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Abstract

Down syndrome (DS) is a developmental disorder associated with mental retardation (MR) and early onset Alzheimer’s
disease (AD). These CNS phenotypes are attributed to ongoing neuronal degeneration due to constitutive overexpression of
chromosome 21 (HSA21) genes. We have previously shown that HSA21 associated S100B contributes to oxidative stress and
apoptosis in DS human neural progenitors (HNPs). Here we show that DS HNPs isolated from fetal frontal cortex
demonstrate not only disturbances in redox states within the mitochondria and increased levels of progenitor cell death but
also transition to more gliocentric progenitor phenotypes with a consequent reduction in neuronogenesis. HSA21
associated S100B and amyloid precursor protein (APP) levels are simultaneously increased within DS HNPs, their secretions
are synergistically enhanced in a paracrine fashion, and overexpressions of these proteins disrupt mitochondrial membrane
potentials and redox states. HNPs show greater susceptibility to these proteins as compared to neurons, leading to cell
death. Ongoing inflammation through APP and S100B overexpression further promotes a gliocentric HNPs phenotype.
Thus, the loss in neuronal numbers seen in DS is not merely due to increased HNPs cell death and neurodegeneration, but
also a fundamental gliocentric shift in the progenitor pool that impairs neuronal production.
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Introduction

Down syndrome (DS) arises from a triplication of genes on

chromosome 21 (HSA21) and is characterized by neurological

complications including mental retardation and early onset

Alzheimer’s disease (AD) [1]. The reduced brain size and sim-

plified gyral patterning are thought to be major determinants of

the cognitive impairment in DS individuals. At the cellular level,

DS brains show prolongation in the cell cycle length of neural

progenitors [2,3], as well as increased oxidative stress and

mitochondrial dysfunction within neurons [3,4,5]. These findings

would suggest that both abnormalities in proliferation and pro-

gressive neuronal loss through apoptosis contribute to the devel-

opmental neuropathology in DS.

Studies using DS human neural progenitors (HNPs) have

proposed several mechanisms underlying the loss in neuronal

numbers in DS brain. Expression profiling of 18 week gestational

age (W GA) DS HNPs followed by in vitro studies are able to

demonstrate constitutive overexpression of HSA21 associated

S100B, leading to increased reactive oxygen species (ROS) for-

mation, activation of stress response kinases, and cell death [6].

Comparison of the differentially expressed genes in DS versus

wild type (WT) HNPs at 13W GA demonstrates that progenitors

exhibited impairments in interneuron neurogenesis, related to

increased expression of the transcription factor COUP-TF1/

NR2F1 and downregulation of the interneuron related genes

DLX1, DLX2 and DLX5 [7]. Finally, other studies have reported

a decrease in neuroectodermal genes such as Nestin and Tubb3 in

DS HNPs with a corresponding increase in mesodermal genes

such as Snail1 and Pitx2, indicating that HSA21 genes such as

DYRK1A could regulate various embryonic lineages [8].

Interactions between HSA21-associated S100B and amyloid

precursor protein (APP) might effect neural progenitor develop-

ment and contribute to the cognitive impairment in DS. Recent

studies have shown deleterious effects from the constitutive over-

expression of the HSA21-associated S100B in DS HNPs. Soluble

S100B activates the receptor for advanced glycation endproducts

(RAGE), leading to generation of reactive oxygen species (ROS),

and induction of MAP kinases, including JNK. JNK activation

induces Dickopff-1 expression that in turn promotes GSK3ß

phosphorylation and tau hyperphosphorylation [6,9]. The HSA21

associated gene APP contributes to the pathological deposition of
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beta amyloid (Ab) in the brain [10]. Amyloid-forming pro-

teins such as Ab both accelerate tau hyperphosphorylation and

represent a second group of RAGE ligand that could further

enhance S100B-mediated cell injury [11]. These observations raise

the possibility that these two contiguous genes on HSA21 might

influence DS progenitor survival and proliferation through a

common shared pathway.

Here we show that constitutive overexpression of HSA21 asso-

ciated S100B and APP promotes a deleterious, cyclical pathway

involving synergistic overproduction and hypersecretion of both

proteins, altered mitochondrial redox states, cell injury and

neuronal death. The ongoing neural injury and inflammation

further promote a gliocentric progenitor phenotype and indicate

that DS HNPs inherently differ from their normal age-matched

counterparts. The gliocentric shift coincides with a decline in

neurogenesis. This study describes a potential paradigm whereby

early changes in progenitor survival and phenotype could con-

tribute to and explain some of the underlying mechanisms giving

rise to the proliferative changes and impaired neuronal production

seen in the DS brain.

Results

Increased mitochondrial dysfunction, apoptosis, and
gliocentric progenitor pool shift in DS fetal brain and HNPs

While increased ROS, apoptosis and gliosis have been impli-

cated in postnatal DS neurons [3,12,13,14], few studies have

addressed whether the same endophenotypes are apparent during

cortical development. Our prior expression profiling studies and

network analyses suggest that dysregulated genes in DS HNPs

form functional clusters involved in redox states, cell death, and

glial characteristics [6]. To test these initial observations formally,

we asked whether these endophenotypes could be identified in

both tissue and HNPs from 14–21W GA DS frontal cortex. There

was a two-fold increase of apoptosis by TUNEL labeling along the

ventricular and subventricular zones (VZ/SVZ) in multiple 18W

GA DS frontal cortex. (Figure 1A). Several apoptotic cells

expressed ephrinB2 (Figure 1A, see lower panel, white
arrows), a marker for a subset of neural progenitors. Consistent

with the observation of increased vulnerability in DS HNPs in

vivo, this same accelerated rate of cell death could be appreciated

in vitro with neurospheres cultured from multiple DS HNP lines,

generated from 18W GA DS frontal cortex (Figure 1B). We also

observed an increase of GFAP expression in both DS fetal VZ/

SVZ tissue and HNPs of the same aged frontal cortices

(Figure 1C). To address the possible mitochondrial involvement

leading to the increased cell death and presumed glial progenitor

inflammatory response, we used a dual in situ labeling technique

that incorporated the MitoTracker Deep Red dye (a marker of

mitochondrial membrane potential) and MitoPY1 fluorescein dye

(a marker of mitochondrial H2O2 levels) [15] to simultaneously

track mitochondrial function and oxidative stress. Compared to

WT controls, the DS HNPs showed an increase of H2O2

production at the mitochondria and simultaneous decrease of

mitochondrial membrane potential (Figure 1D). The mitochon-

drial dysfunction, cell death, and adoption of more gliocentric

phenotypes in DS HNPs raised the possibility of impaired

neuronogenesis over time. We therefore examined the protein

expression for several neuronal and glial markers in 14W and 21W

GA fetal frontal cortex from both DS and WT controls. The

neuronal-restricted progenitor marker Pax6 [16] was strongly

expressed in 14W WT HNPs but absent in the 14W DS HNPs.

Appropriately at 21W GA (the end of corticogenesis), this marker

was still detectable in WT HNPs although at lower levels, but still

absent in the DS samples. We also found increased expression for

the glial progenitor markers GFAP and PDGFRA [17] in the DS

HNPs at both ages, relative to the WT HNPs (Figure 1E). The

cell fate change in DS was further confirmed by withdrawing

growth factor support for the HNPs and inducing differentiation of

these progenitors. Fluorescent immunostaining for different cell

fate markers and quantification of positively stained cells indicated

that DS HNPs underwent increased astrocytic and oligodendro-

cytic differentiation (with a corresponding reduction in neurogen-

esis), as compared with control HNPs (Figure S1). In summary,

these findings suggest that DS HNPs exhibit increased oxidative

stress and loss in membrane potential at the mitochondria,

undergo an increased rate of apoptosis, and show increased

gliocentric characteristics at the expense of neuronal phenotypes.

Elevated APP and S100B expression, reciprocal
regulation, and secretion in DS HNPs

Prior studies have shown that both HSA21-associated APP and

S100B levels increase in adult DS brain and that both these

proteins might play some role in DS progenitor development

[18,19]. Secretion of either APP or S100B has also been thought to

be neuroprotective at low concentrations but neurotoxic at high

concentrations [20,21]. These observations led to the possibility

that our novel observation of ongoing progenitor cell death seen

early in DS cortical development might be influenced by APP and

S100B either through activation of intracellular cell death

pathways or secretion of these soluble proteins, causing toxicity

to neighboring progenitors. We first examined whether upregula-

tion and colocalization of S100B and APP expression were

apparent in the VZ/SVZ regions of human DS fetal cortices.

Immunostaining for both S100B and APP showed overlapping,

elevated expression of both these proteins within progenitors along

the lateral ventricles of 18W GA forebrain (Figure 2A). The

upregulations of these two proteins in human DS cortex were also

appreciated by western blot analyses with a progressive increase

seen in 14W and 21W GA DS frontal cortex (Figure 2B). Second,

normal HNPs treated with soluble S100B protein showed

increased APP levels (Figure 2C) at concentrations (10ng/ml)

comparable to the levels secreted by DS HNPs (Figure 2F).

Similarly, overexpression of APP within HNPs through lentiviral

infection showed a consequent increase of cytoplasmic S100B

by western blot, and conversely transient overexpression of

S100B within HNPs demonstrated enhanced expression in APP

(Figure 2D). Furthermore, stimulation of HNPs with Ab42

caused a consequent dose-dependent increase of S100B expression

showed by western blot or soluble S100B secretion into the culture

media showed by ELISA (Figure 2E), suggestive of a reciprocal

synergistic effect. In these studies, we used the ZsGreen-APP

lentivirus (10 ml) and EGFP-S100B (5 mg) at doses (Figure S2A,
B) comparable to the levels of S100B and Ab42 secreted by DS

HNPs (Figure 2F, G). Third, Ab42 and Ab40 are the two most

common products of APP processing, but Ab42 is the more

fibrillogenic and thus associated with disease states [22]. We found

that S100B and Ab42 levels progressively increased within the

media of cultured DS progenitors by ELISA analyses and addition

of trypsin to the media led to degradation of these proteins,

indicating that secretion of the proteins likely contribute to effects

on cell viability [23] (Figure 2F, G). Fourth, S100B has

previously been shown to induce neuronal death through nitric

oxide [24] and we found that DS progenitors exhibited higher

levels of nitric oxide (Figure 2H). Collectively, these series of

experiments indicate that constitutive overexpression of HSA21-

associated S100B and APP/Ab42 could promote the pathological

expression of the other protein. Secretion of these proteins into the
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local extracellular milieu even at fairly low levels (as compared to

levels required to induce neurotoxicity) in DS HNPs would

provide a basis for the observed increase in mitochondrial ROS

generation, apoptosis and gliocentric shift.

Elevated mitochondrial hydrogen peroxide, decreased
mitochondrial membrane potential and increased
apoptosis in HNPs due to S100B and APP

Elevated levels of secreted S100B or Ab42 would allow for the

proposed paracrine effects in neural progenitors- namely S100B

oversecretion leading to RAGE activation and mitochondrial

dysfunction with resulting ROS generation, and GSK3ß and tau

hyperphosphorylation [6]. APP could additively enhance this

pathological pathway by promoting S100B secretion and impair-

ing mitochondrial function. To address these possibilities, we

first transfected or infected normal HNPs with either a S100B

construct or an APP lentivirus in a dose dependent fashion and

observed a corresponding increase in S100B and Ab42 levels

within the cell medium. Furthermore, increases in S100B/Ab42 in

turn caused a decrease in mitochondrial function (Figure S2A,
B). Concurrent overexpression of both S100B and APP led to a

larger decline in mitochondrial function, suggestive of an additive

effect (Figure S2C). Given that S100B and Ab42 were secreted,

we examined whether exposure of HNPs to varying concentrations

of soluble S100B or Ab42 led to a dose dependent decline in

mitochondrial function. We used a dual in situ labeling of

MitoTracker Deep Red and MitoPY1 fluorescein dyes to track

simultaneously mitochondrial function and oxidative stress after

S100B/Ab42 treatment. Increasing concentrations of soluble

S100B or Ab42 resulted in dose dependent declines in mitochon-

drial respiration, as shown by the loss in rhodamine intensity, and

enhanced mitochondrial oxidative stress, as shown by the gain in

fluorescein intensity (Figure 3A, B). Concurrent S100B and Ab42

treatment also led to an additive decline in mitochondrial

membrane potential and increase in ROS (Figure S3E). Because

S100B and APP dependent loss of mitochondrial activity does

not necessary result in cell death, we wanted to determine the

functional outcome of the mitochondrial impairment due to

increased levels of these proteins. Thus, we examined the

consequent effects of soluble S100B or Ab42 on HNP viability.

We found a dose-dependent increase in apoptosis with overex-

pression of intracellular APP or S100B through lentiviral infection

or transient transfection into control HNPs (Figure S3A, B).

Again, co-overexpression of these proteins led to additive effects

(cell death) and the increase in cell death was not limited to

transfected cells (Figure S3C). Given our observations of S100B

and Ab42 secretion into the cell medium and the induction of cell

death with non-infected/transfected progenitors, we then asked

whether exposure of HNPs to progressively higher concentrations

of soluble S100B or Ab42 caused apoptosis. We observed a dose-

dependent increase in TUNEL labeling within HNPs following

incubation in the respective proteins (Figure 3C). To assess

whether the in vitro observations were similarly appreciated in vivo,

we examined the cortex of early postnatal (P0) trisomy 16

(Ts65Dn) mice, which have an extra copy of mouse APP but not

S100B. We found increased apoptosis in neural progenitors and

neurons within the early postnatal cortex of the Ts65Dn mice,

albeit to a lesser degree than in the human fetal cortex (Figure
S3D). To examine more directly the potential synergistic effects of

APP and S100B, we quantified the levels of ongoing cell death in

the hippocampus of APP (Tg2576) and APP/S100B (Tg2576-

huS100B) transgenic adult mice (19 months), and more specifically

the subgranular zone of hippocampus. Postnatally, this area is one

of the few regions in the central nervous system where neural

progenitors reside and exhibit continued neurogenesis, and

archival tissue from these mice would provide some indication of

in vivo effects due to these two proteins. We again appreciated

enhanced cell death with overexpression of both, as opposed to

overexpression of the individual proteins (Figure S3D). Taken in

sum, these observations provide a direct causal link between the

constitutive overexpression of HSA21-associated S100B and APP

(Ab42) and observed increase in mitochondrial ROS, decline in

membrane potentials and increase in apoptosis during neural

progenitor development.

S100B and APP/Ab42 promote gliocentric phenotypes in
HNPs and transgenic mice

Previous reports have implicated potential synergistic effects

between various RAGE ligands such as S100B and APP, leading

to gliosis [25]. Our prior studies have shown an increase in glial-

associated markers S100B and AQP4 within DS HNPs [6,9]. We

have also observed increased glial characteristics within the DS

HNP pool, as evidenced by the increased expression of proteins

such as GFAP in 18W GA human DS VZ/SVZ and correspond-

ingly, in cultured DS HNPs (Figure 1B). The possibility that these

altered progenitor phenotypes are due to APP and/or S100B

overexpression is supported at several levels. First, HNPs over-

expressing APP or S100B exhibited increased GFAP and

decreased MAP2 expression (Figure 4A). Second, HNPs exposed

to S100B or Ab42 dosed-dependently increased GFAP and

decreased MAP2 expression; concurrent exposure of S100B and

Ab42 enhanced GFAP and inhibited MAP2 expression synergis-

tically (Figure 4B). Third, the combinatorial effects of APP and

S100B in enhancing gliosis, previously appreciated in vitro, were

partly observed in vivo. In the cortical VZ of APP-overexpressing

early postnatal (P0) Ts65Dn mice, we observed increased

Figure 1. Increased apoptosis, gliosis, mitochondria dysfunction and gliocentric cell fate shift in DS HNPs. (A) Confocal fluorescence
photomicrographs demonstrate increased numbers of cells undergoing apoptosis as observed by TUNEL stain (rhodamine, counterstained with
Hoechst 33342) along the VZ for DS fetal cortex (18W GA, noted by white arrowheads). Higher magnification images are to the right. The relative
number of TUNEL labeled cells is quantified for both WT and DS VZ. (n = 4 for each). Many of the TUNEL positive cells (rhodamine) express the
ephrinb2 neural progenitor marker (fluorescein) along the VZ of 18W GA fetal cortex (see white arrowheads in lower panel). (B) The increase in
programmed progenitor cell death seen in vivo is also appreciated in vitro in human DS neurospheres after one week of culture. Quantification of
TUNEL-positive cells is below (n.5 neurospheres in each experimental sample). (C) Fluorescent photomicrographs demonstrate increased intensity
of immunostaining (rhodamine, counterstained with Hoechst 33342) for GFAP along the VZ of fetal 18W GA DS brain compared to normal age-
matched controls. Western blot confirms the increase. The upregulation of GFAP (rhodamine) is also found in the DS neurospheres derived from the
VZ of 18W GA fetuses after one week of culture, as shown by immunostaining and western blot. (D) Fluorescence photomicrographs by confocal
microscopy demonstrate increased intracellular mitochondrial H2O2 production showed by MitoPY1 (fluorescein) staining and disrupted
mitochondrial membrane potential showed by decreased MitoTracker deep red staining (rhodamine, counterstained with Hoechst 33342) within
DS HNPs compared to WT controls (18W GA) after 24 hours of culture. MitoPY1 localizes to the mitochondria and directly assays H2O2 levels in the
organelle. The quantification graphs are showed below. (E) Western blots demonstrate decreased neuroprogenitors shown by pax6 and increased
glioprogenitors showed by GFAP and PDGFRA staining in human DS frontal cortex (n = 3 age-matched control and DS fetal tissues, 14W and 21W GA).
Quantification is showed below. Scale bars are 200 mm for low magnification and 25 mm for high magnification in A, B and C, 25 mm for D. Data are
represented as mean +/2 STDEV, * p-value,0.05, ** p-value,0.01, *** p-value,0.001 by two tailed t-test.
doi:10.1371/journal.pone.0022126.g001
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expression of glial markers including S100B and GFAP within the

progenitor population along the ventricles of these mice

(Figure 4C, S4A). Increased oligoprogenitor marker PDGFRA

and decreased neuronal marker MAP2 expression were also

observed in Ts65Dn mice (Figure S4A). A similar gliocentric shift

was observed in the dentate gyrus of adult (19 months) APP

(Tg2576) and APP/S100B (Tg2576-huS100B) transgenic mice

with increased expression for GFAP, S100B, CNPase and MBP

(Figure 4D, S4B, S4C). These observations implicate a potential

cyclical path of neural progenitor injury whereby overexpression

Figure 2. Reciprocal up-regulation of secreted S100B, APP and oxidative stress in DS HNPs. (A) Fluorescent photomicrographs
demonstrate increased intensity of staining for both APP (rhodamine) and S100B (fluorescein, counterstained with Hoechst 33342) within DS neural
progenitors along the VZ of the 18W GA fetal cortex compared to normal age-matched controls. White arrowheads show the colocalizations of APP
and S100B along the VZ. (B) Western blot analyses confirm upregulation of both these proteins within the cortex of the DS brains of multiple
independent samples at an age dependent manner (n = 3 age-matched control and DS fetal tissues, 14W and 21W GA). (C) Incubation of S100B (10–
1000 ng/ml) for 24 hours in normal cultured HNPs dose-dependently increases APP levels; (D) S100B levels in the cytoplasm are increased with APP
overexpression for 4 days, and vice versa, as shown by western blot. (E) Western blot and ELISA assay show a dose-dependent increase in S100B
expression and secretion into the culture medium after Ab42 stimulation for 24 hours. (F) Longer term (1–2 weeks) culturing of DS HNPs results in a
progressive increase in the expression of S100B. The increased levels of S100B are largely due to soluble, extracellular S100B as trypsin treatment of
the media can degrade the protein. (G) A similar increase in Ab42 levels is appreciated in DS HNPs cultured over time. Increased levels of Ab42 are
also largely due to soluble, secreted protein that is degraded with trypsin treatment. Prior findings have shown that S100B or amyloid can lead to
increased ROS generation. Consistent with these findings, there is an increase of oxidative stress in DS HNPs, as showed by nitric oxide assays (H).
Scale bars are 12.5 mm in A; data are represented as mean +/2 STDEV, * p-value,0.05, ** p-value,0.01, *** p-value,0.001 by two tailed t-test.
doi:10.1371/journal.pone.0022126.g002
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Figure 3. Soluble S100B or Ab42 treatment promotes mitochondrial H2O2 production, loss in mitochondrial membrane potential
and apoptosis in normal cultured HNPs. (A) S100B exposure for 24 hours dose-dependently increases intracellular mitochondrial H2O2

production within HNPs, as shown by MitoPY1 (fluorescein, counterstained with Hoechst 33342) staining. MitoPY1 localizes to the mitochondria and
directly assays H2O2 levels in the organelle. S100B treatment also leads to mitochondrial dysfunction in a dose-dependent fashion, as showed by

S100B and APP in Down Syndrome
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of S100B and APP leads to mitochondrial impairment, cell death

and consequent inflammation with a shift toward gliocentric

phenotypes. This gliocentric shift would further promote mal-

adaptive responses due to S100B expression and activity, including

further accentuation of glial progenitor phenotypes.

RAGE blockade and APP inhibition in reversal of S100B
and APP effects in the DS phenotype

The effects of S100B and APP in DS could be due to disruption

of intracellular pathways, secretion and toxicity to neighboring

progenitors, or a combination of both mechanisms. We therefore

focused on RAGE blockade and APP inhibition to address the

contribution of paracrine effects from these proteins. The platelet

inhibitor, dalteparin sodium has been shown to have antagonizing

effects on RAGE activity [6,26]. As RAGE is the receptor for

S100B and Ab, we explored the therapeutic efficacy of these

agents on several levels. First, treatment of DS HNPs with anti-

RAGE antibody or dalteparin sodium resulted in a downregula-

tion of APP expression, as well as S100B and Ab42 secretion

(Figure 5A). Second, exposure of control HNPs to various

concentrations of soluble S100B (including the pathological dose

corresponding to 10 ng/ml secreted by DS HNPs) led to a

dose-dependent increase in H2O2 production as indicated by

increasing MitoPY1 fluorescein fluorescence. A similar dose-

dependent decrease in mitochondrial membrane potential was

seen, corresponding to a decline in MitoTracker deep red rho-

damine fluorescence. These pathological changes could be

reversed by pretreatment with either RAGE antibody or the

RAGE antagonist dalteparin sodium (Figure 5B, S5A). Third,

incubation of DS HNPs with anti-RAGE antibody or dalteparin

sodium resulted in an approximate 50% reduction in apoptosis as

gauged by TUNEL staining in the neurospheres; the levels were

still not back to age-matched WT baseline (Figure 5C, S5B).

Finally, parallel studies were performed to inhibit APP levels using

phenserine. Inhibition of the RAGE receptor (dalteparin sodium)

and APP (phenserine) provided further HNPs protection,

indicating that additional intracellular RAGE-independent mech-

anisms of cell injury also contribute to the observed phenotypes

(Figure 5D, 5E, 5F, S5C, S5D). Taken together, these

experiments suggest that the oxidative stress, mitochondrial

dysfunction, and consequential cell death apparent in DS HNPs

during development arise in part from soluble, secreted S100B and

Ab42 effects on the RAGE pathway.

Discussion

While various HSA21 genes have been implicated in oxidative

injury in DS, their cooperative interactions and consequent

effects have not really been explored within neural progenitors

during development and disease. Previous findings have suggest-

ed that APP and S100B may interact synergistically in con-

tributing to the neuronal dysfunction and injury. Adult double

transgenic (mutant APP (mAPP)/RAGE) mice demonstrated

increased activation of stress pathways (phosphorylation of p38

and JNK) and altered expression of markers of synaptic plasticity

(MAP kinases), leading to early abnormalities in spatial learning/

memory [27]. Additionally, adult brains from double transge-

nic (Tg2576/APP-huS100B) mice displayed augmented reactive

astrocytosis and microgliosis, high levels of S100 expression, and

increased levels of proinflammatory cytokines [28]. Neuronal

injury through APP is thought to enhance glial upregulation of

S100B and secretion of soluble S100B, thereby promoting further

neuronal injury. Increases in soluble APP, Ab42 and Ab42

antibody have been reported in the plasma of DS patients [29],

while our prior studies have shown that soluble S100B induces

p38 and JNK phosphorylation within DS neural progenitors [6].

The current studies now show a cooperative role for both these

proteins in DS neural progenitor injury early in development.

Both S100B and APP are constitutively overexpressed in DS

HNPs, expression of each protein directly enhances expression of

the other, and both proteins (S100B/A b42) appear to be

secreted. The extracellular effects of APP appear to result, in part,

from its processing to extracellular Ab42 possibly through RAGE,

which serves as a receptor for both S100B and Ab42 [30].

Presumably, the trisomy of the S100B and APP, initiates a

progressive cascade that further enhances the expression and

secretion of these individual proteins, activates the RAGE-

dependent pathway, and thereby additively promotes neural cell

death.

It is still unclear as to whether the decreased neuronal numbers

and hypotrophy in DS brains are due to increased cell death,

decreased proliferation, or more likely, a combination of both.

Several studies using early DS fetal brain samples and animal

models find that decreased proliferation of neural progenitors in

the ventricle or dentate gyrus play a dominant role in reducing

neuronal production [2,31,32]. However, oxidative stress has been

attributed to neuronal degeneration seen in later DS pathogenesis

[33,34]. Several studies using cultured DS neurons from fetal DS

brain also support an early increase in oxidative stress leading to

premature loss in neuronal viability [13,35]. We have previously

shown that constitutive overexpression of HSA21 associated

S100B in human DS neural progenitors leads to increased levels

of ROS and cell death in vitro [6,9]. The current work extends

these findings in demonstrating a synergistic effect between two

HSA21 genes, S100B and APP, in promoting oxidative stress, and

consequential cell death and gliosis both in vivo and in vitro. That

said, we also have observed a reduction in HNPs proliferation in

ventricular zone of DS frontal cortex (unpublished data). These

observations are consistent with Guidi’s report on the presence of

both increased apoptosis and reduced proliferation in the dentate

gyrus, hippocampus and parahippocampal gyrus of DS fetal brains

[3]. Finally, multiple studies have suggested different mechanistic

causes for the change in redox state in contributing to early neural

pathological changes in fetal DS brain [36]. In one report, HSA21

associated SOD1 is increased in fetal DS brain [37]. In another

report, the increased oxidative stress in fetal DS is suggested to be

the consequence of low levels of reducing agents and enzymes

involved in removal of hydrogen peroxide rather than overex-

pression of HSA21 associated SOD1 [38]. Overall, these collective

studies would indicate some role for both oxidative stress and cell

death, as well as a change in the proliferative rates of progenitor

pool, in promoting the reduction in DS brain size.

decreased MitoTracker deep red staining (rhodamine). Results are quantified graphically to the right. (B) A similar trend of increased intracellular
mitochondrial H2O2 and decreased mitochondrial membrane function appears after exposure to soluble Ab42 for 24 hours. The quantification graphs
for additive effects of S100B and Ab42 are showed in Figure S3E. (C) Exposure to S100B or Ab42 at concentrations comparable to that seen in DS
HNPs for 24 hours causes apoptosis (showed by TUNEL staining) in WT cultured HNPs. The graphs below show a dose-dependent increase in
apoptosis after S100B, APP or both S100B and APP stimulation (n.5 neurospheres in each experimental trial with at least 3 replicates). Scale bars are
25 mm for A and B; 200 mm for low magnification and 25 mm for high magnification in C; data are represented as mean +/2 STDEV, *** p-value,0.001
by two tailed t-test and one-way ANOVA.
doi:10.1371/journal.pone.0022126.g003
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Several studies suggest a primary role for Ab42, as opposed

to APP and Ab40, in the pathogenesis of DS. Ab42 deposition

has been observed in the cerebral tissue of DS subjects [39].

Expression levels also appear earlier than Ab40 accumulation

[40]. Furthermore, increases in soluble APP, Ab42 and Ab42

antibody have been found in the plasma of DS patients [29].

Figure 4. Gliocentric shift due to S100B and APP/Ab42 in DS HNPs. (A) Lentiviral infections of ZsGreen-APP or transfections of EGFP-S100B
constructs into normal HNPs for 4 days promote GFAP and inhibit MAP2 expression, as shown by western blot. (B) Pretreatment of normal, cultured
HNPs with increasing concentrations of soluble S100B or Ab42 for 24 hours shows a dose-dependent increase in GFAP and decrease in MAP2
expression. Co-treatment with S100B and Ab42 for 24 hours leads to an additive increase in GFAP and decrease in MAP2 expression levels. (C)
Quantification graphs from fluorescent photomicrographs (Figure S4A) in the cortex of early postnatal (P0) Ts65Dn mice show increased numbers
of immunostaining on glial markers such as S100B, GFAP and PDGFRA, and decreased numbers of neuronal staining with MAP2 compared to WT
(n = 3 for each group of mice). A similar increase appears in APP (Tg2576) or APP/S100B (Tg2576-huS100B) overexpressing mice compared to age-
matched WT control (Figure S4B and S4C). Data are represented as mean +/2 STDEV, * p-value,0.05, ** p-value,0.01, *** p-value,0.001 by two
tailed t-test and one-way ANOVA.
doi:10.1371/journal.pone.0022126.g004
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Lastly, inhibition of Ab42 production with a c secretase inhibitor

led to a reduction in APP induced neuronal apoptosis, which

suggests that soluble APP and Ab40 were not the primary cause of

neurotoxicity [41]. That said, some primary role for either

cytoplasmic or soluble APP or Ab40 may still contribute to the DS

phenotype and additional studies would be required to address

these possibilities.

Human neural progenitors are more susceptible to S100B and

Ab42 mediated toxicity as compared to neurons or astrocytes. We

observed cytotoxic effects of S100B and Ab42 at lower nanomolar

Figure 5. RAGE blocking and APP inhibition synergistically reduce oxidative stress, apoptosis and rescue sequential gliocentric cell
fate change in DS HNPs. (A) DS HNPs treated with Anti-RAGE antibody (1 mg/ml) or RAGE antagonist dalteparin sodium (1 IU/ml) for 24 hours
show reduced APP expression (left, western blot) and S100B or Ab42 secretion (right, ELISA). (B) Graphs show the S100B stimulation for 24 hours dose
dependently increase H2O2 production and decrease mitochondrial membrane potential which can be blocked by RAGE antibody (1 mg/ml) or
dalteparin sodium (1 IU/ml) (Figure S5A). (C) Quantification graph shows the large numbers of TUNEL+ cells in DS HNPs decrease to normal level
after Anti-RAGE antibody (1 mg/ml) or dalteparin sodium (1 IU/ml) treatment for 24 hours, and a quantification graph is on the upper left (n.5
neurospheres in each experimental sample) (Figure S5B). (D) DS HNPs are treated with dalteparin sodium and phenserine for 24 h, and quantitative
analyses of mitochondrial membrane potential and mitochondrial H2O2 fluorescent intensities are quantified from the photographs (Figure S5C) at
three separate dosages (A = dalteparin 0.01 IU/ml, phenserine 0.5 mM, or dalteparin 0.01 IU/ml+phenserine 0.5 mM; B = dalteparin 0.1 IU/ml,
phenserine 5 mM, or dalteparin 0.1 IU/ml+phenserine 5 mM; C = dalteparin 1 IU/ml, phenserine 50 mM, or dalteparin 1 IU/ml+phenserine 50 mM). The
graph shows a synergistic effect of the two drugs with a presumed level of toxicity at the highest concentrations. (E) Pretreatment with phenserine,
dalteparin or phenserine+dalteparin for 24 hours reduces GFAP and APP levels but increases MAP2 levels in DS HNPs. Western blot analyses show
significant reduction of GFAP and APP and increase of MAP2 expression levels following treatment. Band intensities are graphically quantified below.
(F) Quantification graph of TUNEL staining (Figure S5D) from DS HNPs treated with dalteparin sodium and phenserine for 24 hours shows
decreased TUNEL+ cells compared to controls (n.5 neurospheres in each experimental sample). Data are represented as mean +/2 STDEV,
* p-value,0.05, ** p-value,0.01, *** p-value,0.001 by one-way ANOVA.
doi:10.1371/journal.pone.0022126.g005
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to picomolar concentrations. The soluble Ab42 preparation used

in this study includes not only the fibrillar form but also oligomers,

which could be toxic to neurons in very low concentration [42,

43,44]. However, S100B is generally thought to have a neuro-

protective role at low concentrations within neurons or astrocytes,

but at higher micromolar concentrations causes cell death [21,

45,46]. The increased susceptibility of HNPs to lower concentra-

tions of S100B and APP may partially be attributable to the fact

that both proteins are already overexpressed within the same

progenitor cells (Figure 2A) - as opposed to the neuronal (APP)

and glial (S100B) paradigm seen in the adult brain. Moreover,

S100B and APP appear to increase mitochondrial hydrogen

peroxide levels directly, consistent with reports that APP/Ab
directly accumulate within and effect mitochondrial dynamics

[47,48]. Overall, the increased sensitivity of HNPs to these

proteins would only further augment the pathological processes

invoked from constitutive overexpression of S100B and APP in

DS cells.

A gliocentric shift in the progenitor pool would provide a

potential explanation for the preferential loss in later-born, pre-

sumptive GABA-ergic interneurons. Although cortical neuron

density appears normal in early gestation DS brain, neuronal

numbers decline at later (.23 weeks) gestational ages [49,50].

Prior studies have suggested that HSA21-associated DYRK1A

downregulates REST at a very early developmental stage, thereby

causing a skewed ratio of primitive endoderm at the expense of

neuroectodermal progenitors, leading to a reduction in neurogen-

esis [8]. This decline in neuronal production, however, would not

necessarily explain the cell type and age specific loss in GABA-

ergic neurons, as opposed to total neuronal numbers, in the DS

cortex [14]. More recent studies have suggested impairments in

interneuron development, potentially due to overexpression of a

transcription factor gene, COUP-TF1/NR2F1, although the

mechanism behind changes in this non-HSA21 associated tran-

scription factor in effecting interneurons is not clear [7]. The

current work now raises the possibility that ongoing neural

progenitor cell death from oxidative stress enhances gliocentric

progenitor characteristics at the expense of neuronal progenitor

phenotypes. This shift becomes more prominent later in cortical

development when the cyclical and synergistic roles played by such

inflammatory mediators such as S100B and APP become more

pronounced. Under this model, the loss in neuronogenic pro-

genitors would manifest later in development and thereby effect

interneuron production.

Several HSA21-dependent processes may contribute to the

overall reduction in neuronal numbers in the cortices of indi-

viduals with DS. First, we find that HNPs are more susceptible to

S100B and APP dependent mechanisms of cell injury and

constitutive overexpression of these genes in DS HNPs leads to

increased cell death. Second, inflammation as seen with induction

of the stress response kinases is known to promote glial

proliferation and reactive gliosis [51] and increased astrocytes or

glial phenotypes have been reported in DS brain [3]. We have

previously shown that S100B activates the JNK stress response

pathways [6] and now observe an increase in glial characteristics

within DS neural progenitors. This response to inflammatory

mediators appears to enhance proliferation of gliocentric progen-

itors at the expense of neuronal progenitors. This finding occurs

not only in HNPs in vitro, but also in TsDn65 or APP/S100B

transgenic mice in vivo. Third, HSA21-associated genes may

actually induce gliocentric phenotypes. For example, S100B is a

glial marker that promotes glial phenotypes whereas HSA21-

localized Olig2 is a transcription factor essential for development

of oligodendrocytes. The number of Olig2(+) progenitors increases

in the injured CNS, and Olig2(+) cells preferentially differentiate

into GFAP-expressing astrocytes, the main contributors to glial

scars which further secrete S100B [52,53]. This sequence of events

would further impair neuronogenesis. Fourth, glial progenitors

may be more resistant to the increased oxidative stressor [6], and

the increased ROS levels in DS may more readily compromise

neuronogenic progenitors.

In this study, we have characterized the neuropathological

phenotypes associated with early fetal DS cortex and HNPs. The

findings of increased ROS, mitochondrial dysfunction, cell death

and a glial shift in many ways mirrors the ongoing neurodegen-

eration and gliosis seen in the mature brain. Constitutively

overexpressed, contiguous genes along HSA21, including S100B

and APP, act in a synergistic manner to enhance secretion of these

proteins and activate the RAGE cascade. This pathway induces

mitochondrial hydrogen peroxide generation, loss of membrane

potential, and ultimately causes cell death. The ongoing inflam-

matory and stress response furthermore encourages HNPs to

adopt gliocentric characteristics, thereby not only enhancing this

cycle of cell injury but also surprisingly, impairing neurogenesis.

Finally, these studies suggest that the early defects in the

progenitor pool caused by various HSA21 genes will likely alter

the later stages of development - involving neuronal production

and viability, thereby amplifying and augmenting the MR and AD

seen in this disorder. More specifically, future studies will be

directed toward addressing whether this shift in progenitor

phenotype is responsible for the changes in proliferative rates

observed between normal and DS brains.

Materials and Methods

Human tissue, ethical and licensing considerations
The study has been approved by the Institutional Review Board

(IRB) at the Beth Israel Deaconess Medical Center (BIDMC) and

Brigham and Women’s Hospital. The de-identified human

discarded tissue was obtained from pathological samples during

autopsy. The tissue sections or neural progenitors from DS and

age-matched control brains (14–21W GA) were used in this study

for each of the experiments described. It is a discarded tissue

protocol and is exempt from informed consent, as determined by

the ethics and IRB review committee at BIDMC, and no informed

consent was obtained. The approved protocol number is 2004-P-

000299/5. The detail information of the tissues is listed in Table 1.

Transgenic mice
Archival brain sections from 19 months old transgenic mice

Tg2576 (APP over-expression) and Tg2576-huS100B (APP/

S100B over-expression) were provided by Dr. Takashi Mori

[28]. Trisomy16 mouse TsDn65 was obtained from The Jackson

Laboratory (Bar Harbor, Maine, USA). P0 brains were fixed with

4%PFA overnight, and frozen after 20% sucrose infiltration

overnight, 14 mm sections were collected for immunostaining. The

animal studies have been approved by the Institutional Animal

Care & Use Committee (IACUC) at the Beth Israel Deaconess

Medical Center. The approved IACUC protocol number for

animal work is 003-2011/100789.

Antibodies and reagents
Antibodies used for immunostaining, ELISA and western blot

analyses were as follows: Mouse anti-S100B (1:100 for ELISA and

1:500 for western blot, AbCam, Cambridge, UK), peroxidase-

conjugated anti-S100B (1:2000 for ELISA, AbCam, Cambridge,

UK), rabbit anti-S100B (1:200 for immunostaining and 1:1000 for

western blot, DAKO, Glostrup, Denmark), mouse anti-APP (1:100
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for immunostaining, Millipore, Billerica, MA, USA), rabbit anti-

APP (1:1000 for western blot, gift of Professor Sam Gandy), goat

anti-Ephrin B2 (1:100, R&D, Minneapolis, MN, USA), mouse

anti-RAGE (1:1000, R&D, Minneapolis, MN, USA), mouse anti-

vinculin (1:1000, AbCam, Cambridge, MA, USA), rabbit anti-

GFAP (1:500 for immunostaining, and 1:2000 for western blot,

DAKO, Glostrup, Denmark), mouse anti-MBP (1:1000, Abcam,

Cambridge, MA, USA), mouse anti-CNPase (1:100, Millipore,

Billerica, MA, USA), mouse anti-Pax6 (Millipore, Billerica, MA,

USA), rabbit anti-olig2 (1:1000, gift of Professor Charles Stiles,

Dana-Farber Cancer Institute, Boston, MA, USA), mouse IgM

anti-O1 and O4 (1:50, gift of Professor Timothy Vartanian, Weill

Cornell Medical College, New York, USA), mouse anti-MAP2

(1:200 for immunostaining and 1:1000 for western blot, Sigma,

Saint Louis, MO, USA), rabbit anti-DCX (1:200, gift of Professor

Christopher Walsh, Children’s Hospital, Boston, MA, USA),

mouse anti-NeuN (1:200, Millipore, Billerica, MA, USA), rabbit

anti-GFP (1:1000, Abcam, Cambridge, MA, USA), and rabbit

anti-ZsGreen (1:1000, Clontech, Mountain View, CA, USA).

Reagents used for mitochondria and cell death studies are as

follows: MitoTracker Deep Red (Invitrogen, Carlsbad, CA, USA),

MitoPY1 (gift of Professor Christopher J. Chang, UC Berkeley,

CA, USA), In situ Cell Death Detection Kit, TMR red (Roche

Diognostics, Mannheim, Germany), Ab42 (American Peptide,

Sunnyvale, CA, USA), S100B (Calbiochem, San Diego, CA,

USA), Ab42 ELISA Kit (Invitrogen, Carlsbad, CA, USA),

phenserine ((3aS,8aR)-1,2,3,3a,8,8a-Hexahydro-1,3a,8-trimethyl-

pyrrolo[2,3-b]indol-5-ol5-(N-phenylcarbamate), Tocris, Ellisville,

Missouri, USA) and RAGE antagonist dalteparin sodium

(Dalteparin sodium, Pfizer Inc, New York, USA), IFN-c was from

Pharmingen (Becton Dickinson, Italy).

Human neural progenitor cell cultures
Methods for VZ dissection and dissociation followed general

guidelines described previously [6,54]. In brief, samples were

obtained along the periventricular zone within the frontal cortex,

located by the landmark of Sylvian fissure and central fissure,

minced and washed in cold Hank’s buffered saline solution and

mechanically dissociated with pipettes. The samples were then

strained through a 40-mm cell strainer (Falcon, San Jose, CA,

USA). The dissociated cells were spun down, the media aspirated

and cells were placed in at low dilution (16106 per 5 ml) in

neurosphere medium (StemPro NSC SFM, Invitrogen, Carlsbad,

CA, USA) for expansion. The cultures were maintained in a

37uC/5% CO2 incubator for 1 to 2 weeks before the analysis. To

initiate differentiation, dissociated cells were plated on poly-D-

lysine/laminin 1-coated coverslips at a density of 16105 cells per

coverslip (24 mm624 mm). Oligodendrocyte differentiation was

achieved by maintaining the cells in KNOCKOUTTMDMEM/

F12 (Invitrogen, Main, MD)+2% B27(506, Invitrogen, Main,

MD)+10 ng/ml bFGF (R&D, Minneapolis, MN, USA)+100 ng/

ml SHH (R&D, Minneapolis, MN, USA)+10 ng/ml PDGF-AA

(R&D, Minneapolis, MN, USA) for 2 days, then switching to the

same medium without growth factors for another 5 days. Neuronal

differentiation was achieved by maintaining cells in KNOCK-

OUTTMDMEM/F12 +2% B27 (506) for 7 days. Astrocyte

differentiation was done by culturing cells in KNOCKOUTTMD-

MEM/F12 +1%FBS for a week. The pharmacological treatments

were in the same neurosphere medium without EGF and bFGF.

The preparation of Ab42 was as follows, Ab42 was dissolved with

distilled water to make 10 mg/ml stock solutions, and put into

37uC incubator for 24 h before further dilution and use.

Constructs, viral production and transfection or infection
pEGFP-C1-S100B and pHAGE-CMV-MCS-IZsGreenW-APP

constructs were made for in vitro overexpression experiments.

Human S100B full-length cDNA sequence was cloned into

pEGFP-C1 vector with XhoI/Hind III cutting site. The trans-

fection of pEGFP-C1-S100B construct in dissociated neural

progenitors was performed using Transfectin (Bio-Rad, Hercules,

CA, USA) according to the company’s product instruction.

Human APP full length cDNA sequence were cloned into

pHAGE-CMV-MCS-IZsGreenW vector (gift of The Harvard Gene

Therapy Initiative) with NotI/XbaI cutting site; Production of

lentiviruses was done in 293T cells as described by Richard

Mulligan’s lab [55,56], the MOI of 1 is used for both viruses.

Dissociated neural progenitor cells were infected with lentivirus or

transfected with constructs carrying the target genes, and kept in

neural stem cell medium for 4 days before analysis.

Immuno-staining and TUNEL analyses
Tissue sections after antigen retrieval or fixed cells were placed

in blocking solution with PBS containing 3% goat serum,

incubated overnight in the appropriate antibody, and processed

through standard fluorescent secondaries (CY2, CY3, Jackson

Immunoresearch Laboratories, Westgrove, PA, USA, and FITC,

Sigma, 1:500). Specimens were examined using confocal fluores-

cence microscopy after mounting in appropriate media. Apoptosis

were detected in sections or neurospheres by TUNEL using In

Situ Cell Death Detection Kit, TMR red (Roche). Sections with

positive stained cells were counted in at least three sections for

each patient and 4 patients for each assay. Cells staining positive

for expressed markers were counted in five randomly chosen

microscopic fields (0.02 mm2; magnification: 6306) along the

ventricular lining in each object; 5–10 neurospheres were sampled

on each treatment or patient, the TUNEL positive cells were

Table 1. Aborted fetal brain tissue used in this study.

Gestational Age Karyotype Gender Postmortem Interval

14 weeks 46, XX Female 3 hours

14 weeks 46, XX Female 4 hours

14 weeks 46, XY Male 2 hours

14 weeks 47, XX, +21 Female 2 hours

14 weeks 47, XX, +21 Female 3 hours

14 weeks 47, XY, +21 Male 3 hours

18 weeks 46, XY Male 3 hours

18 weeks 46, XY Male 3 hours

18 weeks 46, XY Male 2 hours

18 weeks 46, XX Female 3 hours

18 weeks 46, XX Female 4 hours

18 weeks 46, XY, +21 Male 3 hours

18 weeks 46, XY, +21 Male 4 hours

18 weeks 46, XY, +21 Male 2 hours

18 weeks 46, XX, +21 Female 3 hours

18 weeks 46, XX, +21 Female 2 hours

21 weeks 46, XX Female 4 hours

21 weeks 46, XX Female 3 hours

21 weeks 46, XY Male 3 hours

21 weeks 47, XX, +21 Female 3 hours

21 weeks 47, XX, +21 Female 2 hours

21 weeks 47, XY, +21 Male 3 hours

doi:10.1371/journal.pone.0022126.t001
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counted against the total cells in the field randomly selected.

TUNEL positive cells and immuno-positive cells in mouse sections

were counted in cortex or dentate gyrus area (0.02 mm2; mag-

nification: 6306) of equal location, at least three sections for each

mouse and three mice for each group.

Western blot
Proteins were extracted from neurospheres or cell lines by

previously described methods [6,9]. Briefly, cells were solubilized in

lysis buffer, separated on a 7.5% SDS–PAGE gel and transferred

onto PVDF membrane. The membrane was probed with the

appropriate antibody and detected by enhanced chemiluminescence.

ELISA assay
Enzyme-linked immunosorbent assay (ELISA) for S100B was

carried out on tissue supernatants as well as in the cell lysates.

Briefly, 15 mL of sample plus 15 mL of Tris buffer were applied on

a microtitre plate previously coated with monoclonal anti-S100B

(1:1000; AbCam) in carbonate buffer and blocked with 1% bovine

serum albumin. After washing, peroxidase-conjugated anti-S100B

(1:2000; AbCam) was added and incubation continued for 1 h.

The plate was washed, 0.2 mL of peroxidase substrate (Fast OPD;

Sigma, Milan, Italy) was added and the plate was incubated for a

further 30-min period in the dark. Absorbance was measured at

450 nm on a microtitre plate reader. S100B levels in the samples

were determined using a standard curve of S100B and expressed

as ng/mL. Ab42 ELISA was carried out with Ab42 ELISA kit

(Invitrogen, Carlsbad, CA, USA) following the company’s protocol.

Nitric oxide assay
Nitric Oxide (NO) production was measured as the stable

metabolite nitrite (NO2
2) accumulated in the incubation medium

of neural progenitor cells after 24 hours following LPS + IFN-c
addition, using a spectrophotometric assay based on Griess reac-

tion as previously [57].

MitoTracker deep red and MitoPY1 assay
The neurospheres or attached neural progenitor cells after

treatments were incubated with 0.5 mM MitoTracker deep red

(Invitrogen M22426, Carlsbad, CA, USA) together with 5 mM

MitoPY1 for 30 min in 37uC/5% CO2 incubator. MitoPY1 is a

mitochondrial-targeted fluorescent probe that responds to hydro-

gen peroxide by a turn-on increase in fluorescence intensity [15].

The cells were then fixed with 4% paraformaldehyde for 10 min,

and wash with PBS, counterstained with Hoechst 33342 (Invitro-

gen, Carlsbad, CA, USA). Cells were mounted on slides and

scanned by fluorescence microscope. The intensity of staining was

measured in 10 randomly chosen cells from each of nine neuro-

spheres or wells by each treatment. The numbers of MitoPY1

stained granules were counted in each case.

Statistical analyses
Results were expressed as the mean +/2 STDEV of n

experiments. Statistical analysis was performed with Student’s T

test or one way ANOVA, with P,0.05 considered significant.

Supporting Information

Figure S1 Gliocentric cell fate shift within human fetal
DS HNPs. Immunostaining of WT and DS HNPs show shifted

cell fates after differentiation for 1 week. The glial cells are stained

with O1 (rhodamine), O4 (rhodamine), CNPase (fluorescein),

S100B (fluorescein), MBP (rhodamine), Olig2 (fluorescein) and

GFAP (rhodamine); the neuronal cells are stained with MAP2

(fluorescein), DCX (fluorescein) and NeuN (fluorescein). The

quantification graph showing decreased neuronal cells and

increased glial cells in DS HNPs differentiation compared to

WT controls are showed to the right. Scale bar is 25 mm. Data are

represented as mean +/2 STDEV, ** p-value,0.01, *** p-value

,0.001 by two tailed t-test.

(TIF)

Figure S2 Intracellular over-expression of S100B and
APP cause loss of mitochondrial membrane potential.
(A) APP-lentiviral infection of WT HNPs dose-dependently

decreases MitoTracker deep red (rhodamine) intensities 2 days

after infection, with infected cells in fluorescein. The increased

expression of APP and secretion of Ab42 are showed on the right

by western blot and ELISA. (B) EGFP-S100B transfection of WT

HNPs shows a similar pattern as that in APP-lentiviral infections

48 hours after transfection. The increased expression and secre-

tion of S100B are showed to the right by western blot and ELISA.

(C) A combination of APP-lentiviral infection and EGFP-S100B

transfection for 2 days in HNPs shows an additive effect in

reducing the mitochondrial membrane potential. Scale bars are

25 mm in A, B and C; data are represented as mean +/2 STDEV,

* p-value,0.05, *** p-value,0.001 by two tailed t-test and one-

way ANOVA.

(TIF)

Figure S3 Intracellular over-expression of S100B and
APP cause increased apoptosis in HNPs and transgenic
mice. (A) APP-lentiviral infection of WT HNPs dose-dependently

increases TUNEL positive staining (rhodamine) 4 days after

infection, with infected cells in fluorescein. Graphical quantifica-

tion is to the right. (B) EGFP-S100B transfection of WT HNPs

shows a similar pattern as that in APP-lentiviral infection 4 days

after transfection. Graphical quantification is to the right. (C) A

combination of APP-lentiviral infection and EGFP-S100B trans-

fection in WT HNPs for 4 days shows an additive effect of

increasing apoptosis. (D) TUNEL staining with detection under

rhodamine fluorescence shows increased labeling of cells in the

frontal cortex of Ts65Dn mice compared to WT control (left

panel, n = 3 for each group of mouse). The increased TUNEL

labeling of cells are also found in the subgranular zone of dentate

gyrus of 19 months old APP (Tg2576) or APP/S100B (Tg2576-

huS100B) over-expression mice compared to WT control (right

panel, n = 4 for each group of mouse). The quantification graphs

are below. (E) Quantification graphs show additive effects of

S100B and Ab42 in enhancing the observed mitochondrial

dysfunction 24 hours after treatment (Figure 3B). Scale bars

are 200 mm for low magnification and 25 mm for high magnifi-

cation in A, B, C and D; data are represented as mean +/2

STDEV, * p-value,0.05, ** p-value,0.01, *** p-value,0.001 by

two tailed t-test and one-way ANOVA.

(TIF)

Figure S4 Intracellular over-expression of S100B and
APP promote gliocentric phenotypes. (A) Fluorescent

photomicrographs in the cortex of early postnatal (P0) Ts65Dn

mice show increased numbers of immunostaining on glial markers

such as S100B (fluorescein, upper left panel), GFAP (rhodamine,

upper right panel) and PDGFRA (rhodamine, lower left panel)

compared to WT controls. There is also a decreased numbers of

immunostaining on neuronal marker MAP2 (rhodamine, lower

right panel) in Ts65Dn mice compared to WT controls. The white

arrowheads in low magnification figures mark the VZ in frontal

cortex; the high magnification figures show cells in VZ except for

MAP2 in cortical plate. (B) Fluorescent photomicrographs of

S100B (rhodamine, left panel) and GFAP (rhodamine, right panel)
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staining (counterstained with Hoechst 33342) in the cortex of 19

months old mice show increased apoptosis and gliosis in APP

(Tg2576) or APP/S100B (Tg2576-huS100B) over-expressing mice

compared to WT control. Increased rhodamine stained cells are

counted in the subgranular zone of dentate gyrus, with the

quantification of immuno-positive cells showed below (n = 4 for

each group of mice). (C) Fluorescent photomicrographs of CNPase

(rhodamine, left panel) and myelin basic protein (MBP, rhoda-

mine, right panel) staining (counterstained with Hoechst33342) in

the cortex of 19 months old mice shows increased expression of

two oligodendrocyte markers in the APP (Tg2576) or APP/S100B

(Tg2576-huS100B) over-expressing mice compared to WT

control. Intense rhodamine fluorescence is seen in the subcortex

and subhippocampus (n = 4 for each group of mice). Scale bars are

200 mm for low magnification and 25 mm for high magnification

in A, B and C.

(TIF)

Figure S5 RAGE blocking and APP inhibition synergis-
tically reduce oxidative stress and apoptosis. (A) Photo-

graphs show the S100B dose dependently increase H2O2

production shown by MitoPY1 staining (fluorescein) and decrease

mitochondrial membrane potential shown by MitoTracker deep

red staining (rhodamine), which can be blocked by RAGE

antibody or dalteparin sodium after 24 hours. (B) The large

numbers of TUNEL+ cells in DS HNPs decrease to normal level

after Anti-RAGE antibody or dalteparin sodium treatment for

24 hours. (C) Fluorescent photomicrographs of DS HNPs show a

dose-dependent rise in mitochondrial membrane potential, as

evidenced by an increase in MitoTracker deep red staining

(rhodamine) after 24 hours treatment with RAGE and APP

inhibitors. A corresponding decrease in mitochondrial hydrogen

peroxide levels is also apparent, as evidenced by MitoPY1 staining

(fluorescein). (D) The number of TUNEL positive, DS HNPs are

decreased after pretreatment with the RAGE antagonist dalte-

parin sodium, APP inhibitor phenserine, or both (dalteparin

sodium + phenserine) for 24 hours. Scale bars are 25 mm in A and

C, 200 mm for low magnification and 25 mm for high magnifica-

tion in B and D.

(TIF)
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