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Abstract

Background: To identify potential environmental drivers of Japanese Encephalitis virus (JE) transmission in Nepal, we
conducted an ecological study to determine the spatial association between 2005 Nepal JE incidence, and climate,
agricultural, and land-cover variables at district level.

Methods: District-level data on JE cases were examined using Local Indicators of Spatial Association (LISA) analysis to
identify spatial clusters from 2004 to 2008 and 2005 data was used to fit a spatial lag regression model with climate,
agriculture and land-cover variables.

Results: Prior to 2006, there was a single large cluster of JE cases located in the Far-West and Mid-West terai regions of
Nepal. After 2005, the distribution of JE cases in Nepal shifted with clusters found in the central hill areas. JE incidence
during the 2005 epidemic had a stronger association with May mean monthly temperature and April mean monthly total
precipitation compared to mean annual temperature and precipitation. A parsimonious spatial lag regression model
revealed, 1) a significant negative relationship between JE incidence and April precipitation, 2) a significant positive
relationship between JE incidence and percentage of irrigated land 3) a non-significant negative relationship between JE
incidence and percentage of grassland cover, and 4) a unimodal non-significant relationship between JE Incidence and pig-
to-human ratio.

Conclusion: JE cases clustered in the terai prior to 2006 where it seemed to shift to the Kathmandu region in subsequent
years. The spatial pattern of JE cases during the 2005 epidemic in Nepal was significantly associated with low precipitation
and the percentage of irrigated land. Despite the availability of an effective vaccine, it is still important to understand
environmental drivers of JEV transmission since the enzootic cycle of JEV transmission is not likely to be totally interrupted.
Understanding the spatial dynamics of JE risk factors may be useful in providing important information to the Nepal
immunization program.
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Introduction

Japanese Encephalitis (JE) is a viral zoonotic mosquito-borne

disease which causes 30,000 to 50,000 human cases per year,

primarily in Asia, making it the most common cause of viral

encephalitis [1]. Infection results in case fatalities of 0.3% to 60%

[2,3]. JE is caused by the JE virus (JEV), a member of the

Flaviviridae family, which also includes dengue virus, West Nile

virus, and Yellow fever virus [4]. The virus is transmitted through

a wide range of vectors, but the primary vector of JEV across Asia

is the mosquito Culex tritaeniorhynchus. JEV infects a wide range of

vertebrates; however its primary reservoir host is water birds such

as egrets and herons [5]. Rice-fields are the preferred development

sites for C. tritaeniorhynchus as well as the main foraging site for

water birds; thus rice-fields provide an important transmission site

for infectious and susceptible birds and mosquitoes to meet. Pigs
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are considered a secondary reservoir host because they produce

high viraemias when infected, and readily infect pig-biting

mosquitoes. Humans are considered tangential hosts because low

viremia is produced when they are infected, which means they

cannot infect mosquitoes when bitten; hence, the virus transmis-

sion cycle reaches an end when humans are infected. When

mosquito populations become adequately high, JEV transmission

spills over from the mosquito-bird-pig cycle into human

populations. Two major risk factors of JEV transmission to

humans are close proximity to rice fields and pigsties.

Major environmental drivers capable of amplifying JEV

transmission are temperature and precipitation, which act

primarily through their influence on mosquito vector life history

such as development time of immature mosquito stages (i.e. larvae

and pupae) and population abundance [6,7,8,9,10] and the

extrinsic incubation period of the virus in the mosquito once it is

acquired by bite from an infected vertebrate host [11]. However,

with the concern of climate change threatening increased

transmission of several arboviruses [12], advancing the knowledge

base of JE-climate interactions is needed. Early studies of JE

epidemiology demonstrated that JEV transmission was associated

with high temperature and low rainfall [13]. Other studies in

China [14] and Taiwan [15] have found significant temporal

associations between climate and JEV transmission with different

time lags. Despite these studies, a dearth of spatial studies exists

that examine the associations between JEV transmission and

climate variables. Other potential drivers of JEV transmission

include land-use and land-cover [16,17,18].

While the influence of environmental drivers of JEV transmis-

sion has been described in other countries across Asia, few have

investigated these drivers in Nepal, despite the heavy disease

burden of JEV infection among human populations. JE was first

recognized in Nepal in the terai region in 1978. The terai region is

comprised of a belt of marshy grasslands, savannas, and forests at

the base of the Himalayan Mountains. The altitude ranges from

approximately 55 to 500 m. The transmission season in Nepal

starts from June to October with a peak in August [19]. High case-

fatality (15%–35%) due to JEV transmission has been reported in

the terai since its discovery, making it the most common cause of

encephalitis and a growing public health concern in the Nepal

terai region [5]. Additionally, since 1997 there have been reports

of JEV transmission expanding from the terai region to the hill

region (altitude of 1,300 m) of Nepal with a significant number of

cases appearing in the Kathmandu Valley [5,20,21]. It is not clear

what is driving this expansion. Recent studies in animals in Nepal

have found significant exposure to JEV in pigs, horses and ducks

[22,23].

From 2004 to present, Nepal has been actively detecting JE

cases through their national vaccine preventable diseases surveil-

lance network for acute encephalitis syndrome (AES) conducted by

the government of Nepal, with technical and financial support

from the World Health Organization (WHO) [20]. Through the

national surveillance program it has been confirmed that

significant transmission of JEV is indeed occurring in the

Kathmandu valley [21] and other locations in the hill and

mountain districts [20] of Nepal and not only the terai region of

Nepal. Given these findings, it has been suggested that the national

JE prevention and control program should not only focus on the

terai region, but should also give attention to other regions of

Nepal [20]. In addition, under the Nepal Ministry of Health and

Population, mass JE vaccination campaigns have been conducted

annually in a phase-wise manner targeting 1 to 8 endemic districts

each year beginning in 2006 with reported coverage .80% of the

targeted population. Approximately half of the 23 districts have

targeted only children 1 to 15 years of age, whereas the other

districts have targeted all persons greater than 12 months of age.

With the current surveillance program in place, it is now possible

to examine, country-wide, the spatial patterns of JEV transmission

in Nepal.

The expansion of JEV transmission into the hill and mountain

regions raises questions on the ecology of transmission among the

various regions of Nepal and the spatial patterns therein. In this

study, we look at the changing trend of clustering of JE cases in the

different districts of Nepal. In addition, in this study, we focus

our environmental analysis on the 2005 JEV epidemic. This is due

to the large number of cases that occurred in that year (669

laboratory-confirmed cases). Furthermore, we wanted to deter-

mine the impact of climate and land-use land-cover variables on

JE cases without the influence of mass immunization. We conduct

the first ecological spatial analysis in Nepal to determine the spatial

association between Nepal JE incidence and two climate variables

(mean monthly temperature and mean total precipitation) as well

as two agricultural variables (percentage irrigated land, pig-to-

human ratio) and three land cover variables (deciduous tree cover,

grassland cover and cropland cover) at the district level using

national laboratory-confirmed data. We tested the following

hypotheses: 1) the environmental drivers of JEV transmission

were the same before and after the 2005 epidemic, 2) lagged

monthly temperature and precipitation variables predict JE

incidence better than annual climate variables and 3) in Nepal,

JEV transmission is related to agricultural, land-cover and land-

use patterns (i.e. pig-to-human ratio, percentage irrigated land and

deciduous tree cover, grassland cover and cropland cover) that are

associated with transmission cycles involving the life history of the

mosquito vector and availability of the reservoir host.

Methods

Japanese Encephalitis case detection
JE case detection in Nepal has been described previously [24].

Briefly, the Nepal model for JE case surveillance is based on

experience implementing clinical surveillance of encephalitis.

Because the symptoms of JE are similar to many other encephalitic

diseases, patients are initially investigated as Acute Encephalitis

Syndrome (AES) patients with the etiology of the encephalitis

determined later. AES cases are defined as any patient presenting

with acute onset of fever and a deterioration in mental status (e.g.,

confusion, disorientation, coma, or inability to talk) and/or new

onset of seizures excluding simple febrile seizures. Using a

structured reporting form, information on age, gender, district of

residence, and whether the patient had been immunized against

JEV are recorded. Clinical data including date of disease onset and

symptoms (e.g., fever, neck rigidity, convulsions) as well as

outcome at discharge (i.e., cured, referred, death, unknown) are

recorded. Five mL of serum or 2 mL of cerebrospinal fluid (CSF)

are obtained from each patient. The serum or CSF samples are

labeled with the patient identification number and stored at 2uC to

8uC until transported in cold boxes with ice packs to the National

Public Health Laboratory in Kathmandu. Laboratory confirma-

tion is made from a single serum or CSF sample by detection of

anti-JE immunoglobulin M (IgM) antibody titers using an IgM

antibody capture enzyme- linked immunoassay.

Geographical and Meteorological data
District-level geographical information systems (GIS) shapefiles

of Nepal were acquired from the International Centre for

Integrated Mountain Development (geoportal.icimod.org/Down-

loads/) (See Figure S1. for a general map of Nepal districts). Nepal

JE Incidence and Environmental Associations
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temperature and precipitation data were acquired from World-

Clim Global dataset www.worldclim.org/). WorldClim is a set of

global climate layers (climate grids) with a spatial resolution of a

square kilometer. The WorldClim dataset, which spans from 1950

to 2000, is meant to serve as a high resolution source of climate

data, which is interpolated from various climate sources [25]. The

WorldClim station network over India – Nepal is relatively dense

to have confidence in the final high resolution gridded product.

Long-term climate normals were acquired for annual mean

temperature and precipitation, as well as mean temperature and

precipitation for the individual months of April and May, as well

as the three month period from June to August. The WorldClim

dataset is gridded and zonal estimation was used to summarize the

values of the gridded climate datasets within Nepal district

shapefiles using the Spatial Analyst module in ArcView GIS 9.3

H (ESRI, Redlands, CA). In subsequent analysis we made the

assumption that using the WorldClim dataset that spans from

1950 to 2000 would be able to predict JE incidence in the 2005

outbreak in Nepal.

Agricultural and Land-use Land-cover data
Nepal agricultural data (i.e. irrigated land area and pig number)

was acquired from the Nepal Ministry of Agriculture and

Cooperatives (www.moac.gov.np/home/statistics.php). All data

were reported as ‘‘per district’’ and is based on 2008/2009

estimate from surveys. We assumed no major changes in pig

number and irrigated land area in each of the districts from 2004

to 2008. We calculated the percent of irrigated land for each

district by taking the total irrigated land area and dividing it by the

total district areas size and multiplying by one hundred. We also

calculated the ratio of pig-to-human population per district to

account for differences in exposure in areas with high and low

human and pig populations. Land-cover data was downloaded

from Boston University’s MODIS Land Cover and Land Cover

Dynamics project (www-modis.bu.edu/landcover/). We used the

dataset consisting of the International Geosphere Biosphere

Programme (IGBP) classification scheme which is comprised of

17 land cover classes. After conducting a Pearson’s coefficient

correlation analysis with all land cover variables and 2005 district

level JE incidence values, we selected the percentage of grassland

cover (r = 20.690, P,0.001) and the cropland cover (r = 0.609,

P,0.001) for further analysis because they had the highest

negative and positive correlation with JE incidence respectively.

We also included percentage of deciduous tree cover (r = 0.442,

P,0.001), since other studies suggested this may be an important

factor in mosquito niche selection [26].

Cluster analysis
Univariate Local Indicators of Spatial Association (LISA) were

used to describe the spatial pattern of JE incidence clusters at the

district level for the years of 2004 to 2008. LISA maps are

particularly useful to assess the hypothesis of spatial randomness

and to identify local hot and cold spots of a phenomenon [27,28].

The univariate LISA gives an indication of the degree of linear

association (positive or negative) between the values for one value

at a given location and the average of neighboring values in the

surrounding location. Univariate LISA suggest two classes of

positive spatial correlation, or spatial clusters (High-High and

Low-Low), and two classes of negative spatial correlation, or

spatial outliers (High-Low and Low-High). The LISA cluster maps

indicate only the center of the cluster. The actual extent of the

cluster includes the center and the surrounding neighbors as

defined by a weights matrix. In GeoDa alpha release 0.9.8.14

(geodacenter.asu.edu/software/downloads), a randomization ap-

proach is used to generate a spatially random reference

distribution to assess statistical significance. In order to do spatial

analysis such as LISA analysis or other spatial analyses, a

contiguity-based spatial weight matrix must be created to identify

spatial relationships between geographic features, in our case

Nepal district polygons. In this analysis, we used a first order Rook

Contiguity which uses a common boundaries of polygons to define

Nepal district polygon neighbors [27]. For 2005 and 2008 data, we

also calculated the relative risk of JE incidence in high JE-incident

clustered areas versus non-clustered areas using SatScanTM.

SatScanTM uses a variable-sized window to test for possible

clusters noting the number of observed and expected observations

inside the window at each location [29]. To do this purely spatial

analysis, we used a circular spatial window and scanned for

clusters with high rates using the discrete Poisson model.

Statistical model
In our analysis, we used a strategy similar to Wimberly et al.,

2008 [30]. We used a three-step process to develop a model that

identifies ecologically-important variables that are likely drivers of

JEV transmission in Nepal using 2005 data only. The rationale of

using this three-step process was first, to characterize how

temperature and precipitation are associated with the distribution

of JE cases, since these variables can have differential impacts on

mosquito populations and subsequent virus transmission. For

example, laboratory studies have found that there is an ‘optimum

range’ for virus transmission in mosquitoes [11]. This can be

modeled with quadratic polynomial terms; second, to expand the

climate model to include agricultural and land-cover variables that

have previously been identified as important risk factors of JEV

transmission; third, to develop a parsimonious model that

emphasizes the variables which are the most important for

describing JEV distribution. In all models, a spatial lag regression

model was done to account for spatial autocorrelation. The spatially

lagged regression models determine whether the dependent variable

covaries with its geographic neighbors [31]. The importance of

accounting for spatial autocorrelation is to avoid spurious

associations between dependent and independent variables when

they share the same spatial clustering or are uniform in space [31].

Our first step was to compare competing models based on the

climate variables mean temperature and mean precipitation. The

models allowed for a) an interaction term between temperature

and precipitation to determine if there were different responses

between JE incidence and temperature for different levels of

precipitation, b) a curvelinear or unimodal relationship between

temperature and precipitation and JE incidence using a second-

order trend surface of mean monthly temperature and mean

monthly precipitation to determine if these climate parameters

would provide a better fit to JE incidence and, c) a spatial lag term

to account for spatial autocorrelation among the Nepal districts

(i.e. account for JE clustering). Six models were compared based

on the following:

1. Annual mean temperature and precipitation from 1950 to

2000

2. April mean monthly temperature and precipitation (2-month

lag from transmission season)

3. May mean monthly temperature and precipitation (1-month

lag from transmission season)

4. April temperature (2-month lag) and May precipitation (1-

month lag)

5. April precipitation (2-month lag) and May temperature (1-

month lag)

JE Incidence and Environmental Associations
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6. June-July-August mean temperature and precipitation (these 3

months represent the climate at peak JEV transmission)

The model used is below:

y1~b0zb1tizb2t2
i zb3pizb4p2

i zb5tipizrvyi

where i represents each Nepal district, yi is the JE incidence, ti is

the temperature variable, pi is the precipitation variable, b is the

parameter estimate and rviyi is the spatial lag term [31].

The months of April and May were chosen to encompass 2-

month and 1-month climate lags respectively from the JEV

transmission season which starts in June. The months of June to

August were chosen since this is the time at which JEV

transmission increases and peaks.

Using GeoDa, a spatial lag model approach was used to model JE

incidence as a function of the competing sets of climate variables.

Within each district, the incidence of JE was calculated by taking the

number of JE cases in 2005 and dividing it by the 2005

population estimate for each district. District population estimates-

were calculated by regressing a line through the projected

Nepal population point estimates for 2001, 2006, 2011, 2016, and

2021; (www.cbs.gov.np/Gis_Maps/Population%20Projection_-

Trends/Population%20Projection%202001%20-%202021.gif) from

the regression line the population estimates were derived. Since these

projections use 2001 Nepal census data as a baseline and extrapolate

their projections based on population growth estimates, we found this

approach to be satisfactory in providing estimates of the district

population size. Due to the sizable variation of area and population

density across these administrative units, the crude 2005 incidence

rates for each district polygon was first estimated by using spatial

empirical Bayes smoothing method available in GeoDa. This

smoothing procedure was suggested to adjust for the potential bias

resulting from estimating from a small population at risk [32]. The

first order Rook contiguity-based spatial weight matrix method,

mentioned in the cluster analysis section, was used for the both the

spatial empirical Bayes smoothing and the spatial lag model. In order

to avoid the violation of the constant variance assumption in linear

regression, we used a negative-reciprocal transformation on the

Spatial Empirical Bayes smoothed JE incidence. This drastically

reduced heteroscedasticity (i.e. irregular variance) more than a log

transformation. The dependent variable (i.e. smoothed JE incidence)

was transformed using a negative reciprocal (21/(yi+1)) transforma-

tion. To further increase interpretability we added 1 to the newly

transformed variable to make the values positive. To improve model

convergence and interpretation, and reduce problems with collin-

earity (i.e. high correlation between independent variables) between

second order and interaction terms, independent variables were

centered by subtracting their mean [33]. The R2, adjusted R2 and

Akaike’s information criterion (AIC) were used as metrics to compare

the candidate models. The model with the highest R2 and lowest AIC

was selected as having the best fit. To assist in visualizing the

relationship between JE incidence and environmental variables, we

made contour plots based on the spatial lag model in Microsoft H
Excel 2007 (Microsoft, Redmond, WA).

In the second step of our analysis, a full model using the 2005

data was created by adding the agricultural, land-use and land-

cover variables (i.e. pig-to-human ratio, percentage irrigated land,

percentage deciduous tree cover, percentage grassland cover and

percentage cropland cover) to the best fitting temperature/

precipitation model. Early exploratory analysis suggested that

the addition of squared term of pig-to-human population ratio

may improve subsequent linear regression models. To avoid

problems with collinearity, we centered pig-to-human population

ratio subtracting the mean from the variable. The new centered

variable and the quadratic term of the new centered variable was

entered into the model. We also found that taking the natural log

of percentage irrigated land, deciduous tree cover, grassland cover

and cropland cover also stabilized the variance between these

variables and JE incidence.

In the third and final step of our analysis, a parsimonious model

was created in IBMH SPSSH Statistics 17 using a backward

selection method. The subsequent model variables found to be

important in IBMH SPSSH Statistics 17 (IBM SPSS, Chicago, IL)

were used to create the spatial lag model in GeoDa. This was done

because at present there is no backward selection method in

GeoDa and it would have been computationally tedious to execute

this method using partial F tests with GeoDa.

To test whether environmental driver trends of 2005 still remain

constant, despite the changes in JE incidence cluster patterns due

to mass vaccination programs, we used the variables in the 2005

parsimonious model to create subsequent models using 2004,

2006, 2007 and 2008 JE incidence data. We evaluated the

respective models by comparing the R2 values and parameter

estimates of 2005 with the other years.

Results

Seasonal transmission of JE
Figure 1. shows a time series of laboratory-confirmed JE cases

from June 2004 to April 2009 and the annual seasonal

transmission pattern of laboratory-confirmed JE cases. Figure 1A.

shows that in 2006 there was a drop in the number of JE cases.

However, a substantial number of JE cases still occurred (over 100

laboratory confirmed cases across all years). Figure 1B. confirms

the general trend of JEV transmission is an initial increase of

transmission from June followed by a peak in August and a

decrease in transmission thereafter.

Cluster analysis
Figure 2. shows the distribution of JE incidence and the most

likely clusters in Nepal from 2004 to 2008 using SatScan. The

general trend shows JEV transmission concentrated in the Mid-

West and Far-West terai regions with high values of JE incidence

from 2004 to 2005 but gradually decreasing in the terai region.

LISA analysis of JE epidemics that occurred from 2004 to 2008

identified different foci of JE transmission (Figure 3). The shift can

be seen when looking at the JE incidence distribution of the 2005

outbreak year and the later year of 2008 (Figure 3), where high

values in 2008 cluster around the Kathmandu valley. Using

SatScan, we found that in 2005 the relative risk for populations

inside the JE cluster (which included the following districts:

Achham, Banke, Bardiya, Dailekh, Dang, Doti, Jajarkot, Kailali,

Kalikot, Kanchanpur, Salyan, and Surkhet; see Figure 2.)

compared to those outside the cluster was 9.82 (95% Confidence

interval: 8.83–11.51). While in 2008, we found that the relative

risk for populations inside the JE cluster (which included the

following districts: Bhaktapur and Kathmandu) compared to those

outside the cluster was 3.93 (95% Confidence Interval: 3.00–5.13

see Figure 2.). This suggests higher risk of JE in these clustered

areas versus outside of these clusters.

Statistical modeling
The model based on May temperature and April precipitation

had the best fit as indicated by the high R2 value and low AIC

(Table 1.). Temperature and the spatial lag term were the only

variables found to be highly significant with a positive association

with JE incidence. Quadratic and the interaction terms did not

JE Incidence and Environmental Associations
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have high statistical significance. The other models had weaker

fits, though the model with April temperature and precipitation

was comparable in R2 value and AIC. Though precipitation was

not statistically significant, the 2-months and 1-month lag (April

and May) models did show a negative relationship with JE

incidence, with high number of JE cases occurring when there is

low precipitation in the preceding months (Figure 4C–F.). In the

Annual and June–July–August models, precipitation had a

positive, albeit non-statistically significant, association with JE

incidence (Table 1. and Figure 4A and B.).

Compared to the crude climate model (i.e. May temperature/

April precipitation alone), higher R2 and higher AIC were

obtained after incorporating the variables pig-to-human ratio

and its quadratic term, the natural log-percentage of irrigated land

and deciduous tree cover, grassland cover and cropland cover into

the model (see Figure S2.). for the distribution of environmental

variable values in Nepal used in full and parsimonious models).

However, the only variable which was statistically significant in the

full model was the interaction term and the spatial lag term

(Table 2.). There was high collinearity in the full model,

specifically with temperature (Variance Inflation Factor .16; see

Table S1 for the Pearson’s correlation coefficient matrix of the

variables used in the full model for 2005 JE incidence). Therefore,

we developed a parsimonious model using backward selection

method in which precipitation, the percentage of irrigated land,

the percentage of grassland cover and the pig-to-human ratio

remained in the model, but not temperature, its quadratic term or

the quadratic term of precipitation (Table 3.). The parsimonious

model was found to be comparable to the full model in the R2

value, but the parsimonious model had a lower AIC than the full

model indicating a better explanatory model. Precipitation was

negatively associated with JE incidence, while percentage of

irrigated land was positively associated with JE incidence. Neither

the percentage of grassland cover, pig-to-human ratio nor its

quadratic term was significantly associated with JE incidence.

When we compared the observed JE incidence with the predic-

ted JE incidence we found that the model heavily underestimated

the JE incidence in Bardiya, Banke, Dang and Kailali (observed:

25.50, 21.69, 17.25 and 15.17 vs. predicted: 2.80, 2.92, 2.25 and

1.99 respectively). However a similar pattern in JE incidence

distribution was still seen between the observed and predicted

maps (see Figure S3. for the predicted smoothed JE incidence in

each of the districts and the prediction error using the

parsimonious model).

When we applied our parsimonious model to the other years,

we found that 2004, 2006 and 2007, R2 values, AIC, parameter

coefficients were similar. Significance level among the environ-

mental variables showed variability from year to years (Table 4.).

For example, April precipitation was statistically significant during

2004 and 2005, percentage irrigated land was significant in 2005

and 2007 and percentage grassland cover was significant in 2004

and 2006. In 2007, a statistically significant unimodal relationship

between JE incidence and pig-to-human ratio emerged. In 2008,

April precipitation took on a positive trend, albeit not significant.

The only variable consistently significant throughout the years was

the spatial lag term.

All regression b coefficients in Table 1–4 represent a non-linear

increase (or decrease when the coefficient value is negative) in JE

incidence when there is a 1-unit increase in each respective

predictor variable.

Discussion

In this paper we conducted one of the first spatial analyses of

JEV transmission in Nepal. Using laboratory confirmed JE cases

from the national AES surveillance program in Nepal, we

identified spatial clusters of JE incidence in 2004 to 2008 and

developed a spatial statistical model with climate and land-cover

variables. We identified key variables that describe the spatial

distribution of JE cases in Nepal.

Figure 1. Time Series graph (A) of laboratory confirmed Japanese Encephalitis (JE) cases and a box plot (B) of seasonal transmission
of confirmed JE cases from June 2004 to April of 2009. The dark line in the middle of the boxes is the median value; the bottom and top of the
boxes indicates the 25th and 75th percentile respectively; whiskers represents 1.5 times the height of the box; and dots with numbers represent
value of outlier cases and asterisks with number represent extreme values outlier cases (i.e. more than three times the height of the boxes).
doi:10.1371/journal.pone.0022192.g001
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JE clustered mostly in the Far-West and Mid-West terai Regions

of Nepal in 2005. In 2008, a large JE cluster was found to exist in

the central hill area, primarily the Kathmandu, Lalitpur,

Bhaktapur districts (i.e. Kathmandu Valley). It has been suggested

that the shifts in JEV transmission distribution may be due to 1)

the mass immunization campaigns conducted in Nepal, which

have been introduced since 2006 and are being conducted in a

phase-wise manner starting with highest priority districts assigned

by Nepal MOH or 2) conferred widespread immunity resulting in

fewer susceptible people in the terai because of the large JE

epidemic in 2005 [21].

However, the discovery that higher elevation locations in the hill

areas, in particular the Kathmandu Valley, was found to have

moderate levels of JEV transmission is a considerable finding,

given that this region was not previously thought to have a

significant JE problem [21]. Under conventional wisdom, the

altitude (1,500 m) and subsequent lower temperature of the valley

would preclude the possibility of transmission due to low likelihood

the mosquito vectors could survive in this location and the

temperature threshold for transmission of JEV in the mosquito

could be achieved. However, studies have found potential

mosquito vectors in the hill and mountain areas of Nepal

[34,35,36]. Also, JEV transmission has been shown to still occur

at temperatures as low as 20uC [11], which is a temperature that

can be experienced in the Kathmandu Valley. Though JEV

transmission in the Kathmandu Valley has been reported

previously [37], detection was limited to only one hospital over a

limited timeframe [21]. Further investigation in this area is

required to understand the dynamics of transmission in this area to

rule any effects of other confounding circumstances such as human

movement of infected individuals into the region.

With regards to climate variables, we used the WorldClim

dataset which represent climate normals over a 50-year period

(1950–2000) rather than weather data at the time of the 2005

outbreak. Wimberly et al found that climate normals provided a

better model fit to West Nile incidence than annual weather and

weather anomalies [28], suggesting that long-term trends in

weather pattern, better predicts subsequent pathogen transmis-

sion. For that reason we make the assumption that the predictors

of JE incidence used in our analysis are fairly robust and climate

shapes the distribution of JE incidence in Nepal. In our study,

lagged monthly climate variables better predicted JE incidence

rather than annual or concurrent (June–July–Aug) monthly

climate variables. Districts with high temperature in the preceding

months of the JEV transmission season had higher JE incidence.

Similar patterns have been reported from China, Taiwan and

Figure 3. Univariate Local Indicators of Spatial Association (LISA) cluster maps from 2004 to 2008 (A–E) for JE incidence using
GeoDa. The cluster map only shows the center of the cluster in color. High-High represents clustering of high JE incidence values, Low-Low
represents clustering of low JE incidence values, Low-High represent low values of JE incidence clustered around high values of JE incidence, and
High-Low represents high values of JE incidence clustered around low values of JE incidence.
doi:10.1371/journal.pone.0022192.g003

Figure 2. Japanese Encephalitis incidence (2004–2008) in Nepal. Spatial Empirical Bayes smoothed JE incidence expressed as the number of
cases per 100,000. Maps of 2004 to 2008 show the dominate district JE cluster, the relative risk of inside the cluster to outside the cluster and 95%
confidence using SatScan.
doi:10.1371/journal.pone.0022192.g002
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Japan [13,14,15]. The rationale was that high temperature

decreased development time for larval and pupal mosquito stages.

However, in our study, districts with low precipitation in the

preceding months of the JEV transmission season also had higher

JE incidence. It has been suggested by Mogi 1983 [13] that low

precipitation prevented the loss of mosquito immature stages from

high water currents. Similarly, it has been suggested in the US that

drought periods induce large outbreaks of West Nile virus

transmission [38,39,40,41]. It is thought that drought increases

the association between mosquito vectors and birds by reducing

the number of water sites available, hence concentrating birds and

mosquitoes in one area. Alternatively, during these drought

periods, predators of mosquitoes are significantly reduced; hence

natural regulation of mosquito populations is significantly

impeded. While this is true for WNV it is not clear if the same

exists for JEV vectors. In contrast, a study in India found that rice-

fields, primary sites for JEV transmission, are relatively stable

ecosystems and sudden increases in mosquito populations as a

function of climate are uncommon [42]. In our study, we lacked

entomological data to complement the JE incidence data and

given the somewhat contradictory results from US-Japan and

India studies, we are unable to conclude with confidence that the

associations with climate identified in Nepal occur via effects on

mosquito populations. Still, the results of this study give insights

into the relationship between JEV transmission and climate in

Nepal.

Percentage irrigated land was a significant variable up until the

2008 parsimonious model and this is possibly because irrigated

land provides a habitat for mosquito development and water bird

foraging in Nepal. Further studies in Nepal should look more

closely at the role played by irrigation as it may permit more

targeted distribution of JEV vaccine or allow alternative JEV

control mechanisms to be considered, such as reducing human

proximity to irrigated land. Surprisingly, pig-to-human ratio did

not significantly impact JEV transmission despite other studies

showing this to be a crucial component to JEV transmission to

humans [43,44]. Furthermore, JE incidence seemed to have a

unimodal relationship with pig-to-human ratio. Further study in

Nepal would be useful to explain the relationship.

Our model generally did well in predicting JE incidence in

Nepal though it underestimated the magnitude of JE incidence in

4 districts. It is still not clear why transmission is particularly high

in these areas given we used several explanatory variables in our

model. Additional factors, other than those used in this study, may

be involved in driving the high level of JE in these districts. When

applying our model based on 2005 to the other years (2004, 2006,

2007 and 2008) we see variation in the model fit (i.e. R2, adjusted

R2 and AIC) and the coefficients. This is to be expected as the

association between JE transmission and environmental drivers are

likely to have statistical noise due year to year variability in JE

incidence. In addition, the impact of the immunization campaign

may confound the associations.

Our study had 3 major limitations related to spatial demography,

ecological fallacy and spatial-temporal analysis of JE transmission.

N Our study utilized the best available data on reported JE

incidence at a national scale. However, it is important to

recognize that the dataset is unlikely to have captured all JE

occurrences in Nepal [20]. There is likely to be some under

representation due to limited access to health care, death

before seeking health care, health care–seeking behavior in

general or reporting to health facilities not included in the

Nepal AES surveillance network. Furthermore we did not

factor into our analysis the effects of human movement on JE

incidence in each district. However, we have no evidence of

any systematic biases in these aspects of JE reporting that are

likely to have affected the results of our spatial analysis.

N In this study, we did not take scale into consideration (i.e.

district size) which may lead to a modifiable areal unit problem

(MAUP) which is a sub-class of ecological fallacy [45,46]. It is

possible that if we used a finer areal unit scale in Nepal such as

the village development committee (VDCs), we may have

obtained different results. For example, the association

between JE cases and pig-to-human ratio may have been

Table 1. Trend surface models of 2005 district-level JE incidence as a function of temperature and precipitation.

Model b coefficients{

Variable Annual Apr May Jun–Jul–Aug Apr/May May/Apr

Intercept 0.0528* 0.0489 0.0607* 0.0651** 0.0590* 0.0497

t 0.0128*** 0.0101*** 0.0131*** 0.0132*** 0.0128*** 0.0109***

t2 0.0006 0.0005* 0.0008** 0.0002 0.0007** 0.0006*

p 0.0085 20.0095 20.0049 0.0036 20.0062 20.0066

p2 20.0036* 0.0028 0.0004 20.0004** 0.0005 0.0020

pt 0.0021 20.0029* 20.0012* 0.0012* 20.0012* 20.0029*

r 0.7942*** 0.7531*** 0.7307*** 0.7737*** 0.7366*** 0.7464***

R2 0.8072 0.8207 0.8170 0.8113 0.8168 0.8213

Adjusted R2 0.7932 0.8077 0.8037 0.7976 0.8035 0.8084

AIC 283.3025 290.7539 290.2047 285.9352 289.8923 291.3228

Apr/May = April temperature/May precipitation, May/Apr = May temperature/April precipitation, t = mean temperature, p = mean precipitation, Rho (r) = spatial lag
parameter.
*statistically significant at a-value 0.1,
**statistically significant at a-value 0.05,
***statistically significant at a-value 0.01.
{All regression b coefficients represent a non-linear increase (or decrease when the coefficient value is negative) in JE incidence when there is a 1-unit increase in each
respective predictor variable.

doi:10.1371/journal.pone.0022192.t001
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found to be significant or the model may have better predicted

the occurrence of JE in Nepal, particularly in Bardiya, Banke,

Dang and Kailali. Still, our results seem to agree with the

findings of other studies [13,38,40,41] suggesting similar

relationships exist in Nepal. Nonetheless, future analysis will

involve using more robust techniques such as conditional

autoregressive models to tease out these associations.

N In our regression analysis, we only focused on 2005 data. This

was done since this year was an outbreak period with a high

number of JE cases (669 cases) and mass vaccination had not

been implemented yet, hence not serving as a confounder.

While spatial-temporal analysis would have been more

informative, we used this study as an initial assessment into

the association between JE incidence and climate and land-

Figure 4. JE incidence as a function of climate variables. The response is the negative reciprocal of JE incidence. A) Annual climate model, B)
June–July–August model, C) April climate model, D) May climate model, E) May temperature/April precipitation climate model and, F) April
temperature/May precipitation climate model.
doi:10.1371/journal.pone.0022192.g004
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use/land-cover. Future study will involve spatial-temporal

analysis of JE transmission in relation to climate, environment,

vaccine coverage and demography.

In conclusion, April precipitation and percentage irrigated land

provided the best explanation for JEV transmission spatial pattern

in Nepal in 2005. However, with the introduction of the sequential

phased mass immunization campaigns that prioritized highest risk

districts, it becomes difficult to tease out the associations separate

from the impact of the vaccination campaigns. Nonetheless,

percentage of irrigated land remains a statistically significant

variable influencing JEV transmission despite vaccination efforts.

Therefore, increasing our understanding of the interactions between

irrigated land and JEV transmission would be valuable in refining

our knowledgebase of underlying factors that drive transmission

process, such as bird foraging and predator-prey interactions.

Spatial analysis could be an important tool for decision makers to

re-prioritize areas which require attention as disease clusters change

due to immunization efforts or other changes in agricultural

practices and climate change. Our ecological study provides initial

but fundamental information that may be useful to Nepal decision

makers at the district level in how they address JEV transmission

through vaccine distribution or other alternative methods. Further

study is needed to refine the findings of this study.

Supporting Information

Figure S1 Map of Nepal district by development zone
and region.

(TIF)

Figure S2 Environmental variables used in full and
parsimonious models. A) Mean May temperature, B) Mean

April precipitation, C) percentage grassland cover, D) percent area

of irrigated land and E) pig-to-human ratio.

(TIF)

Table 2. Full model of 2005 district-level JE incidence as a
function of climate, agriculture and land-use.

Variable
b
Coefficient{ S.E.

95% Confidence
Interval (b) P-value

Intercept 0.124 0.068 20.009 0.258 0.068

May – t 0.004 0.007 20.008 0.017 0.501

May – t2 0.001 0.001 0.000 0.001 0.137

April – p 20.008 0.015 20.037 0.021 0.581

April – p2 0.001 0.004 20.007 0.010 0.738

pt 20.004 0.002 20.007 0.000 0.031

Irrigated 0.013 0.017 20.020 0.047 0.431

Pig-human 0.586 0.529 20.450 1.622 0.267

Pig-human2 27.180 3.962 214.945 0.585 0.070

Deciduous 0.000 0.036 20.070 0.070 0.999

Grassland 20.031 0.033 20.095 0.033 0.347

Cropland 0.000 0.025 20.049 0.049 0.996

r 0.682 0.088 0.509 0.855 ,0.001

R2 0.830

Adjusted R2 0.800

AIC 285.762

t = mean temperature, p = mean precipitation, Irrigated = natural log of
percentage of irrigated land per district, Pig-human = pig-to-human ratio,
Deciduous = natural log of percentage deciduous tree cover per district,
Grassland = natural log of percentage grassland cover per district,
Cropland = natural log of percentage cropland cover per district, Rho
(r) = spatial lag parameter.
S.E. = Standard error of â coefficient.
{All regression b coefficients represent a non-linear increase (or decrease when
the coefficient value is negative) in JE incidence when there is a 1-unit increase
in each respective predictor variable.

doi:10.1371/journal.pone.0022192.t002

Table 3. Parsimonious model of 2005 district-level JE
incidence as a function of climate, agriculture and land-use.

Variable
b
Coefficient{ S.E.

95% Confidence
Interval (b) Probability

Intercept 0.292 0.084 0.128 0.457 ,0.001

April-p 20.032 0.009 20.051 20.014 ,0.001

Pig-human 0.637 0.516 20.374 1.648 0.217

Pig-human2 26.053 3.856 213.610 1.505 0.117

Irrigated 0.033 0.012 0.010 0.056 0.005

Grassland 20.033 0.022 20.077 0.010 0.134

r 0.689 0.086 0.520 0.859 ,0.001

R2 0.8122

Adjusted R2 0.7986

AIC 289.933

p = mean precipitation, Irrigated = natural log of percentage of irrigated land
per district, Pig-human = pig-to-human ratio, Grassland = natural log of
percentage grassland cover per district, Rho (r) = spatial lag parameter.
S.E. = Standard error of â coefficient.
{All regression b coefficients represent a non-linear increase (or decrease when
the coefficient value is negative) in JE incidence when there is a 1-unit increase
in each respective predictor variable.

doi:10.1371/journal.pone.0022192.t003

Table 4. Comparison of parsimonious 2004 to 2008 models
of district-level JE incidence as a function of climate,
agriculture and land-use.

Model b coefficient{

Variable 2004 2005 2006 2007 2008

Intercept 0.2943** 0.2924** 0.2026** 0.1533* 0.1037

April – p 20.0361** 20.0323** 20.0132 20.0070 0.0012

Irrigated 0.0223* 0.0331** 0.0302** 0.0281** 0.0181

Grassland 20.0497* 20.0332 20.0341** 20.0221 20.0229

Pig-human 0.3403 0.6372 0.5790 0.8329 0.0781

Pig-human2 22.1978 26.0526 25.6163 28.5296* 22.0550

r 0.7330** 0.6892** 0.6952** 0.7801** 0.7725**

R2 0.8476 0.8122 0.8415 0.8305 0.7535

Adjusted R2 0.8366 0.7986 0.8300 0.8182 0.7356

AIC 2105.0710 289.9330 2123.1960 2103.8150 297.3233

p = mean precipitation, Irrigated = natural log of percentage of irrigated land per
district, Pig-human = pig-to-human ratio, Grassland = natural log of percentage
grassland cover per district, r = spatial lag parameter.
*statistically significant at a-value 0.05,
**statistically significant at a-value 0.01.
{All regression b coefficients represent a non-linear increase (or decrease when
the coefficient value is negative) in JE incidence when there is a 1-unit increase
in each respective predictor variable.

doi:10.1371/journal.pone.0022192.t004
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Figure S3 Predicted smoothed JE incidence (A) and
prediction error (B) for the 2005 dataset using the
parsimonious model. The prediction error was calculated as

the observed 2005 JE incidence (see Figure 2 in main text) minus

the 2005 predicted smoothed JE incidence. The negative values in

the prediction error represent overestimation of the model while

the positive values represent underestimation of the model. The

values were back-transformed from the model using the equation

(21/(yi21))21 to retrieve the predicted JE incidence.

(TIF)

Table S1 Pearson’s correlation coefficient matrix of
variables used in the full model for 2005 JE incidence.
(DOCX)
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