribute greatly to improving
the predictive performance. Furthermore, it has been demonstrated that this modeling strategy is not only applicable to
HCC, but also to other cancers.

Conclusion: Our analysis suggests that the systems biology-based classifier that combines the differential gene expression
and topological features of human protein interaction network may enhance the diagnostic performance of HCC classifier.
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Introduction

Hepatocellular carcinoma (HCC) is one of the most common

malignant tumors with an increasing incidence worldwide. The

resistance of HCC to existing treatments and the lack of biomarkers

for early detection make it one of the most hard-to-treat cancers.

High-risk patients with HCC are closely followed up and increasing

numbers of small equivocal lesions, which are widely recognized as

dysplastic nodules or early-stage HCC, lack typical imaging and

histology of ordinary HCC and do not show elevated serum markers,

such as alpha-fetoprotein (AFP) and PIVKA-II [1–2]. Given the

importance of early-stage diagnosis to the application of curative

treatments which are the only hope for increasing the life expectancy

of patients with HCC, the development of effective systems which can

predict the occurrence of this neoplasm is much needed.

Several attempts have been made to predict the occurrence and

prognosis of HCC based on single or multiple clinicopathologic

features such as the severity of the liver function, age, tumor size,

grade, microvascular invasion, portal vein thrombosis, and the

presence of microsatellite regions [3–4]. However, their clinical

applicability is worthy of further large-scale validations. Recent

studies on gene expression profiles could successfully predict the

occurrence, progression, or survival of cancers [5–6], but the lack

of consistency of these microarray-based predictors generated

from the heterogeneity of the patient cohorts and the difference in

microarray platforms remain one of the major obstacles to their

clinical use, making it necessary to identify a reliable and

consistent predictor that is robust enough to overcome the

variabilities induced by different platforms or different patient

cohorts.

There have been several approaches to this problem from

different perspectives. One approach performs a gene pathway-

based analysis, which identifies biological pathways by scoring the

coherency of expression changes among their member genes based
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on microarray data [7]. Such a method allows biologists to

incorporate previously accumulated biological knowledge in the

analysis and make a more biology-driven analysis of microarray

data, which can help identify interpretable discriminative

signatures that gains insight into tumor biology and potential

therapeutic targets. In addition, this method enables the

identification of moderately differentially expressed but function-

ally important genes, which are missed in gene expression

clustering. A second approach is a protein interaction network-

based method, which utilizes a recently available protein-protein

interaction network to identify sub-networks based on coherent

expression patterns of their genes [8]. A sub-network refers to a

smaller or more focused network within a large protein interaction

network [9]. Both methods efficiently utilize co-expression

information embedded within the microarray gene expression

data. However, the problem with both methods is that each gene

set or sub-network identified includes too many genes, which

greatly limits their clinical application.

Lu et al. [10] demonstrated that hubs of biological network have

significantly different biological functions compared with periph-

eral nodes based on Gene Ontology classification, and that

biological understanding of experimental asthma is enhanced by

combining information including levels of change in gene

expression plus topological criteria from the analysis of interaction

networks. We hypothesized that developing a systems biology-

based approach by combining differential gene expression and

topological characteristics of human protein interaction networks

could improve the diagnostic performance of HCC classifier.

Materials and Methods

The technical strategy of this study was shown in Figure 1.

Gene expression microarray analysis
The data mining strategy for selecting marker genes for our

classifier is based on a published methodology exploring the cancer

microarray platform, Oncomine [11] (16 SEP 2008 ONCOMINE

DATA RELEASE HIGHLIGHTS, https://www.oncomine.org),

which was chosen because it is a public cancer microarray platform

incorporating 392 independent microarray datasets, totaling more

than 28,880 microarray experiments and spanning 41 cancer types.

It unifies a large compendium of other published cancer microarray

data, including Gene Expression Omnibus (GEO) [12] and

Stanford Microarray Database (SMD) [13], and uniquely provides

differential expression analyses comparing most major types of

cancer with their respective normal tissues. For example, to identify

potentially important genes in a particular cancer, users can

perform a ‘‘cancer vs. normal’’ analysis for a given cancer type and

those genes that are differentially expressed in cancer relative to its

normal tissue can be retrieved as a list. Each differentially expressed

gene in the list can then be assessed by the Student t test to calculate

the P or Q values (false discovery rate) [14], mean expression values

(mean 1, mean 2), and the normalized Student t value. In addition,

Oncomine is integrated with the Concept filter, which allows users

to identify genes with certain biological processes or mutation types.

Public expression datasets. Hepatocellular carcinoma was

used in the ,profile search. function in the Oncomine database to

find the available microarray datasets related to the specific cancer

type. The analysis type ,cancer vs. non-tumor. was then applied to

filter those microarray datasets exploring cancer relative to its non-

tumor tissue. Three publicly available datasets of gene expression

profiles were chosen in this study, including Chen_Liver_1 [15] (Non-

tumor Liver vs. Hepatocellular Carcinoma), Chen_Liver_2

[15] (Non-tumor Liver vs. Hepatocellular Carcinoma), and

Wurmbach_Liver [16] (Non-tumor Liver vs. Hepatocellular

Carcinoma). The detailed information about the datasets is

described in Raw Data S1, S2, S3, S4, S5 and Table S1.

Gene selection procedure. Concept filters in the Oncomine

database were used to identify known oncogenes differentially

expressed in HCC. Specifically, differentially expressed genes

associated with the following Concept filter terms were searched:

,CAN Genes., ,The Cancer Gene Census., ,Catalogue of

Somatic Mutations in Cancer (COSMIC)., ,Drug target-

experimental. and ,Drug target-FDA.. Next, a corrected

false discovery rate Q value threshold (Q#0.05) was used to filter

and retrieve those differentially expressed genes with a high

confidence. Then, the differentially expressed genes identified

throughout the three microarray gene expression datasets were

selected as candidate genes for further network analysis.

Network analysis
The network representation was generated using GeneGO Meta-

Core software (Encinitas, CA). The software interconnected all

candidate genes according to published literature-based annota-

tions. Only direct connections between the identified genes were

considered. Major hubs were defined as those with more than thirty

connections and ,50% of edges hidden within the network. The

hub genes were selected as the components of HCC classifier.

Systems biology-based HCC classifier construction
Datasets. To demonstrate this novel classifier, two publicly

available datasets of gene expression profiles were used in this

study, including Chen_Liver [15] (29 HCC samples and 17 non-

tumor liver samples) and Wurmbach_Liver [16] (35 HCC samples

and 27 non-tumor liver samples) datasets. These datasets were

randomly separated into the training and test datasets for 100

times. The detailed information about the datasets is described in

Raw Data S1, S2, S3, S4, S5.

Parial Least Squares classifier. Parial Least Squares (PLS),

which can extract effective information form a larger number of

predictors, was used to construct the systems biology-based HCC

classifier. To describe this method, some notations are required.

Let x be n|p matrix of n samples and p hub genes. Also, let y
denote the n|1 vector of response values, such as the indicator of

HCC or non-tumor liver tissues. The objective criterion for

constructing components in PLS is to sequentially maximize the

covariance between the response variable and a linear

combination of the predictors. The components are constructed

to maximize the objective criterion based on the sample

covariance between y and xc. Thus, we find the weight vector w
satisfying the following objective criterion,

w~argmaxcov2(xw,y) ð1Þ

Next, a training dataset was used to calculate weight coefficients of

different hub genes in PLS model. The hub genes in PLS model

are denoted as:

p~fpig, i~1,2,3,4,5,6,7,8 ð2Þ

The score of the PLS model for each sample is defined as:

Score~
X

LPi
|WPi

,i~1,2,3,4,5,6,7,8 ð3Þ

Where LPi
refers to the expression level of hub gene pi in each

sample.

Systems Biology Modeling for HCC Diagnosis
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Then, the training dataset was used to input the PLS model

so as to calculate the threshold value T of score by selecting the

cutoff value on which the Area under Receiver Operating

Characteristic (ROC) Curve (AUC) was the biggest. Finally, the

PLS classifier decides: if ScorewT , the sample can be predicted as

HCC tissues.

Performance evaluation
The overall performance of HCC classifier was evaluated by

two distinct approaches: 5-fold cross-validation test and indepen-

dent dataset test. The overall predictive accuracy (ACC) and AUC

were used to measure the prediction performance of our method.

ROC Curve can show the efficacy of one test by presenting both

Figure 1. A schematic diagram of this novel systems biology-based gene expression classifier for HCC diagnosis. First, the genes
differentially expressed in HCC tissues relative to their corresponding non-tumor tissues were filtered by a corrected Q value cut-off and Concept
filters in the Oncomine platform. The identified genes that are common among different microarray datasets were chosen as the candidate genes.
Then, their networks were analyzed by GeneGO Meta-Core software and the hub genes were chosen. After that, HCC diagnostic classifier was
constructed by PLS modeling based on the microarray gene expression data of the hub genes. Finally, the diagnostic performance of this classifier
was evaluated by predictive accuracy and area under ROC curve.
doi:10.1371/journal.pone.0022426.g001
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sensitivity and specificity for different cutoff points [17]. Sensitivity

and specificity can measure the ability of a test to identify true

positives and false ones in a dataset.

Sensitivity~
TP

TPzFN
ð4Þ

Specificity~
TN

TNzFP
ð5Þ

ACC~

P
TPzTN

N
ð6Þ

where TP, TN , FP, FN respectively refer to the number of true

positive, true negative, false positive and false negative result

components in a test, while N refers to the total number of

predicted samples.

The ROC curves are plotted and smoothed by SPSS software

with the sensitivity on the y axis and 1-Specificity on the x axis.

In the 5-fold cross-validation test, the dataset was randomly

divided into 5 sets, four of which were used to train the parameters

of the predictive algorithm. The predictive accuracy of the

algorithm was then evaluated by the remaining set, and this

procedure was repeated five times before sensitivity and specificity

against different parameters across five test datasets are calculated

for the ROC curve.

Validation of MAPK1 and NCOA2 hubs
Patients and tumor tissue specimens. The study was

approved by the Research Ethics Committee of Affiliated Huai’an

1st People’s Hospital, Nanjing Medical University Huai’an,

Jiangsu, P.R.China. Written Informed Consent was obtained

from each of the patients. All specimens were handled and made

anonymous according to the ethical and legal standards.

Thirty matched HCC and paracarcinomatous liver tissue

(PCLT) specimens were obtained from 30 patients who underwent

hepatectomy at the Department of Hepatobiliary & Pancreatic

Surgery at this hospital between 2007 and 2009. These patients

included 22 males and 8 females with a median age of 52.4 years

(range, 30,76 years). No patients who had undergone previous

therapy or non-curative surgery were included. The clinicopath-

ologic variables, such as tumor size, etiological factors, underlying

disease, portal vein infiltration, Edmondson-Steiner grade, TNM

stage, AFP levels, lymphatic metastasis status, and differentiation

degree, were recorded and summarized in Table S9. All specimens

were fixed in 10% formalin, embedded in paraffin, and cut into

4 mm serial sections for immunohistochemical staining, in addition

to the usual hematoxylin-eosin staining.

Immunohistochemistry. For immunohistochemical stain-

ing, tissues were fixed in 10% buffered formalin and embedded in

paraffin. Commercially available rabbit anti-human polyclonal

antibody against MAPK1 (dilution 1:100; Catalog No.: 51068-1-

AP; ProteinTech Group, Inc., Chicago, IL, USA) and rabbit anti-

human polyclonal antibody against NCOA2 (dilution 1:1000;

Catalog No.: ab10508; Abcam (Hong Kong) Ltd., Hong Kong)

were used. Immunohistochemical staining was carried out on

sections using the avidin-biotin method and a commercially

available kit (Vectastain Elite ABC kit, Vector Laboratories,

Burlingame, CA). Briefly, sections (4 mm thick) were incubated

overnight at 4uC with the primary antibodies against MAPK1 and

NCOA2, respectively. After being washed in PBS, a biotin-marked

secondary antibody was applied for 10 min followed by a

peroxidase-marked streptavidin for an additional 10 min. The

reaction was visualized by using 3, 39-diaminobenzidine

tetrahydrochloride. The nuclei were counterstained with

hematoxylin. Negative controls were carried out by omitting the

primary antibodies while MAPK1 and NCOA2 overexpression

confirmed by Western blotting were used as positive controls,

respectively.

Immunoreactivity was assessed by two investigators who were

blinded to clinicopathologic data. Discrepancies were resolved by

simultaneous reexamination of the slides by both investigators

using a double-headed microscope. A semiquantitative scoring

system was used as previously reported [18]. The stain was graded

as 0 (negative), 1(weak), 2 (moderate), and 3 (strong). The final

score was the sum total of the product of the staining intensity and

corresponding tumor percentage. For example, if a tumor showed

50% moderate staining and 50% strong staining, the final score

would be (5062)+(5063) = 250. A final score of at least 100 was

considered positive expression.

Statistical Analysis
A comparison of the prediction performance of HCC classifiers

with different hub/non-hub genes was made using Fisher’s exact

test for any 262 tables by using SPSS13.0 [19]. Differences were

considered to be statistically significant when the P value was less

than 0.05.

Results

Identification of candidate HCC markers for network
analysis

Data mining of three microarray datasets from the Oncomine

platform for genes differentially expressed in HCC tissues

compared with their expression in non-tumor liver tissues led to

the identification of a list of 6582 upregulated and 5101

downregulated gene expression profiles. Then, 1098 cancer-

related genes (including 469 upregulated and 629 downregulated

genes) were searched from this gene list by a combination of

controlled Concept filter terms. When the retrieved genes were

further filtered by the corrected false discovery rate Q (Q#0.05)

and intersection screening, 116 upregulated and 111 downregu-

lated genes were selected as candidate marker genes for further

network analysis (the detailed information of this gene list was

shown in Table S2). We used a stringent corrected false discovery

rate cut-off value to select differentially expressed genes and to

avoid false predictions arising from experimental variation in

different studies.

Identification of network hub genes for HCC classifier
To create the network, the genes (nodes) and published

literature-based connections (edges) were plotted using GeneGo-

MetaCore (Figure 2A for upregulated genes, Figure 2B for

downregulated genes and Figure 2C for both upregulated and

downregulated genes). The network architecture is consistent with

a scale-free network and represents interactions between individ-

ual targets. As the targets with high degrees of connectivity are

considered to be the most important components of a network

[20], we examined hubs with more than 30 connections and less

than 50% of edges hidden within the network. For upregulated

genes network, the 10 hubs are shown in Figure 2D: MAPK1,SP1,

HDAC1, YY1, ABL1, PTK2, SMAD2, NCOA3, CDC25A, and

NCOA2; for downregulated genes network, the 7 hubs are shown

in Figure 2E: FOS, ESR1, JUNB, EGFR, SOCS3, FOLH1, and

IGF1; for both upregulated and downregulated genes network, the

27 hubs are shown in Figure 2F: SP1, JUN, FOS, ESR1, JUNB,

Systems Biology Modeling for HCC Diagnosis
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HDAC1, EGFR, YY1, PTK2, MAPK1, ABL1, CDH1, SMAD2,

NCOA3, SOCS3, HGF, GRB2, IGF1, NCOA2, ETS2, ATF3,

CDC25A, SERPINE1, DUSP1, ID2, MAPT and SREBF1 (the

detailed information of these hub genes is shown in Tables S3,

S4, S5).

Performance evaluation of HCC classifier
Independent validation. The independent microarray gene

expression datasets were used to test our HCC classifier.

Chen_Liver [15] (29 HCC samples and 17 non-tumor liver

tissues) and Wurmbach_Liver [16] (35 HCC samples and 27 non-

tumor liver tissues) datasets were randomly separated into the

training and test datasets, and this procedure was repeated 100

times. The weights of hub genes and score threshold in the HCC

classifier were trained by the training dataset. The predictive

accuracy and AUC value of the algorithm was then evaluated by

the test datasets, and this procedure was repeated 100 times.

Finally, the accuracy and AUC values for different tests were

summed to calculate the average and standard error.

The overall predictive accuracy and AUC values of the different

HCC classifiers, which were constructed with the 10 upregulated

hub genes (Classifier 1), 7 downregulated hub genes (Classifier 2)

and 27 differentially expressed hub genes (Classifier 3), on the

Chen_Liver and Wurmbach_Liver test datasets were shown in

Table 1, respectively. Firstly, the accuracy values of three classifiers

on different independent test datasets were 85.88(92.71% and the

AUC values were all more than 0.92(0.96. The AUC value is an

indicator of the efficacy of the assessment system. An ideal test with

perfect discrimination (100% sensitivity and 100% specificity) has

an AUC of 1.0, whereas a non-informative prediction has the area

0.5, indicating that it may be achieved by mere guess. The closer to

1.0 the AUC of a test is, the higher the overall efficacy of the test will

be [17]. We found that our HCC classifier had an area

approximating 1.0, suggesting that it had a relatively high ability

to identify the true HCC tissues against the different independent

test datasets. Secondly, Classifier 3 includes more hub genes (27)

than Classifier 1 (10) and Classifier 2 (7), but its performance (ACC

and AUC) was not significantly higher than that of the other two

classifiers. Thirdly, Classifier 2 includes the smallest number of

genes and was not significantly different from other two classifiers in

terms of performance, so we chose Classifier 2 for further validation.

Five-fold cross-validation. We also used the 5-fold cross-

validation protocol to evaluate the performance of our HCC

classifier (Classifier 2). The resulting ROC curves were illustrated

in Figure 3. Each point on the ROC curve denotes the sensitivity

and specificity against a set of weights and score threshold.

Because the AUC is an indicator of the discriminatory power for

the classifier, it was also used here to evaluate the predictive

efficacy of our HCC classifier. From Figure 3, we can find that our

HCC classifier had an AUC value approximating 1.0 in all the five

tests, suggesting that it has a great reliability and efficacy to identify

the true HCC tissues against different test datasets.

Validation of the contribution of the network topological

features to the classifier. In order to verify the contribution of

Figure 2. Network for upregulated genes (A), downregulated genes (B) and all differentially expressed genes (C). Hub-based network view of 10
upregulated hub genes (D), 7 downregulated hub genes (E) and 27 differentially expressed hub genes (F). GeneGO MetaCore was used to generate a
network of direct connections among genes selected for analysis. Red, green, and gray arrows indicate negative, positive, and unspecified effects,
respectively. Hubs were identified as having more than thirty connections and less than 50% of edges hidden within the network.
doi:10.1371/journal.pone.0022426.g002
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the network topological features to the predictive performance of

our classifier, we first added different proportions of non-hub

genes into the classifier (Classifier 2). At each ratio (7/1, 7/2, 7/4,

7/6 and 7/8) of hub and non-hub genes, the non-hub genes were

selected randomly, the process was repeated 100 times and the

average performance was shown in Figure 4A,B. From the result

we can see that the predictive accuracy and AUC values of the

classifier undergo no significant changes with the non-hub genes

added, indicating that non-hub genes contribute little to this

classifier. Then, we changed the ratio of hub and non-hub genes in

the classifier (Classifier 2). At each ratio (6/1, 5/2/3/4, 1/6 and

0/7), the hub and non-hub genes were both selected randomly, the

total number of them was maintained at 7. This process was

repeated 100 times and the average performance was shown in

Figure 4C,D. The result shows that the classifier worked much

less efficiently with the number of hub genes being gradually

reduced and the number of non-hub genes gradually increased.

Especially, the predictive accuracy and AUC values of the

classifier were decreased with statistic significance when the

proportion of hub genes was reduced to 3/7 of the original one,

indicating that the network topological features integrated into

modeling could improve the predictive performance of our

classifier.

Application of this modeling strategy to other cancers
In the above sections, we constructed HCC classifier by

combining differential gene expression and topological character-

istics of the interaction network to identify marker genes using

microarray expression data of HCC and validated that this

classifier has excellent predictive performance. We hypothesized

that this modeling strategy could be also applied to constructing

other cancers diagnosis classifiers. To test this hypothesis, we used

the same method to construct the prostate cancer diagnosis

classifier.

As the first step, two publicly available datasets of gene

expression profiles on prostate cancer were chosen, including

Liu_Prostate [21] (Normal prostate vs. prostate cancer) and

Varambally_Prostate [22] (Normal prostate vs. prostate cancer).

The detailed information about the datasets is described in Raw

Data S6, S7, S8 and Table S6. Next, in the Oncomine platform,

the genes differentially expressed in prostate cancer tissues relative

to their corresponding normal tissues were filtered by a corrected

Q value (Q#0.05) cut-off and Concept filters. 21 upregulated and

27 downregulated genes that different microarray datasets of

prostate cancer have in common were chosen as the candidate

markers for network analysis (The gene lists were shown in Table

S7). Then, their networks (Figure S1) were analyzed by GeneGO

Meta-Core software and 4 hub genes were chosen, including

BCL2, TP53, DAPK1 and CCND2 (The hub gene lists were

shown in Table S8). After that, the prostate cancer diagnostic

classifier was constructed by PLS modeling based on the

microarray gene expression data of the hub genes. Furthermore,

this classifier was tested by the independent microarray gene

expression dataset. The overall predictive accuracy was

84.7966.53% and AUC value was 0.8260.10. To verify the

contribution of the network topological features to the predictive

performance of this prostate cancer classifier, we also changed the

ratio of hub and non-hub genes in the model. As shown by the

results (Figure S2), we noticed that the predictive accuracy and

AUC values of this classifier were not significantly different from

those of the hub genes which were not being changed and non-

hub genes which were being added, but were decreased

significantly when the proportion of hub genes was reduced, as

was the case with the results of HCC classifier. (The detailed

information on the methods and results of this section were shown

in File S1.)

Biological interpretations of hub genes in HCC classifier
Cancer diagnosis classifier does not necessarily involve under-

standing the biological function and regulatory mechanism of the

gene components. However, molecular understanding of the

biological function could still be worthwhile in that the differential

expression of these genes and the interaction among them may be

mechanistically linked to carcinogenesis. We therefore surveyed

the literature and the knowledge databases such as Entrez Gene

[23], PubMed (http://www.ncbi.nlm.nih.gov/sites/entrez?db =

pubmed), and Gene References into Function (GeneRIFs) (ftp://

ftp.ncbi.nih.gov/gene/GeneRIF/) on these hub genes. As a result,

in the 17 (10 unregulated and 7 downregulated expression in HCC

tissues) hub genes, 13 genes (SMAD2, PTK2, MAPK1, HDAC1,

CDC25A, IGFI, FOS, ESR1, EGFR, SOCS3, SP1, YY1 and

JUNB) have been identified as an HCC-related gene. Further

studies on HCC could focus on the remaining 4 genes (ABL1,

NCOA3, NCOA2 and FOLH1). In this section, we introduced the

biological features of the two most promising genes.

Table 1. Performance of HCC classifiers on different
independent test datasets.

Wurmbach_Liver test
dataset Chen_liver test dataset

Acc (%) AUC Acc (%) AUC

Classifier 1 87.2065.72 0.9260.04 85.8869.70 0.9460.05

Classifier 2 86.4465.56 0.9360.03 89.5466.52 0.9960.02

Classifier 3 88.0564.89 0.9660.02 92.7167.80 0.9660.03

doi:10.1371/journal.pone.0022426.t001

Figure 3. ROC curves for 5-fold cross-validations against the
golden standard datasets. Each point on the ROC curve denotes the
sensitivity and specificity against a set of weights and score threshold.
Different colors are used to distinguish the curves of classifier in cross-
validations for five times. AUC values are also presented in the figure.
Sensitivity and specificity are computed during the 5-fold cross-
validations (see text for details).
doi:10.1371/journal.pone.0022426.g003
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EGFR. Epidermal growth factor receptor (EGFR) is a

member of a proto-oncogene family of receptors important in

cell proliferation [24]. The protein encoded by this gene is a

transmembrane glycoprotein that is a member of the protein

kinase superfamily. This protein is a receptor for members of the

epidermal growth factor family. EGFR overexpression has been

demonstrated in many human carcinomas including the breast,

stomach, esophageal squamous carcinoma, and HCC [25].

Because of the high prevalence of EGFR overexpression in

carcinomas, inhibitors of epidermal growth factor (EGF) signaling

are potential therapeutic agents. In normal hepatocytes, ligand

binding to EGFR results in receptor dimerization and activation of

several possible pathways that transmit signals to the nucleus

including STAT-1, STAT-3, STAT-5, and MAPK [26]. EGFR

also signals through AKT in some cases [27]. In HCC,

overexpression of EGFR has been associated with late-stage

disease, increased cell proliferation, and the degree of tumor

differentiation [28]. Early studies of EGFR inhibitors in HCC cell

lines and phase II studies in human HCC have been encouraging.

PTK2. Protein tyrosine kinase 2 (PTK2) encodes a

cytoplasmic protein tyrosine kinase which is found concentrated

in the focal adhesions that form between cells growing in the

presence of extracellular matrix constituents [29]. The encoded

protein is a member of the focal adhesion kinase (FAK) subfamily

of protein tyrosine kinases but lacks significant sequence similarity

to kinases from other subfamilies. In HCC cell lines, the enhanced

expression of FAK changed the distributions of cytoskeleton in the

3D reconstituted basement membrane and increased the adhesion

and invasion potentials of cells [30]. It also has been demonstrated

that SOCS-3 negatively regulates cell growth and cell motility by

inhibiting Janus kinase/STAT and FAK signalings in HCC cells

[31]. In HCC tissues, FAK expression is significantly related to

subsequent metastasis [32]. Given the important role of FAK in

tumorogenesis, metastasis and survival signaling, it is regarded as a

potential target for novel anti-cancer drugs.

Validation of MAPK1 and NCOA2 hubs
We examined the hub-based model and chose to validate the

associations of MAPK1 and NCOA2 expression patterns with the

clinicopathological features of HCC, respectively.

MAPK1 was chosen because it was identified as a central hub

and had the largest number of network connections. Although it

Figure 4. Performance of HCC classifier (Classifier 2) with adding new non-hub genes (A for predictive accuracy and B for AUC
values) and with different ratios of hub and non-hub genes (C for predictive accuracy and D for AUC values). A and B showed that the
predictive performance of the classifier does not change significantly with the non-hub genes being added (p.0.05); C and D indicated that the
classifier worked much less properly with the hub genes being gradually reduced and non-hub genes gradually increased. Especially, the predictive
performance of the classifier was decreased with statistic significance when the proportion of hub genes was reduced to 3/7 of the original one
(*p,0.05).
doi:10.1371/journal.pone.0022426.g004
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has been demonstrated that the overactivation of MAPK pathway

is implicated in the pathogenesis of HCC, the functional role of

MAPK1 in the progression of HCC is under debate. The results of

immunohistochemical staining proved that MAPK1 expression

was absent or sporadic in PCLTs, whereas the distribution of

HCC cells with MAPK1 immunoreactivity occurred diffusely or

focally (Figure 5A and B, respectively). The MAPK1-positive cells

showed unequivocal cytoplasmic and/or nuclear staining patterns.

Of the 30 HCC tissues, 25 (83.33%) were positively expressed

MAPK1, whereas only 7 (23.33%) of 30 PCLTs were evaluated as

belonging to the MAPK1-positive group (p,0.01) (The detailed

information was shown in Table S10). Then, we compared the

clinicopathological findings of the MAPK1-positive and MAPK1-

negative groups (Table 2). The expression patterns of MAPK1 in

HCC tissues were significantly associated with the differentiation

degree (p = 0.03). Tumors with positive MAPK1 expression had

lower differentiation degree than those with negative expression.

Although there was no statistic significance, the patients with

positive MAPK1 expression tended to have higher Edmondson-

Steiner grade and higher AFP level than those with negative

expression. No signicant correlations were observed with other

parameters, including age, gender, portal vein infiltration status,

TNM stage, and lymphatic metastasis status (Table 2).

NCOA2 was chosen because its correlation with HCC

progression had never been reported according to our literature

retrieval. From the results of immunohistochemical staining, we

noticed that NCOA2 expression was absent or sporadic in PCLTs,

whereas the distribution of HCC cells with NCOA2 immunore-

activity occurred diffusely or focally (Figure 5C and D,

respectively). The NCOA2-positive cells showed unequivocal

nuclear staining patterns. Of the 30 HCC tissues, 24 (80.00%)

were positively expressed NCOA2, whereas only 4 (13.33%) of 30

PCLTs were evaluated as belonging to the NCOA2-positive group

(p,0.01) (The detail information was shown in Table S11). Then,

we compared the clinicopathological findings of the NCOA2-

positive and NCOA2-negative groups (Table 3). The expression

patterns of NCOA2 in HCC tissues were significantly associated

with the Edmondson-Steiner grade (p = 0.04). The positive

expression rate of NCOA2 in Edmondson-Steiner grade III,IV

group was significantly higher than that in Edmondson-Steiner

grade I,II group. Although there was no statistic significance, the

patients with positive NCOA2 expression tended to have higher

AFP level and lower differentiation degree than those with

negative expression. No signicant correlations were observed with

other parameters, including age, gender, portal vein infiltration

status, TNM stage, and lymphatic metastasis status (Table 3).

Discussion

Early and accurate diagnosis of HCC is crucial to the

development of patient tailored treatment strategies and the

improvement of patient prognosis. In this study, we developed a

novel classifier of HCC diagnosis that is based on integrating the

topological features of protein-protein interaction network with

gene expression data under disease conditions. The applicability of

this systems biology classifier of HCC diagnosis is supported by

several observations. First, we identified 10 up-regulated and 7

down-regulated hub genes that are believed to play a central role

in the progression of HCC. Among these hubs, 10 are known to

Figure 5. Immunohistochemical staining for MAPK1 and NCOA2 (Original magnification6200). A, MAPK1 expression was found in cell
cytoplasm and/or nucleus at various levels in HCC tissues; B, MAPK1 staining was negative in paracarcinomatous liver tissues; C, NCOA2 expression
was found in nucleus of tumor cells at various levels in HCC tissues; D, NCOA2 staining was negative in paracarcinomatous liver tissues.
doi:10.1371/journal.pone.0022426.g005
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play a mechanistic role in the carcinogenesis of HCC and the

others also have been identified as potential cancer related genes.

In addition, we confirmed that the expression patterns of 2 hubs–

MAPK1 and NCOA2 are significantly correlated with differen-

tiation degree and Edmondson-Steiner grade of HCC tissues,

respectively. Secondly, we developed a PLS model of HCC

classification using the hub-gene systems model. This was

independently validated by two test datasets from different

microarray platforms, their predictive accuracy was both more

than 85.00% and AUC values both approached 1.0. Thirdly, by

comparing the predictive performance of our classifier with

different ratios of hub and non-hub genes, we noticed that its

reliability and efficacy were decreased significantly with the decline

in the number of hub genes, which reflects the important

contribution of topological features of network to this classifier.

Furthermore, we confirmed that this modeling strategy is also

applicable to the diagnosis of other cancers, such as prostate

cancer.

When searching for a consensus cancer classifier, some studies

have applied a combined analysis of several microarray expression

datasets and used certain mathematical methods such as Logistic

Discrimination, Quadratic Discriminant Analysis, or analysis of

variance to ‘‘correct’’ systematic biases existing within those data

ets to train classifiers. Scherf et al. [33] used average-linkage

clustering for tumor tissues from various sites of origin. Support

Vector Machine was applied to the classification of tumor and

normal ovarian tissues by Furey et al [34]. While these methods

are certainly a step forward in the right direction, they may bring

about some problems as well. Experimental biases present in

similar datasets generated in different laboratories using different

microarray platforms can be possibly lessened or removed by those

methods. However, if datasets contain diverse patient populations,

technical and biological effects embedded in the microarray data

cannot be differentiated. Thus, the application of those methods to

‘correct’ such microarray data will remove informative biological

variability. To address this problem, some studies of gene networks

have already been used in identification of the signature of disease

mechanisms, investigation of cellular regulatory processes, hub

gene analysis, and molecular characterization of the cellular state.

Segal et al. [35] developed a module-network approach to the

identification of modules of coregulated genes by using microarray

data, enrichment analysis and promoter analysis, which is further

applied to discover the signature of the mechanisms underlying

tumorigenesis. Calvano et al. [36] integrated the structured

network knowledge-base approach, pathway analysis and micro-

array data analysis to develop an analytic method of systemic

inflammation. Liu et al. [37] developed a framework based on

cancer class-specific gene networks for classification and pathway

analysis using microarray data. Furthermore, Lu et al [10]

indicated that a major challenge to the analysis of microarray

data is the dependence of the interpretation of the biological

relevance of changes in expression on fold change or statistics. As

both approaches preferentially select genes with huge changes in

Table 2. Association of MAPK1 expression pattern with
different clinicopathologic features of HCC.

Parameters N

MAPK1 Expression
levels (n, %) p

Negative Positive

Gender

Male 22 3 (13.64) 19 (86.36) 0.30

Female 8 2 (25.00) 6 (75.00)

Age 30 56.20611.41 53.64611.40 0.42

Portal vein infiltration

Absence 28 5 (17.86) 23 (82.14) 0.69

Presence 2 0 (0) 2 (100.00)

Edmondson-Steiner
grade

I,II 20 5 (25.00) 15 (75.00) 0.11

III,IV 10 0 (0) 10 (100.00)

TNM stage

I,II 25 5 (20.00) 20 (80.00) 0.37

III,IV 5 0 (0) 5 (100.00)

AFP (ng/mL)

#400 22 5 (22.73) 17 (77.27) 0.18

.400 8 0 (0) 8 (100.00)

lymphatic metastasis

Absence 28 5 (17.86) 23 (82.14) 0.69

Presence 2 0 (0) 2 (100.00)

Differentiation degree

high 11 4 (36.36) 7 (63.64) 0.03

Moderate,low 19 1 (6.25) 18 (93.75)

doi:10.1371/journal.pone.0022426.t002

Table 3. Association of NCOA2 expression pattern with
different clinicopathologic features of HCC.

Parameters N

NCOA2 Expression
levels (n, %) p

Negative Positive

Gender

Male 22 4 (18.18) 18 (81.82) 0.34

Female 8 2 (25.00) 6 (75.00)

Age 30 55.92611.39 52.38611.26 0.45

Portal vein infiltration

Absence 28 6 (21.43) 22 (78.57) 0.63

Presence 2 0 (0) 2 (100.00)

Edmondson-Steiner
grade

I,II 20 6 (30.00) 14 (70.00) 0.04

III,IV 10 0 (0) 10 (100.00)

TNM stage

I,II 25 6 (24.00) 19 (76.00) 0.30

III,IV 5 0 (0) 5 (100.00)

AFP (ng/mL)

#400 22 6 (27.27) 16 (72.73) 0.13

.400 8 0 (0) 8 (100.00)

lymphatic metastasis

Absence 28 6 (21.43) 22 (78.57) 0.63

Presence 2 0 (0) 2 (100.00)

Differentiation degree

high 11 4 (36.36) 7 (54.55) 0.09

Moderate,low 19 2 (12.50) 17 (56.25)

doi:10.1371/journal.pone.0022426.t003
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expression, they found that many genes with important biological

functions would not be detected. Specifically, hub genes, which are

of high connectivity and putatively high biological importance,

may not be detected. This is why biological understanding is

enhanced by combining information including levels of change in

gene expression plus topological criteria from the analysis of

interaction networks.

In our classifier, the systematic integration of the differential

expression analysis on microarray data and topological features of

protein interaction network offers us two main advantages: First, it

enables us to sufficiently utilize the gene co-expression information

provided by the microarray data, which is believed to be more

informative than expression changes of individual genes for target

gene identification. Second, network analysis is a powerful tool to

understand pathological mechanisms of disease. By integrating the

topological features of biological network, some information lost in

the differential expression analysis is added to our classifier.

There are, however, some flaws with our classifier. First, the

analysis favored well-studied genes, because the published

literature-based primary interconnections were key criteria used

to build the network. We took this approach because hub

connectivity is correlated with the biological importance in yeast

studies [38]. Thus, the current model might not be as effective for

identifying orphan genes that function as central hubs in the

network. Second, although connectivity is the most important

topological feature for the components of biological networks, this

information is incomplete. Future studies integrating more

characteristics into our classifier should be able to provide a

keener insight into the network topology and tumorigenesis.

In conclusion, we developed a systems biology-based gene

expression classifier of HCC diagnosis by combining information

including levels of change in gene expression plus topological

features from the analysis of protein interaction networks. The

accuracy and stability of the predictive performance were

confirmed. Our modeling strategy may also prove useful for

diagnosis of other cancers.
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