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Abstract

Genomic copy number aberrations (CNAs) in gastric cancer have already been extensively characterized by array
comparative genomic hybridization (array CGH) analysis. However, involvement of genomic CNAs in the process of
submucosal invasion and lymph node metastasis in early gastric cancer is still poorly understood. In this study, to address
this issue, we collected a total of 59 tumor samples from 27 patients with submucosal-invasive gastric cancers (SMGC),
analyzed their genomic profiles by array CGH, and compared them between paired samples of mucosal (MU) and
submucosal (SM) invasion (23 pairs), and SM invasion and lymph node (LN) metastasis (9 pairs). Initially, we hypothesized
that acquisition of specific CNA(s) is important for these processes. However, we observed no significant difference in the
number of genomic CNAs between paired MU and SM, and between paired SM and LN. Furthermore, we were unable to
find any CNAs specifically associated with SM invasion or LN metastasis. Among the 23 cases analyzed, 15 had some similar
pattern of genomic profiling between SM and MU. Interestingly, 13 of the 15 cases also showed some differences in
genomic profiles. These results suggest that the majority of SMGCs are composed of heterogeneous subpopulations
derived from the same clonal origin. Comparison of genomic CNAs between SMGCs with and without LN metastasis
revealed that gain of 11q13, 11q14, 11q22, 14q32 and amplification of 17q21 were more frequent in metastatic SMGCs,
suggesting that these CNAs are related to LN metastasis of early gastric cancer. In conclusion, our data suggest that
generation of genetically distinct subclones, rather than acquisition of specific CNA at MU, is integral to the process of
submucosal invasion, and that subclones that acquire gain of 11q13, 11q14, 11q22, 14q32 or amplification of 17q21 are
likely to become metastatic.
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Introduction

Gastric cancer remains one of the most deadly diseases, despite

its steadily declining trend worldwide. Overall, mortality due to

gastric cancer is estimated to be 700,000 cases annually (10.4% of

all cancer-related deaths), ranking 2nd only after lung cancer [1].

Clinical outcome is better when the tumor cells are confined to the

mucosa. However, once the tumor cells pass through the

muscularis mucosa, the clinical outcome becomes worse, since

the risk of lymph node metastasis, which is one of the most

important prognostic factors in gastric cancer, increases signifi-

cantly to 18% or more, compared with less than 4% when the

tumor cells remain limited to the mucosa [2,3]. Therefore, a better

understanding of the mechanisms involved in the process of

submucosal invasion is required.

It is currently recognized that multistep accumulation of genetic

abnormalities is responsible for the onset and progression of various

cancers [4]. In fact, it has been reported that the total number of

genomic aberrations increases with tumor progression in various types

of tumors [5]. We also found that the frequencies of gains at 20q,

20p12, 1q42, 3q27 and 13q34 and losses at 4q34-qter, 4p15, 9p21,

16q22, 18q21 and 3p14, which had been frequently detected in gastric

cancer, were more frequent in AGC than in EGC [6]. Meanwhile, it

has recently been reported that, during the course of tumor

progression, a single tumor cell of origin evolves into several genetically

distinct subpopulations through the acquisition of a wide variety of

genomic aberrations. The resulting tumor mass, which is composed of

genetically heterogeneous subpopulations, is considered to become

resistant to a variety of environmental selection pressures [7,8,9,10].
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Figure 1. Typical histology of submucosal invasive gastric cancer and experimental design. (A) HE (a, c and e) and toluidine blue (b, d
and f) staining of case 18 in low- (a and b) and high- (c, d, e and f) power views. Tissue sections after microdissection are shown in (d) and (f). (B)
Overview of the experimental design. First, genomic profiles of 23 MU samples (a) were compared with those of paired 23 SM samples (b). Next, the
genomic profiles of 9 SM samples (c) were compared with those of the corresponding paired 9 LN samples (d). Finally, genomic profiles were
compared between the SM of 12 cases with LN metastasis (e) and the SM of 15 cases without metastasis (f). The individual samples of (a)–(b) are
indicated by superscripts in Table 1.
doi:10.1371/journal.pone.0022313.g001
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Array-based comparative genomic hybridization (array CGH)

provides information about genomic copy number aberrations

(CNAs) across the entire genome [11]. Moreover, CGH is also

applicable to the study of intratumoral genomic heterogeneity

[12,13,14,15]. Although several groups have used array CGH to

identify regions harboring oncogenic or tumor-suppressive genes in

gastric cancer [6,16,17,18,19,20,21,22,23,24,25], CNAs related to

submucosal invasion and the early phase of lymph node metastasis

have not yet been determined. Furthermore, since most previous

studies of CNAs in gastric cancer have analyzed only one sample for

each tumor, details of the heterogeneity of genomic profiles within a

single gastric cancer have remained largely unclear.

In this study, we investigated the involvement of genomic CNAs

in the process of submucosal invasion and lymph node metastasis

in early gastric cancer. For this purpose, we collected tumor

samples from different portions of the same tumor separately,

analyzed their genomic profiles by array CGH, and compared the

genomic profiles between paired samples of mucosal (MU) and

submucosal (SM) portions, and SM portion and lymph node (LN)

metastasis. Furthermore, by comparing the CNAs between

metastatic and non-metastatic submucosal-invasive gastric cancers

(SMGC), we identified the candidate CNAs related to LN

metastasis of early gastric cancer.

Materials and Methods

Ethics Statement
This study was approved by the ethics committee of Oita

University Hospital (Approval No P-05-04). Informed written

consent was obtained from all patients and/or their families.

Patients, tissue samples and extraction of genomic DNA
Twenty seven SMGCs were surgically resected at Oita

University Hospital. Tissue sections were cut from formalin-fixed,

paraffin-embedded tissue, and stained with hematoxylin-eosin

(HE) for histological analysis and with toluidine blue (Wako,

Osaka, Japan) for extraction of genomic DNA (Figure 1A). Using

laser-capture microdissection, we collected 1 to 3 samples from the

MU, SM and/or metastatic LN portion of the same SMGC tissue

separately. As a result, we were able to obtain a total of 59 samples

from 27 patients (Table 1). All samples included a proportion of

tumor cells exceeding 70% of the total. Genomic DNA was

extracted in according to the standard proteinase K digestion

method, followed by phenol/chloroform extraction. Non-neoplas-

tic gastric tissue from the same patients was used as a normal

control.

Array CGH and data analysis
Array-CGH analysis was performed using 44 K oligonucleotide

CGH arrays (Agilent Technologies Inc., Palo Alto, CA). Labeling

and hybridization were performed according to the protocol

provided by Agilent Technologies Inc. Briefly, 0.85–2 mg of tumor

DNA and an equal amount of control DNA were digested with

AluI and RsaI (Promega, Madison, WI, USA) for 24 h at 37uC.

The digested tumor and the control DNA were labeled with Cy5-

dUTP and Cy3-dUTP, respectively, using a Genomic DNA

Labeling Kit Plus (Agilent), purified with Microcon YM-30 filters

(Millipore, Billerica, MA, USA), and concentrated to 80.5 ml.

Equal amounts of tumor and control DNAs were subsequently

pooled and mixed with human Cot-1 DNA, dissolved in

hybridization buffer (Agilent Oligo aCGH Hybridization Kit;

Agilent Technologies), denatured and hybridized to the CGH

array at 65uC for 24 h. Glass slides were washed and then scanned

in accordance with the manufacturer’s instructions.

Microarray images were analyzed using FEATURE EXTRAC-

TION v.9.5.3.1 (Agilent Technologies) with linear normalization

(protocol CGH-v4_95_Feb07), and the resulting data were

imported into DNA Analytics v.4.0.81 (Agilent Technologies).

Following normalization of raw data, the log2ratio of Cy5 (tumor)

to Cy3 (Control) was calculated. Aberrant regions were deter-

mined by the ADM-2 algorithm at a threshold of 8.0. To detect

gains and losses, we set the values of parameters for aberration

filters as: minimum number of probes in region 2, minimum

absolute average log2ratio for region 0.26, maximum number of

aberrant regions 10000, and percentage penetrance per feature 0.

Similarly, to detect amplifications and deletions, we set the values

of parameters for aberration filters as: minimum number of probes

in region 2, minimum absolute average log2ratio for region 1.0,

maximum number of aberrant regions 10000, and percentage

penetrance per feature 0. Data generated by probes mapped to the

Table 1. Clinicopathological characteristics of patients.

Case Age Gender LN meta Collected sample histology*

Intramucosal Submucosal

1 77 male +d papa modb,c,e

2 81 female +d N.A. porb,c,e

3 70 male +d pora porb,c,e

4 60 male +d wella porb,c,e

5 47 female + (N.A.) pora porb,e

6 71 male +d wella modb,c,e

7 64 male +d moda modb,c,e

8 77 female +d pora porb,c,e

9 57 male +d N.A. modc,e

10 76 female 2 wella papb,f

11 81 male 2 wella porb,f

12 77 female 2 wella modb,f

13 79 male 2 wella wellb,f

14 71 male 2 pora porb,f

15 78 male 2 N.A. porf

16 78 female 2 wella wellb,f

17 79 male 2 pora porb,f

18 67 male 2 moda modb,f

19 81 female 2 moda modb,f

20 69 female 2 pora porb,f

21 76 female +d moda wellb,c,e

22 67 male + (N.A.) wella wellb,e

23 70 male 2 wella wellb,f

24 74 male 2 moda modb,f

25 76 male + (N.A.) N.A. pape

26 50 male 2 papa papb,f

27 70 male 2 moda modb,f

por = poorly-differentiated adenocarcinoma;
mod = moderately-differentiated adenocarcinoma;
well = well-differentiated adenocarcinoma;
pap = papillary adenocarcinoma.
*Japanese classification of gastric cancer.
N.A. = Samples that were not analyzed.
a,bSamples that were used for analysis shown in Figure 2(A) and (B).
c,dSamples that were used for analysis shown in Figure 4(A) and (B).
e,fSamples that were used for analysis shown in Figure 5(A).
doi:10.1371/journal.pone.0022313.t001
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X and Y chromosomes were eliminated. Genomic positions of

probes and aberrant regions were based on the UCSC March

2006 human reference sequence (hg18) (NCBI build 36 reference

sequence). All data are MIAME compliant (http://www.mged.

org/Workgroups/MIAME/miame.html) and the raw data have

been deposited in the MIAME-compliant GEO database (http://

www.ncbi.nlm.nih.gov/geo/, accession number GSE26800). An

overview of the experimental design is shown in Figure 1B. For

comparison of CNAs between paired MU and SM portions, we

selected 23 cases from the total of 27 (Figure 1B, a and b), since the

genomic profiles of both portions in these cases had been

successfully analyzed. Similarly, for comparison of CNAs between

paired SM and LN portions, we selected 9 of the 12 cases with a

LN portion (Figure 1B, c and d). Furthermore, we compared the

frequencies of CNAs between the cases with and without LN

metastasis (Figure 1B, e and f).

Immunohistochemistry
Immunohistochemistry was performed as described previously

[21] using anti-EGFR (1:100; Dako, Glostrup, Denmark), anti-

CTTN (1:200; Abcam, Cambridge, MA, USA) and anti-ERBB2

(1:800; Cell Signaling Technology, Berverly, MA, USA) antibodies.

Statistical analysis
Paired t test and Fisher’s exact test were used. Differences at

P,0.05 were considered statistically significant.

Results

Genomic clonality and heterogeneity in mucosal and
submucosal portions of SMGC

To investigate the involvement of genomic CNAs in the process

of submucosal invasion, we first compared the number of CNAs

Figure 3. Immunohistochemical analysis of EGFR and CTTN expression pattern in Case 4. HE staining (A–C), and immunohistochemistry
with antibodies against EGFR (D–F) and CTTN (G–I) are shown in low- (A, D and G) and high- (B, C, E, F, H and I) power views. EGFR, which was
amplified only in the MU portion (see Figure 2E), is strongly positive only in the MU portion (D, E and F). Meanwhile, expression of CTTN, which was
gained only in SM (see Figure 2F), shows higher positivity in SM than in MU (G, H and I).
doi:10.1371/journal.pone.0022313.g003

Figure 2. Comparison of CNAs between paired MU and SM portions. (A) Comparison of the number of CNAs in the MU and SM portions. For
this analysis, samples indicated by ‘a’ and ‘b’ in Table 1 were used. (B) Genome-wide frequencies of CNAs in MU and the corresponding paired SM in
23 cases. Horizontal lines: oligonucleotide probes are shown in order from chromosomes 1 to 22. Within each chromosome, clones are shown in
order from the p telomere to the q telomere. Vertical lines: frequency (%) of gains (positive axis) and losses (negative axis) are shown for each probe.
(C–F) Representative genomic profile of MU and SM portions of SMGC. Whole genomic profiles of the paired MU (above) and SM (below) portions
from case 4 are shown in (C). Detailed genomic profiles of Chr9, Chr7 and Chr11 are shown in (D), (E) and (F), respectively. Horizontal lines above the
center represent regions of gain, and those below the center represent regions of loss. Both MU and SM show similar genomic patterns in
chromosome 9p (D). However, amplification of 7p12, where the EGFR gene is located, is detected only in the MU portion (E), and gain of 11q13,
where the CTTN gene is located, is detected only in the SM portion (F).
doi:10.1371/journal.pone.0022313.g002
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between paired MU and SM samples from the 23 SMGCs

(Figure 2A). Eleven of the 23 cases showed an increased number of

CNAs in the SM portion as compared with the MU portion, 11

showed a decreased number, and the remaining one case showed

no change (Figure 2A). As a result, there was no statistically

significant difference in the number of CNAs between paired MU

and SM portions (Figure 2A, not significant in paired t-test).

Furthermore, to identify CNAs specifically associated with

submucosal invasion, we compared the averaged frequencies of

CNAs in the MU portion with those in the paired SM portion

(Figure 2B), but were unable to find any.

To investigate the difference of CNAs between MU and SM

from the same tumor, we compared the genomic profiles of paired

MU and SM in each case. One representative case is shown in

Figure 4. Comparison of CNAs between the paired SM and LN portions. (A) Comparison of the number of CNAs in the SM and LN portions.
For this analysis, samples indicated by ‘c’ and ‘d’ in Table 1 were used. (B) Genome-wide frequencies of CNAs in the SM and corresponding paired LN
in 9 cases. Horizontal lines: oligonucleotide probes are shown in order from chromosomes 1 to 22. Within each chromosome, clones are shown in
order from the p telomere to the q telomere. Vertical lines: frequency (%) of gains (positive axis) and losses (negative axis) are shown for each probe.
(C, D and E) Representative genomic profile of the SM and LN portions of SMGC. Whole genomic profiles of paired SM (above) and LN (below)
portions from case 9 are shown in (C). Detailed genomic profiles of Chr8 and Chr14 are shown in (D) and (E), respectively. Horizontal lines above the
center represent regions of gain, and those below the center represent regions of loss. Both SM and LN show similar genomic patterns in
chromosome 8 (D). However, gain of chromosome 14q is detected only in the SM portion (E).
doi:10.1371/journal.pone.0022313.g004

Figure 5. Comparison of CNAs between SMGC with and without lymph node metastasis. (A) Frequency (%) of gains (positive axis) and
losses (negative axis) in 12 SMGCs with lymph node metastasis (LN(+) 12 cases) and 15 SMGCs without lymph node metastasis (LN(2) 15 cases) are
shown. For this analysis, samples indicated by ‘e’ and ‘f’ in Table 1 were used. (B) Immunohistochemistry with anti-ERBB2 antibody. Primary SM (a, b
and c) portions are immunostained with the antibody against ERBB2. Cases with amplification at 17q21 showed strong immunoreactivity for ERBB2 (a
and b), while cases without such amplification did not (c).
doi:10.1371/journal.pone.0022313.g005
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Figure 2C, D, E and F. The paired MU and SM samples shared a

similar pattern of genomic aberration in chromosome 9p

(Figure 2D). However, there were distinct genomic aberrations

in chromosomes 7p and 11 in the same case, as shown in Figure 2E

and F. Amplification of 7p12 was observed only in MU, but not in

SM (Figure 2E), and gain of chromosome 11 was observed only in

SM, but not in MU (Figure 2F). These results suggested that tumor

cells in the MU and SM of this case were clonally related, but

composed of genetically heterogeneous subpopulations.

Next, to determine whether the tumor cells showing amplifica-

tion of 7p12 and those showing gain of 11q13 of case 4 were really

limited to the MU and SM, respectively, we analyzed tissue

sections from case 4 by immunohistochemistry with antibodies

against EGFR, which was amplified only in the MU portion

(Figure 2E), and CTTN, which was gained only in the SM portion

(Figure 2F). As shown in Figure 3, positive immunoreactivity for

EGFR was limited to the MU portion (Figure 3D, E and F),

whereas only the SM portion showed strong immunoreactivity for

CTTN (Figure 3G, H and I). These results suggested that, in case

4, the tumor cells with 7p amplification in MU could not have

invaded the SM, whereas those with chromosome 11 gain might

have invaded the SM.

Next, we analyzed genomic clonality and heterogeneity in the

MU and SM of other cases. Among the other 22 cases, 14 showed

a similar pattern of genomic aberration in the MU and SM

(Figures S1 (6 cases) and S2 (8 cases)), suggesting that the cancer

cells in the MU and SM of these cases were clonally related.

Interestingly, 12 of the 14 cases showed a significant difference in

the genomic profile patterns between MU and SM (Figures S1 (6

cases) and S2 (6 cases)), suggesting that these cases were also

composed of genetically heterogeneous subpopulations.

Genomic clonality and heterogeneity in primary (SM) and
metastatic (LN) portions of SMGC

Next, to investigate the involvement of CNAs in the process of

lymph node metastasis of early gastric cancer, we compared the

number of CNAs between paired primary (SM) and metastatic

(LN) portions of 9 SMGCs (Figure 4A). Three of the 9 cases

showed an increased number of CNAs in the LN portion, whereas

the remaining 6 cases showed a decrease (Figure 4A). As a result,

there was no significant difference in the number of CNAs

between the paired SM and LN portions (Figure 4A, not

significant in paired t-test). Furthermore, to identify CNAs

specifically associated with LN metastasis, we compared the

averaged frequencies of CNAs in SM with those in the paired LN

portion (Figure 4B), but were unable to find any.

To investigate the difference of CNAs between SM and LN of

the same tumor, we compared the genomic profiles of paired SM

and LN samples in each case. A representative case is shown in

Figure 4C, D and E. The paired SM and LN samples shared a

similar pattern of genomic aberration in chromosome 8

(Figure 4D), suggesting that both portions were derived from the

same clonal origin. However, gain of chromosome 14 was

observed only in SM, but not in LN (Figure 4E). These results

suggested that the tumor cells in the SM and LN portions of this

case were clonally related, but composed of genetically heteroge-

neous subpopulations.

We also analyzed genomic clonality and heterogeneity in SM

and LN portions from other cases. Among the other 8 cases, 5

Table 3. Minimal common regions of amplifications and deletions in SMGCs.

Choromosomal
band Chromosomal region (bp)

meta(+)
n = 12

meta(2)
n = 15

Fisher’s
exact test p
value Candidate gene

Amplification

8p23.1 10811845–11770357 2 0 0.19 XKR6, MTMR9, C8orf13, BLK, GATA4, NEIL2, FDFT1, CTSB

14q22.1 50171710–50181479 0 2 0.49 SAV1

17q21 35076296–35139027 4 0 0.028 TCAP,PNMT,PERLD1,ERBB2,C17orf37

19q12 34978732–35127210 0 5 0.047 CCNE1,C19orf2

Deletion

none

Detailed information regarding the size of regions in each case is shown in Table S1.
doi:10.1371/journal.pone.0022313.t003

Table 2. Comparison of CNAs between metastatic and non-
metastatic SMGC.

Chromosomal
band

Chromosomal region
(bp)

meta(+)
n = 12

meta(2)
n = 15

Fisher’s
exact test
p value

Gains

11q13.1–q13.5 66189604–76676099 4 0 0.028

11q14.1 76713358–78303305 4 0 0.028

11q22.2–q22.3 101630495–102844567 4 0 0.028

14q32.2–q32.33 98389742–105000952 4 0 0.028

Losses

none

doi:10.1371/journal.pone.0022313.t002

Table 4. Relationship between ERBB2 amplification and
overexpression.

17q21
amplification

ERBB2 overexpression
(immunohistochemistry) total

positive cases (%) negative cases (%)

+ 4 (100%) 0 (0%) 4

2 0 (0%) 23 (100%) 23

total 4 23 27

doi:10.1371/journal.pone.0022313.t004
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showed a similar pattern of genomic aberration in both SM and

LN (Figure S3), suggesting that the paired SM and LN portions

from these cases were clonally related. Furthermore, 4 of the 5

cases showed a significant difference in the genomic profile

patterns between SM and LN (Figure S3), suggesting that

these cases were also composed of genetically heterogeneous

subpopulations.

Comparison of genomic profiles between metastatic and
non-metastatic SMGC

Since no statistically significant differences were detected in the

frequencies of CNAs between paired SM and LN portions

(Figure 4B), we hypothesized that subpopulations carrying

metastasis-related CNAs might be present in the SM as well as

the LN portion of metastatic SMGC. Therefore, we next

compared the frequencies of CNAs in the SM portion of

metastatic SMGCs (12 cases) with those of non-metastatic SMGCs

(15 cases), and found that gains at 11q13, 11q14, 11q22 and 14q32

were detected more frequently in metastatic SMGCs than in non-

metastatic SMGCs (Figure 5A and Table 2). We also compared

the frequencies of high-level copy number aberrations, such as

amplification and deletion, between the two groups, and found

that amplification of 17q21 was detected more frequently in

metastatic SMGCs than in non-metastatic SMGCs (Table 3 and

Table S1). These results suggested that gains at 11q13, 11q14,

11q22, 14q32 and amplification at 17q21 are involved in the LN

metastasis of SMGCs.

The minimal common region of amplification at 17q21

contained 5 genes listed in Table 3. Since ERBB2, a well known

oncogene [26,27,28], was included in the list, we carried out

immunohistochemical analysis of ERBB2 overexpression in all 27

cases. As shown in Figure 5B, cases with 17q21 amplification

exhibited strong staining for ERBB2 in SM, whereas one case

without amplification did not. Furthermore, ERBB2 overexpres-

sion was significantly associated with 17q21 amplification (Table 4),

suggesting that ERBB2 amplification and overexpression may be

involved in the LN metastasis of a proportion of SMGCs.

Discussion

It is widely accepted that a tumor arises from a single cell.

However, how it progresses to an advanced stage is still being

debated. Early studies of colorectal and pancreatic cancers led to a

notion that the development and progression of these cancers are

associated with accumulation of chromosomal aberrations, referred

to as the multistep tumorigenesis model [29,30]. For example,

genomic aberrations of the APC, KRAS, SMAD4 and TP53 genes

are involved in the adenoma-carcinoma sequence in the colon [29].

However, such studies focused on only a proportion of tumor-

related genes, and neglected the role of most other genes.

Furthermore, this model was unable to evaluate the significance

Figure 6. Hypothetical model for the submucosal invasion and lymph node metastasis in early gastric cancer. The horizontal line in the
center of the figure indicates the muscularis mucosa. Gray circles indicate tumor cells. Colored small circles indicate genomic aberrations. Gastric
tumors arise from a single cell with one (or few) genomic aberration (a). The single clone then proliferates more effectively than its neighbors (b).
During the process of proliferation in the gastric mucosa, some tumor cells acquire new mutations at random. Subsequently, each of genetically
distinct subclones forms a unique subpopulation (c and d). Among these subpopulations, only one(s) with the capacity for invasion can pass through
the muscularis mucosa and proliferate in the submucosa (d and d9). Importantly, other clones cannot invade into the submucosa (c), but can
proliferate and form subpopulations genetically distinct from the invasive one. After invasion, one (or a few) subpopulation again develops further
genetically distinct subpopulations through clonal evolution (e and f), and one with the capacity for metastasis can spread to lymph nodes (f and f9).
Thus, the primary tumor mass becomes heterogeneous as a consequence of clonal evolution.
doi:10.1371/journal.pone.0022313.g006
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of intratumoral genomic heterogeneity for tumor development and

progression. Meanwhile, recent studies have led to the establish-

ment of another model, designated the clonal evolution model

[7,9,10]. In this model, a single clone evolves into several distinct

subpopulations through the accumulation of diverse genetic

abnormalities. The predominant population may be replaced by

distinct subpopulations within a single tumor mass through the

effects of environmental selection pressure and/or the stage of

tumor progression. As a consequence, several genetically heteroge-

neous cell populations may coexist within a single tumor mass.

Evidence of intratumoral genetic heterogeneity associated with

clonal evolution has been obtained for a variety of solid tumors,

including prostate cancer [14], Barrett’s esophagus [31], ovarian

cancer [32,33], cervical cancer [34], breast cancer [15,35],

neuroblastoma [36], pancreatic cancer [13,37], and colorectal

cancer [38]. Interestingly, in a study of lethal metastatic prostate

cancer, no CNAs specifically related to the site of metastasis were

found [14]. Similarly, in a study of high-grade serous ovarian

carcinoma, there was no evidence for a relationship between

acquisition of cisplatin resistance and specific CNAs [39]. These

results suggest that the multistep tumorigenesis model, in which

specific aberrations play important roles in tumor development and

progression, does not always represent the way in which tumors

acquire their malignant character. In the present study, we initially

hypothesized that acquisition of specific CNA(s) might be important

for submucosal invasion. However, we were unable to find any

CNAs that were more frequent in SM than in the paired MU

sample. Furthermore, we also observed no significant difference

regarding the number of CNAs in the paired MU and SM portions.

However, we found that the majority of SMGCs were composed of

clonally-related, but genetically distinct subpopulations, suggesting

that clonal evolution may occur during the progression of gastric

cancer. Taken together, although the number of cases examined

was limited, our findings suggested that generation of genetically

different subpopulations rather than acquisition of specific CNAs in

the MU portion may be important for the process of submucosal

invasion. On the basis of these findings, we propose a hypothetical

model for the process of SM invasion and LN metastasis of early

gastric cancer (Figure 6). To confirm this hypothesis, further studies

with larger samples will be required.

Our data indicating that SMGCs are composed of genetically

heterogeneous subpopulations are important in the context of gastric

cancer research and treatment, because tumor heterogeneity makes the

development of effective drugs difficult. Since genomic CNAs have an

impact on gene expression profiles in various cancers

[16,21,40,41,42,43], it is possible that each of the genetically distinct

subpopulations within a single tumor may differ in both biological

behavior and response to anticancer drugs, including molecular

targeting agents. Cooke et al. have proposed that clarification of

different genetic subpopulations within a single tumor would allow

effective therapy employing a specific agent targeting a common

genomic aberration or combined agents targeting unique genomic

aberrations in each of the distinct subpopulations [39]. This strategy

may also applicable to the treatment of gastric cancer.

Among the 23 cases we analyzed, 15 showed a clonal

relationship between the MU and SM portions. Furthermore, 13

of the latter 15 cases also showed differences in CNAs between the

two regions, suggesting that clonal evolution frequently occurs in

the early phase of gastric carcinogenesis. The relationship between

the paired MU and SM samples in the other 8 cases without

common CNAs remained unclear. Two possible explanations for

this can be suggested. One is that tumors in the paired portions,

which did not have common CNAs, developed independently.

The other is that the paired portions shared other types of genetic

aberrations, such as mutations and translocations, which cannot

be detected by array CGH. In the latter case, next-generation

sequencing might be useful for analyzing such relationships.

In this study, gains at 11q13, 11q14, 11q22, and 14q32, and

amplification at 17q21, were more frequent in the SM portion of

metastatic SMGCs than in those of non-metastatic SMGCs.

Interestingly, gains at 11q13 and 14q32 are reportedly involved in

liver metastasis of colon cancer [38]. Therefore, these data suggest

that gain at 11q13 and 14q32 may be involved in the metastasis of

gastrointestinal cancers. Chromosome 17q21 harbors a potent

oncogene, ERBB2. Association of ERBB2 expression with the

clinicopathological features of gastric cancer has been investigated

in several studies [44,45,46,47,48,49]. However, the influence of

ERBB2 overexpression on LN metastasis differed among those

studies [44,46,47]. In the present study, despite the limited

number of SMGCs examined, all of those with ERBB2

amplification and overexpression showed lymph node metastasis.

Further study using a larger number of SMGCs will be required to

evaluate the significance of this tendency.

Supporting Information

Figure S1 Cases showing both common and different
genomic aberrations between the MU and SM portions.
The left panels show common patterns of genomic aberrations in

MU and SM for each case. The center and right panels show

different patterns of genomic aberration between the two portions

in each case.

(TIF)

Figure S2 Cases showing both common and different
genomic aberrations between the MU and SM portions.
Common and different patterns of genomic aberration between

MU and SM for each case are shown.

(TIF)

Figure S3 Cases showing both common and different
genomic aberrations between the SM and LN portions.
The left panels show common patterns of genomic aberration

between SM and LN for each case. The center and right panels

show different patterns of genomic aberration between the two

portions in each case.

(TIF)

Table S1 Recurrent amplifications and deletions in
SMGCs.

(DOC)
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