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Abstract

Specific and universal biomarkers for distributed stem cells (DSCs) have been elusive. A major barrier to discovery of such
ideal DSC biomarkers is difficulty in obtaining DSCs in sufficient quantity and purity. To solve this problem, we used cell lines
genetically engineered for conditional asymmetric self-renewal, the defining DSC property. In gene microarray analyses, we
identified 85 genes whose expression is tightly asymmetric self-renewal associated (ASRA). The ASRA gene signature
prescribed DSCs to undergo asymmetric self-renewal to a greater extent than committed progenitor cells, embryonic stem
cells, or induced pluripotent stem cells. This delineation has several significant implications. These include: 1) providing
experimental evidence that DSCs in vivo undergo asymmetric self-renewal as individual cells; 2) providing an explanation
why earlier attempts to define a common gene expression signature for DSCs were unsuccessful; and 3) predicting that
some ASRA proteins may be ideal biomarkers for DSCs. Indeed, two ASRA proteins, CXCR6 and BTG2, and two other related
self-renewal pattern associated (SRPA) proteins identified in this gene resource, LGR5 and H2A.Z, display unique asymmetric
patterns of expression that have a high potential for universal and specific DSC identification.
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Introduction

A long-standing challenge in mammalian stem cell biology is

discovery of specific biomarkers for non-embryonic stem cells [1–

3]. Non-embryonic stem cells include the diverse stem cells that

emerge in fetal or post-natal development to sustain both somatic

and germinal tissues. Of the many names used for non-embryonic

stem cells, including, but not limited to, adult stem cells, tissue-

specific stem cells, germline stem cells, and somatic stem cells,

none give a comprehensive exact description. We recently

introduced the name ‘‘distributed stem cells (DSCs)’’ for this

purpose [4]. ‘‘Distributed’’ embodies the common aspect of all

non-embryonic stem cell types to retain a limited, specific

distribution of the pluripotent developmental potential of embry-

onic epiblasts.

The ability to identify and quantify DSCs directly would

revolutionize tissue cell research and cell-based medicine. This

achievement requires DSC biomarkers of superior specificity.

Until recently, only a handful of proteins had been described that

were even preferentially expressed in DSCs. However, most of

these ‘‘stem cell markers’’ are low-specificity DSC biomarkers,

because they are also significantly expressed by more abundant

lineage-committed progenitor cells produced by DSCs [1,2,5].

This generally poor success in discovering biomarkers that are

expressed only in DSCs led to the approach of DSC identification

by the absence of lineage-specific proteins expressed by cells

committed to differentiation [1]. However, because of its

technically challenging serial cell sort analyses and inherently

poor specificity, this lineage-negative biomarker approach does not

provide an effective means for DSC quantification.

The first example of a potentially exclusive DSC biomarker is

the product of the Lgr5 gene, a member of the leucine-rich-repeat

containing G-protein-coupled receptor gene family. Fluorescent

reporter protein genes knocked-in to the mouse Lgr5 locus

identified cells with stem cell character in intestinal crypts, colonic

pits, and hair follicles [6–9]. Antibodies against the human Lgr5

protein also identify a rare population of cells in the stem cell niche

regions of human intestinal crypts and colonic pits [10]. A related

gene family member, Lgr6, has a similar phenotype in mouse

knock-in studies [11]. Whether Lgr5 and Lgr6 will prove to be

universal biomarkers for DSC depends on their evaluations in

DSCs in other tissues [12]. Recent reports also highlight

uncertainties regarding their identification of DSCs versus more

numerous committed progenitor cells in intestinal crypts [13].

Several properties of DSCs contribute to their past poor history

of exclusive biomarker discovery. Foremost, they constitute a rare

fraction of tissue cells. In many tissues, their fraction is estimated to

be less than 1 in several thousand and in some as low as 1 in

100,000 [14]. Their defining characteristic, asymmetric self-

renewal, is a major barrier to their detection, isolation, and

expansion [3,15]. DSCs simultaneously produce non-stem differ-

entiating progeny cells while self-renewing without loss of stem cell

capacity. Because of asymmetric self-renewal, in culture, cell

populations initially enriched for DSCs rapidly decline in DSC
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fraction because of the cells’ own asymmetric production of

differentiating cells [15–18]. Thus, DSCs are highly refractory to

production in the quantity and purity needed for effective

biomarker discovery.

Herein, we report a new general approach for discovery of

specific and universal DSC biomarkers. The approach is grounded

in the precept that the defining function of DSCs, asymmetric self-

renewal, is a high-fidelity DSC-specific property [3,19]. It follows

that some biomarkers specific to asymmetric self-renewal will also

be specific to DSCs per se. This approach is feasible because of the

availability of genetically engineered cell lines that recapitulate

asymmetric self-renewal division under experimental control

[17,20,21]. We report the use of these model cell lines to identify

genes whose mRNA expression level differs significantly between

symmetrically self-renewing cells and asymmetrically self-renewing

cells. Whether up-regulated or down-regulated during asymmetric

self-renewal with respect to symmetric self-renewal, the 85 genes

so identified are called ‘‘asymmetric self-renewal associated’’

(ASRA) genes. Our findings show that ASRA genes are a unique

set of genes for detection of DSC asymmetric self-renewal and a

new resource for discovery of specific and universal DSC

biomarkers.

Results

Discovery of an ASRA gene subset
Previously, we established the use of genetically engineered cell

lines to define molecular pathways responsible for asymmetric self-

renewal [17,20,21,22–26]. The self-renewal pattern of the cell

lines (asymmetric versus symmetric) is under investigator control.

Both temperature-controlled [22–24] and Zn-controlled models

[17,20,21,25,26] have been described with similar conditional

asymmetric self-renewal properties.

The Zn-controlled engineered cells were used for these studies

[26]. These lines are p53-null murine fetal fibroblasts engineered

to conditionally express normal levels of the wild-type murine p53

protein from a p53 cDNA controlled with a modified human

metallothionein promoter [17,25,26]. In maintenance culture

medium (i.e., Zn-free), the conditional p53 minigene is off, and the

cells undergo symmetric self-renewal. In ZnCl2-supplemented

medium, normal levels of wild-type p53 protein are produced, and

the cells switch to asymmetric self-renewal (Fig. 1, ASYM). During

asymmetric self-renewal, a subpopulation of cells divides contin-

uously (i.e., DSC-like cells), but produces a G1/S-arrested

daughter cell every ,24-hour division cycle (Fig. 1, closed circle).

Control p53-null cell lines, co-derived by stable transfection of the

human metallothionein promoter vector without a p53 cDNA

insert, retain symmetric self-renewal in ZnCl2-supplemented

medium (Fig. 1, SYM) [17,21,25,26].

Alone, the p53-inducible cell lines were not ideal for discovery

of genes whose expression varied specifically with changes in self-

renewal pattern, because p53 is also an activator of many cellular

systems in addition to those associated with asymmetric self-

renewal. We devised a filter to discriminate ASRA genes based on

our earlier discovery of a p53-dependent pathway that regulates

self-renewal pattern in the engineered cell lines. The p53-

dependent down-regulation of the type II inosine-59-monophos-

phate dehydrogenase (IMPDH II; EC 1.2.1.14) is required for

asymmetric self-renewal by the engineered cell lines [21–23,25]

and DSCs [15,18,27–29]. IMPDH II is the rate-limiting enzyme

for cellular guanine ribonucleotide biosynthesis. Previously, we

established congenic derivatives of the Zn-controlled p53-induc-

ible cell lines that constitutively expressed an IMPDH II transgenic

cDNA (‘‘c-IMPDH II’’) [25]. The c-IMPDH II lines retain Zn-

inducible p53 expression, but they no longer shift from symmetric

self-renewal to asymmetric self-renewal (Fig. 1, p53SYM) [21].

P53-responsive genes like p21waf1, bax, and mdm2 still show

induced expression in the c-IMPDH II lines, but the cells maintain

symmetric self-renewal [21,25]. Control cells co-derived with the

expression vector without the IMPDH II cDNA insert retain the

Zn-inducible shift from symmetric self-renewal to asymmetric self-

renewal [25].

Fig. 1 illustrates the complete experimental system employed for

ASRA gene discovery based on congenic p53-null (SYM), p53-

inducible (ASYM), and c-IMPDH II (p53SYM) cell lines all grown

in Zn-supplemented medium for 48 hours (i.e., 2 cell generations;

see Materials and Methods). Based on this design, ASRA genes were

defined as those whose expression was up-regulated or down-

regulated in the ASYM state with respect to the SYM and

p53SYM states, which were required to have similar expression

levels. When a gene’s expression is different in the ASYM state

compared to the SYM, the change could be due to induced p53

expression per se, the acquisition of the ASYM state, down-

regulation of IMPDH II, or any combination of these three known

effects. A p53-responsive gene that does not require asymmetric

self-renewal for its change will show a similar expression change in

the p53SYM state. The same is true for IMPDH II-responsive

genes that do not require the asymmetric self-renewal state. This is

because IMPDH II expression in the p53SYM state is also

elevated with respect to the SYM state [25]. In contrast, ASRA

genes show lesser or no change in the p53SYM state (i.e., their

expression level will be similar in SYM and p53SYM states),

because, in principle, their change also requires acquisition of the

state of asymmetric self-renewal.

Operationally, first we identified genes whose expression was

either significantly up-regulated or significantly down-regulated in

Figure 1. Genetically engineered p53-inducible cell line
strategy for discovery of asymmetric self-renewal associated
(ASRA) genes. All cell lines are maintained in ZnCl2-supplemented
medium. Vector control, p53-Null cells exhibit symmetric self-renewal
(SYM) under this condition. The SYM state is characterized by
continuous cell divisions that produce two equivalent cycling cells
(open circles). P53-inducible cells exhibit asymmetric self-renewal
(ASYM) in response to p53 expression induced by ZnCl2-supplemen-
tation. The ASYM state is characterized by continuous cell divisions that
produce one cycling cell and one G1/S-arrested cell (closed circle;
curved arrow indicates continuous asymmetric divisions by cycling
stem-like cells). c-IMPDH II-expressing cells induce p53 as well, but
maintain symmetric self-renewal (p53SYM). ‘‘ASRA-up’’ genes are
defined as those that were undetectable or produced at low levels in
both SYM and p53SYM states, but showed high levels of expression in
the ASYM state. Genes with the reciprocal expression pattern are called
‘‘ASRA-down’’ genes.
doi:10.1371/journal.pone.0022077.g001
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the ASYM state with respect to either the SYM state (A

comparison) or the p53SYM state (B comparison) (Fig. 2; see

Materials and Methods). The intersection set, ASYM v. SYM>A-

SYM v. p53SYM, for respective up-regulated and down-regulated

genes yielded 85 genes that met the ASRA criteria (Fig. 2; Table

S1).

Fig. 3 provides a quantitative comparison of up-regulated and

down-regulated ASRA genes ranked by their average microarray

signal intensity for the ASYM state. Only 7 ASRA genes were

down-regulated (Table S1, ‘‘ASRA down’’ genes) in asymmetri-

cally self-renewing cells. Among the up-regulated ASRA genes

(Table S1, ‘‘ASRA up’’ genes) showing the highest degree of

induction (4-fold to 23-fold) are previously described p53-

responsive genes (e.g., Trp53inp1, Cdkn1a, Ccng1, Mdm2). Twenty

up-regulated ASRA genes were scored as ‘‘absent’’ in at least one

of the two SYM states (see Table S1). The eleven that scored as

‘‘absent’’ for expression in the SYM state (4833427G06Rik, Sulf2,

Khdrbs3, Cdkn1a, Eda2r, Rftn1, 2410016O06Rik, 3110039M20Rik,

F11r, Myo1b, and Foxs1), were named ‘‘exclusive’’ ASRA genes.

Exclusive ASRA genes were also in the top half for degree of

induction in the ASYM state (compared to their SYM background

intensity). Nineteen ASRA genes are predicted to encode

membrane proteins, including 2 exclusive ASRA genes (Eda2r

and F11r; see Table S1).

Although ASRA genes were selected as the ideal candidates for

specific and universal DSC biomarkers, other genes whose

expression changes between the three states of self-renewal are

also of interest. These members of the larger group of self-renewal

pattern associated (SRPA) genes, which number 845, are also

listed in Table S1. They are defined as A_up: up-regulated in

ASYM respect to SYM, but not with respect to p53SYM (320

genes); A_down: down-regulated in ASYM and respect to SYM,

but not with respect to p53ASYM (265 genes); B_up: up-regulated

in ASYM with respect to p53SYM, but not with respect to SYM

(194 genes); B_down: down-regulated in ASYM with respect to

p53ASYM, but not with respect to SYM (56 genes) (see Fig. 2 also);

A_up/B_down: up-regulated in ASYM with respect to SYM and

down-regulated in ASYM with respect to p53SYM (5 genes); and

A_down/B_up: down-regulated in ASYM with respect to SYM

and up-regulated in ASYM with respect to p53SYM (5 genes).

Within the larger SRPA gene set, up-regulated ASRA genes are

A_up/B_up; and down-regulated ASRAs are A_down/B_down.

The quantitatively defined ASRA gene subset is not exhaustive

for DSC biomarker candidates. Some members of other subsets of

SRPA genes may also prove to be useful DSC biomarkers.

Because of the high stringency used for ASRA gene selection,

some A_up and A_down genes with qualitatively ASRA character

were excluded. Plxdc2 and ephb6, whose mRNAs were undetect-

able in the SYM and p53SYM states, are examples of such non-

ASRA SRPA genes. We performed quantitative real-time RTPCR

assays for plxdc2 and ephb6 and three up-regulated ASRA genes

cxcr6, fst, and robo1. Plxdc2 mRNA was not detected in the SYM

state, but was detected in the ASYM state (n = 3, p = 0.001). The

respective fold up-regulation for the other 4 genes, in the ASYM

state with respect to the SYM state, was 4.6 (ephb6; n = 3, p = 0.04);

8.6 (cxcr6; n = 6, p = 0.002; reported previously in [30]); 6.5 (fst;

n = 3, p = 0.007); and 8.3 (robo1; n = 3, p = 0.10).

Evaluation of the ASRA gene subset as a signature for
specifying self-renewal pattern

All SRPA genes are potential participants in mechanisms that

control DSC self-renewal pattern, IMPDH II-dependent regula-

tion present in the p53SYM state (e.g., B_up and B_down genes in

particular), and nonrandom sister chromatid segregation that

occurs during the ASYM state [20,21]. However, the ASRA gene

subset is predicted to be more highly related to DSC asymmetric

self-renewal per se. As such, it might be used to specify the self-

renewal pattern character of isolated tissue cell populations. For

this purpose, we developed a bioinformatics approach to

evaluating the ability of the ASRA gene subset to serve as a

signature for distinguishing asymmetric self-renewal from sym-

metric self-renewal.

As shown in Fig. 4, when the 85 gene ASRA gene subset is used

as a gene signature in Between Group Analysis (BGA) [31,32], a

supervised classification method, with the original gene microarray

data as a training set (Fig. 4, train), it provides excellent

discrimination of the ASYM datasets from the SYM and

p53SYM datasets. Independently developed microarray datasets

for cells grown under standard ASYM versus SYM conditions

were well discriminated using the signature (Fig. 4, control).

We developed a statistical method to evaluate how unique the

ASRA gene signature was for its ability to discriminate known

asymmetric self-renewal states from known symmetric self-renewal

states based on its ASYM:SYM:p53SYM selection design. We

used BGA to estimate the probability of finding, by random

sampling within the founding microarray data, other 85 gene

subsets of greater ability to discriminate self-renewal pattern

compared to that of the ASRA gene signature. The Student’s t-test

was used to determine statistical confidence levels for the degree of

ASYM versus SYM/p53SYM discrimination. The distribution for

10,000 randomly sampled 85 gene sets with respect to BGA p

value is shown in Fig. 5A. Based on this analysis, the ASRA gene

signature was in the 5th percentile for the statistical confidence of

its ASYM versus SYM/p53SYM discrimination, indicating a high

degree of biological specificity.

Qualitatively and biologically, the ASRA gene signature is even

more unique than its quantitative 5th percentile ranking indicates.

Figure 2. Bioinformatics strategy for discovery of the 85 gene
ASRA signature. ASRA genes (‘‘ASRA-up’’ and ‘‘ASRA-down’’) are
the respective unions of two intersection sets. The ASRA-up intersection
was defined as genes that were up-regulated in the ASYM state with
respect to the SYM state AND up-regulated in the ASYM state with
respect to the p53SYM state. The ASRA-down intersection was defined
as genes that were down-regulated in the ASYM state with respect to
the SYM state AND down-regulated in the ASYM state with respect to
the p53SYM state (See also self-renewal pattern definitions in Fig. 1).
doi:10.1371/journal.pone.0022077.g002
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Closer inspection of the 515 randomly sampled gene subsets that

discriminated with higher statistical confidence shows that they are

over-represented for ASRA genes. Fig. 5B indicates that the

number of ASRA genes found in the other gene subsets is greater

than expected by chance. Another strong indication of the

uniqueness of the ASRA gene signature was noted when the 515

higher ranking randomly sampled gene subsets were evaluated for

their degree of discrimination of independent microarray datasets

for mouse embryonic stem cells (ESCs) and cultured mouse neural

stem cells (NSCs). Based on their stem cell type (i.e., embryonic

versus distributed, respectively), a priori, ESCs and NSCs are

predicted to be discriminated by the ASRA gene signature as

symmetrically self-renewing and asymmetrically self-renewing,

respectively. This distinction is observed in the BGA analysis

using the ASRA gene signature (Fig. 4, GSE10806). In contrast,

the vast majority of randomly sampled gene subsets did not make

this distinction at all; and only 22% gave greater separation of

NSCs and ESCs datasets relative to their separation of respective

ASYM versus SYM training microarray datasets (Fig. 5C). These

analyses indicate that the ability of the ASRA gene signature to

Figure 3. Quantitative assessment of the ASRA gene signature. The log2 expression levels of the microarray probe sets defining the three
main quantitative categories of the ASRA gene signature (ASRA up, ASRA up exclusive, ASRA down) are graphed for each of the three
compared self-renewal states. Data for each gene category (x-axis, Probe Set) are ranked-ordered based on the ASYM expression level (y-axis). A
vertical line connects the ASYM and SYM expression levels.
doi:10.1371/journal.pone.0022077.g003

Figure 4. Self-renewal pattern specification by Between Group Analysis (BGA) using the ASRA gene signature. A self-renewal pattern
classification field was developed based on BGA training with the original 8 gene microarray datasets (train; SYM = SYM and p53SYM). The
horizontal dashed line delineates symmetric self-renewal character (upper field) and asymmetric self-renewal character (lower field). The
specification ability of the method was tested with independently developed microarray datasets for the ASYM and SYM states (control).
Hematopoietic DSC-enriched populations include, LSK, ST-HSC, LT-HSC, and MP (multipotent progenitors); MyP, committed myeloid progenitors.
ESC, embryonic stem cells; EB, embryoid bodies; iPS, induced pluripotent stem cells; NSC, neural stem cells. Cancer cell populations include mouse
mammary cancer derivatives (left) and mouse glioma derivatives (right): SC, stem cells; normal, normal mammary epithelial cells; tumorsp,
tumorsphere; neurosp, neurosphere; SP, side population. Immune cells included, plasma cells; GC, germinal center cells; memory B-cells; and
naı̈ve B-cells. GSE, Gene Expression Omnibus dataset deposit number.
doi:10.1371/journal.pone.0022077.g004
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discriminate ASYM versus SYM self-renewal states is not likely to

have occurred by chance, but is more likely to reflect the unique

biological design employed for its discovery.

Use of the ASRA gene signature to specify the self-
renewal pattern character of tissue cell preparations

We used the BGA method to specify and quantify the self-

renewal pattern character of a variety of cultured and uncultured

murine tissue cell populations based on their ASRA gene

signatures found in microarray datasets in the Gene Expression

Omnibus (GEO) repository (see Fig. 4). A striking feature of this

analysis was that, overall, for the cell populations considered, most

exhibited greater asymmetric self-renewal character (Fig. 4, below

dashed line) than symmetric self-renewal character (Fig. 4, above

dashed line). The exceptions to this characteristic were one

example each of embryonic stem cells, myeloid progenitor-

enriched cells (MyP), and hematopoietic stem cell-enriched

(LSK: lineage-negative, Sca-1+, c-Kit+) populations.

Hematopoietic stem cell (HSC)-enriched populations were

generally specified to have greater asymmetric self-renewal

character (GSE7302; GSE4332) [33]. Even in the case for which

an HSC-enriched population was specified as symmetric, it

showed significantly less symmetric self-renewal character than

compared populations enriched for committed myeloid progeni-

tors (GE6623; p = 0.021) [34]. In another dataset entry

(GSE7302), populations enriched for multipotent progenitors

(MP), long-term (LT)-HSCs, and short-term (ST)-HSCs, based

on respective differences in CD34 and FLT3 expression, were not

significantly different for asymmetric self-renewal character.

Highly-enriched LT-HSCs isolated for young animals at 2–3

months of age or old animals at 22–24 months of age were not

significantly different for degree of asymmetric self-renewal

character (GSE4332).

Among the cultured cell populations considered, NSCs

(cultured alternately on gelatin or as neurospheres), a type of

DSCs, had the greatest asymmetric self-renewal character

(GSE10806) [35]. Primary NSC cultures had significantly greater

asymmetric self-renewal character than mouse induced pluripotent

stem (iPS; GSE10806) [35] cells and mouse ESCs (GSE10806,

GSE4189, GSE9563) [35–37], the latter that extended into the

symmetric self-renewal zone (p,0.002; GSE10806) [35]. The iPS

cells in this comparison (GSE10806) were developed by introduc-

tion of Oct4 and Klf4 into the NSCs. Consistent with the idea that

differentiation of ESCs may produce asymmetrically self-renewing

DSCs, 5-day mouse embryoid bodies (EB; GSE9563) had

significantly more asymmetric self-renewal character than their

precursor ESC cultures (p = 0.01).

Recently, others and we demonstrated that the ASRA protein,

Cxcr6 (see Table S1), is expressed by human melanoma cancer

stem cells [30]. This finding supports the hypothesis that one

important origin of cancer stem cells is mutated DSCs [38–40],

which in some tumors may retain asymmetric self-renewal [41].

To explore this concept further, we evaluated the self-renewal

pattern character of different cell fractions from two different

mouse tumor models, mammary cancer (GSE8863) [42] and

glioma (GSE13490) [43]. Both models are based in p53-null mice.

The mammary cancer study used tumors that develop after

transplantation of mammary epithelium from p53-null mice into

cleared fat pads of congenic wild-type mice; and the glioma study

evaluated cells from tumors that develop in mice transgenic for a

verbB gene driven by an S100b promoter on a p53-null genetic

background. Although all evaluated tumor cell preparations

showed significant asymmetric self-renewal character, they all

also had significantly more symmetric self-renewal character than

Figure 5. Statistical evaluation of the biological uniqueness of
the ASRA gene signature. A. Shown is the histogram for p values
determined by the Student’s t-test for Between Group Analysis (BGA)
separation of the ASYM versus the SYM/p53SYM training datasets
described in Fig. 4. Each of the 10,000 determinations was performed
with the expression values of a random sample of 85 genes. The
vertical line indicates the p value of the 85 gene ASRA gene signature.
B. Comparison of the observed frequencies (ordinate; blue) of
randomly sampled 85 gene subsets, which had lower p values than the
ASRA gene signature in A and contained the indicated number of ASRA
genes (abscissa), to the frequencies predicted by chance (red). C.
Analyses of the BGA separation distance between microarray data sets
for mouse embryonic stem cells (ESC) versus cultured mouse neural
stem cells (NSC) relative to the separation distance of respective SYM
versus ASYM training datasets (see Fig. 4) using the randomly sampled
85 gene subsets that had lower p values than the ASRA gene signature
in A. All gene subsets whose BGA analyses lacked altogether the
respective correspondence between ESC:NSC and SYM:ASYM separa-
tion were grouped as ‘‘,0’’. The vertical line indicates the relative
ESC:NSC separation using the 85 gene ASRA gene signature.
doi:10.1371/journal.pone.0022077.g005
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normal mammary epithelium (normal; GSE8863). Cells identi-

fied by their lineage-negative/CD24 high/CD29 high immuno-

phenotype as mammary tumor-initiating cells (tumor SC;

GSE8863) showed greater symmetric self-renewal character than

mammary tumor cells without this property (tumor non-SC;

GSE8863), but the difference was not statistically significant

(p.0.20). In the glioma model, tumor-initiating cells were found in

a FACS side population (SP; GSE13490) fraction of tumorsphere

cultures. This fraction had significantly more asymmetric self-

renewal character than the non-SP (i.e., non-cancer stem cell)

tumorsphere cell fraction (p,0.005; GSE13490); and it was

similar in self-renewal pattern character to SP and non-SP

fractions of cultured neurospheres that contain normal NSCs.

Because of the long-lived nature of immune system memory

cells, we evaluated their self-renewal pattern character. In

immunized mice, germinal center cells (GC), memory B-cells,

and naı̈ve B cells exhibit significantly greater asymmetric self-

renewal character than short-lived plasma cells (p,0.032;

GSE4142) [44]. These data suggest significant asymmetric self-

renewal by long-lived immune cells. Previous investigators have

noted that memory B-cells, memory T-cells, and LT-HSCs shared

a common transcriptional program [44]. Based on this ASRA

gene signature interrogation, we suggest that a significant fraction

of their shared gene expression is related to asymmetric self-

renewal.

Asymmetric expression by ASRA proteins and related
SRPA proteins

Individually or in combination, proteins encoded by ASRA

genes (i.e., ASRA proteins) are predicted to provide a new type of

highly specific biomarkers for asymmetric self-renewal. To the

degree that asymmetric self-renewal is an exclusive property of

DSCs, some ASRA proteins are predicted to be specific and

universal biomarkers for DSCs. By our design, ASRA proteins

might mark asymmetrically self-renewing DSCs, their non-stem

cells sisters, or both. The ideal ASRA protein might be predicted

as one that marked only the asymmetrically self-renewing DSC

and not its non-stem sister.

We used two related indirect in situ immunofluorescence (ISIF)

cytometry assays to determine expression patterns of ASRA

proteins in cells undergoing either asymmetric self-renewal

divisions or symmetric self-renewal divisions. The sister pair

(SPr) assay is based on plating cells at sufficient sparseness, so that

sister cells can be identified based on their close proximity [18,30].

The second assay is based on the use of cytochalasin D (CD) to

capture divided sister nuclei in a single undivided parental cell for

evaluation of their respective expression patterns. The CD assay

has the advantage of use at high cell densities, but it depends on

protein expression patterns being unaffected by CD treatment. All

candidate biomarkers were evaluated with both complementary

assays.

To validate the SPr and CD assays, we used three well-

described cell cycle-specific biomarkers: cyclin A (CyA) as a

general biomarker for cycling cells, cyclin E (CyE) as a biomarker

for cycling early S phase cells, and cyclin D1 (CyD1) as a

biomarker for G1 cells and, more importantly, cells arrested at

G1/S of the cell cycle [45]. Fig. 6 provides examples of the major

types of SPr and CD expression patterns observed for these

biomarkers under conditions of symmetric self-renewal versus

asymmetric self-renewal with the engineered cell lines. In SPr

analyses, all three cell cycle biomarkers showed primarily

symmetric expression patterns when the engineered cell lines

were cultured under conditions for symmetric self-renewal (Fig. 6A

and 6B, SYM, SPr). In contrast, under conditions for asymmetric

self-renewal, asymmetric expression patterns increased significant-

ly (Fig. 6A and 6B, ASYM, SPr; see also Table 1, CyA:CyD1, SPr

assay). As predicted, CyD1, the biomarker for non-cycling non-

stem sisters, was consistently reciprocally asymmetric with respect

to the cycling cell biomarkers (Fig. 6B, ASYM, SPr). Similar

relationships were observed in parallel CD assays (Fig. 6A and 6B,

CD; see also Table 1, CyA:CyD1, CD assay), validating this

second assay for use with cyclins A, E, and D1. Simultaneous

detection of CyA and CyD1 was particularly effective for detecting

and quantifying asymmetric self-renewal and symmetric self-

renewal (Fig. 6B, ASYM; Table 1, CyA:CyD1). When p53 was

induced, it was always expressed in both sister cells or sister nuclei,

despite their clear phenotypic differences (Fig. 6C, ASYM;

compare p53 and CyD1). Thus, although the shift to asymmetric

self-renewal from symmetric self-renewal by the engineered cells is

initiated by p53 expression, it is not due to asymmetric expression

of p53 between sister cells.

To date, we have evaluated 6 ASRA proteins and two related

SRPA proteins for their expression pattern during asymmetric self-

renewal. Plexin domain containing 2 (Plxdc2) protein; glycopro-

tein (transmembrane) nmb (Gpnmb); KH domain containing,

RNA binding, signal transduction associated protein 3 (Khdrbs3);

and alpha B crystallin (Cryab) showed symmetrically up-regulated

expression in both the asymmetrically cycling stem-like cell and its

non-cycling sister (data not shown).

The 4 remaining proteins had distinctive asymmetric expression

characteristics during asymmetric self-renewal. Two, cytokine (C-

X-C motif) co-receptor Cxcr6 [30] and antiproliferative B-cell

translocation gene 2 (Btg2), were originally identified as ASRA

genes (see Table S1). The other two, the histone H2A variant

H2A.Z and the leucine-rich repeat-containing orphan G protein-

coupled receptor 5 (Lgr5), were discovered because of their

connection to non-ASRA SRPA genes. H2A.Z itself is an A_down

gene (‘‘H2afz’’ in Table S1) that is consistently reduced in

expression during asymmetric self-renewal [46]. Expression of lgr5

mRNA did not differ significantly among the three self-renewal

states. However, its family member lgr6 was identified as an A_up

gene. In transgenic mouse reporter gene knock-in studies, Lgr5

and Lgr6 were previously defined as specific biomarkers for hair

follicle and gastrointestinal epithelial stem cells [7,10,11].

The asymmetric expression of Cxcr6 during asymmetric self-

renewal was reported earlier [30]. Btg2 shows a very similar

asymmetric expression pattern limited to the nucleus of the cycling

stem-like sister during asymmetric self-renewal (Fig. 6D, ASYM,

Btg2). For both proteins, their specific expression in the cycling

stem-like cell was confirmed by their co-expression with

asymmetrically expressed cyclin A (e.g., Fig. 6D, ASYM, CyA).

This feature has been also been confirmed for H2A.Z with the

engineered cell lines (data not shown; Table 1) and with ex vivo

expanded mouse hair follicle stem cells (Huh and Sherley,

unpublished data). Fig. 6E data show that asymmetrically self-

renewing engineered cells express nuclear Lgr5 in a similar

asymmetric pattern. The cycling sister, which retains the stem cell

phenotype, expresses Lgr5 (Fig. 6E, ASYM; compare Lgr5 to

CyA).

Detection of asymmetrically self-renewing cells using the

biomarker pairings of CyA:CyD1 (reciprocally asymmetric),

CyA:Btg2 (co-asymmetric), and CyA:H2A.Z (co-asymmetric) was

highly significant (see Table 1). We evaluated the quality of each of

these combinations as tests for detecting asymmetrically self-

renewing cells. For this analysis, we modeled that the asymmetric

self-renewal rate of the engineered cell lines under SYM conditions

was 0% and under ASYM conditions 100% (previous time-lapse

microscopy determined values were 9% and 72%, respectively)
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[17]. Based on this simplified model, the test quality values in

Table 1 were calculated. All three biomarkers were similarly

highly specific for detecting asymmetric self-renewal with respect

to symmetric self-renewal. However, the CyA:Btg2 and CyA:-

H2A.Z based assays were more sensitive than CyA:CyD1 based

assays, indicating that they scored more than just the cell cycle

arrest of the non-stem cell sister. Indicative of their generally high

level of specificity, all three assays had a high positive predictive

value, meaning that when an asymmetric self-renewal call was

made it had an 88–94% chance of being correct.

Discussion

Identification of ASRA genes, a subset of SRPA genes
Genetically engineered, p53-inducible murine embryo fibro-

blasts that model DSC asymmetric self-renewal are the foundation

for the development of this unique stem cell gene expression

profile resource. Since their original description [25], others and

we have reported several specific examples of evidence for their

relevance to functions of DSCs in vivo. These include the use of

Figure 6. Evaluation of ASRA protein biomarkers by sister pair
(SPr) and cytochalasin D (CD) assay. Shown are examples of
fluorescent photomicrographs from parallel SPr and CD analyses using
dual indirect ISIF performed simultaneously with two different
biomarker-specific antibodies of different species origin. Species-
specific secondary antibodies conjugated to red and green fluoro-
chromes were used, respectively, for biomarker-specific imaging. SYM,
symmetric self-renewal by p53-null Con-3 cells with ZnCl2. ASYM,
asymmetric self-renewal by p53-inducible Ind-8 cells with ZnCl2 to
induce p53 expression. DAPI, nuclear DNA fluorescence. CyA, indirect
ISIF with specific antibodies for cyclin A, an indicator for cycling late G1,

S, and G2 cells with greatest expression in G2 phase. A. Dual indirect
ISIF with antibodies for cyclin A and cyclin E (CyE), an indicator for
cycling late G1 and S phase cells, with highest expression in early S
phase. B. Dual indirect ISIF with antibodies for cyclin A and cyclin D1
(CyD1), an indicator for cycling G1 or arrested late G1 and early S phase
cells, with highest expression in late G1 phase. C. Dual indirect ISIF with
antibodies for cyclin D1 and p53. D. Dual indirect ISIF with antibodies
for cyclin A and Btg2. E. Dual indirect ISIF with antibodies for cyclin A
and Lgr5. See Table 1 for quantitative analyses for the CyA:CyD1 and
CyA:Btg2 SPr and CD assays. Only the CD analysis was quantified for the
CyA:Lgr5 assays (n = 61, 58; and % co-asymmetric CyA and Lgr5
expression = 20%, 4% for paired nuclei in the ASYM state versus the SYM
state, respectively; p,0.006 by the two-tailed Fisher’s exact test). Scale
bars = 50 microns.
doi:10.1371/journal.pone.0022077.g006

Table 1. Test Quality Metrics for SPr and CD Assays for
Asymmetric Self-Renewal.

Assay

% ASYM
Pattern n p Sen(%) Spe(%) PPV(%)

Condition

ASYM SYM

CyA:CyD1

SPr assay 25 3 61,60 ,0.0002 44 94 88

CD assay 25 2 63,60 ,0.0001 43 97 94

CyA:Btg2

SPr assay 47 6 60,50 ,1026 58 93 90

CD assay 43 5 53,61 ,1026 64 93 88

CyA:H2A.Z

SPr assay 43 5 58,57 ,1026 69 93 89

CD assay 37 3 63,59 ,1026 53 95 92

% ASYM Pattern, percent of evaluated sister cell pairs or sister nuclei pairs
showing an asymmetric protein expression pattern; ASYM, under conditions
that promote asymmetric self-renewal; SYM under conditions that promote
symmetric self-renewal; n, number of pairs randomly evaluated under each
condition for two independent assays; p, Fisher’s exact test for the statistical
confidence of specific asymmetric pattern detection vs. symmetric pattern
detection; Sen, test sensitivity; Spe, test specificity; PPV, test positive
predictive value.
doi:10.1371/journal.pone.0022077.t001
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molecular pathways discovered in them to expand different types

of DSCs ex vivo [18,27–29,47] and the demonstration that they

undergo DSC-specific non-random sister chromatid segregation

[20,21]. A recent study also implicated p53 in the regulation of the

self-renewal pattern of mouse mammary DSCs and mammary

cancer stem cells. In these stem cells, the p53 null genotype was

associated with increased symmetric self-renewal at the expense of

asymmetric self-renewal [48]. These findings were anticipated by

our proposal of p53-dependent regulation of self-renewal pattern

as a model for the self-renewal kinetics of DSCs [21,23].

Our report here that the genetically engineered cell lines induce

the Lgr6 gene and express Lgr5 protein asymmetrically during

asymmetric self-renewal further increases confidence that they share

important functional properties with DSCs in vivo. However, the one

previous study of in situ detection of Lgr5 by immunohistochemistry

in human tissues did not report nuclear expression of the protein

[10]. We observed both nuclear and cytoplasm Lgr5 protein in

mouse hair follicle stem cells, but only the nuclear form showed

asymmetric expression; and detection of both forms is prevented by

blocking the Lgr5 antibodies with their peptide antigen (Huh and

Sherley, unpublished). Only nuclear Lgr5 was detected in the

engineered cell lines. These differences may reflect species and cell

type-specific differences in Lgr5 subcellular localization. We note

that nuclear localization of other G-coupled protein receptors has

been reported for other cell types [49].

Subsets of ASRA genes and the larger set of SRPA genes are

also predicted to function in mechanisms responsible for

asymmetric self-renewal and closely associated non-random sister

chromatid segregation [20,21]. For example, H2A.Z was de-

scribed previously for its ability to prevent p53-dependent

induction of the cyclin inhibitor CDKN1A [50]. The observed

restriction of its expression to the asymmetrically cycling stem cell

sister (Table 1) might prevent the initiation of a terminal cell cycle

arrest program by CDKN1A that occurs in the non-stem sister.

More recently, we have shown, in both the engineered cell model

and ex vivo expanded mouse hair follicle stem cells, that asymmetric

H2A.Z expression is also restricted to the set chromosomes that

contain the oldest DNA strands during non-random sister

chromatid segregation (i.e., the ‘‘immortal DNA strands,’’) (Huh

and Sherley, unpublished).

There are many published reports of p53-responsive gene

signatures [51–55]. However, earlier studies were not conducted

with cell models that undergo well-defined asymmetric self-

renewal; and they were not designed to identify genes specifically

associated with this special property of DSCs. Thus, this is the first

report of a p53-related gene resource with potential for specifying

DSCs exclusively and universally; but, not surprising, a number of

ASRA genes were previously described as p53-responsive genes.

Several of the most highly expressed ASRA genes are well-known

p53-responsive genes (Table S1; trp53inp1, cdkn1a, cnng1, and

mdm2). These highly p53-dependent genes score as ASRA genes

because their expression level is reduced significantly when

asymmetric self-renewal is prevented by transgenic IMPDH II

expression, though not always as low as their expression level in

the absence of p53 expression. Other ASRA genes are more

recently defined p53-responsive genes. Btg2 induction was shown

to be required for p53 suppression of murine embryo fibroblast

transformation by ras [56]. The small heat shock chaperone Cryab

was recently discovered as a p53 transcriptional activation target

that binds to p53 and regulates p53-dependent apoptosis [55].

Because of their ASRA gene expression pattern, each is now

identified for greater potential to identify DSCs and to play

important roles in DSC asymmetric self-renewal and non-random

sister chromatid segregation.

Evidence for determined asymmetric self-renewal by
individual DSCs

Although asymmetric self-renewal is a defining concept for

DSCs, its exact cellular details remain poorly defined. Generally,

asymmetric self-renewal by DSCs is inferred retrospectively from

their long-term production of lineage-specific differentiated cells in

stem cell-deficient hosts. Prospective analyses of asymmetric self-

renewal are infrequent because of the technical challenge

presented by its dynamic and cell-heterogeneous nature. In fact,

even the form of asymmetric self-renewal by DSCs in vivo has

persisted as a matter of uncertainty since the formulation of the

tissue stem cell concept [19,57]. Stochastic forms, based on

multiple stem cells per tissue unit, are at one extreme; whereas

tissue units based on single determined stem cells are at the other

[58–60]. Determined asymmetric self-renewal by individual DSCs

is accomplished by divisions that yield a DSC sister and a lineage-

committed sister [3,19].

Two labs [18,61], including this one, have demonstrated

determined asymmetric self-renewal by individual cells in DSC-

enriched cultures. In addition, we genetically engineered the

described murine cells that individually undergo determined

asymmetric self-renewal under experimental control [17,20,21,

23,24]. These lines were the foundation for the development of the

presented ASRA gene expression profile resource; and they

provided an important orthogonal evaluation of their DSC

biomarker potential based on their expression pattern between

sister cells from asymmetric self-renewal divisions.

The BGA studies (Fig. 4) provided a first in vivo indication of the

potential DSC discriminating power of the ASRA gene signature by

using publicly available microarray databases for cultured and

uncultured murine tissue cells. Because of the well-described

marked variability in microarray datasets among different labs

and experiments, caution must be exercised in the weight placed on

any individual dataset’s ASYM versus SYM specification. Greater

weight can be placed on the relative self-renewal pattern

assignments of datasets compared in the same experiment.

Although limited by the purity of the examined cell populations

and the precision of their deposited microarray analyses, these

studies were particularly informative. We found that cell popula-

tions enriched for hematopoietic stem cells, one of the best-defined

DSC types, had significant asymmetric self-renewal character. This

finding provides new evidence that deterministic asymmetric self-

renewal is a specific property of DSCs, including uncultured ones.

The BGA studies also illustrate how the ASRA gene signature

provides a resource for specifying and quantifying the self-renewal

pattern character of cell populations of interest. By using human

gene probes that correspond to the mouse ASRA gene signature,

similar classifications could be performed for human cell populations

of interest [46]. The value of such capability can be appreciated from

this report. Compared to the asymmetric self-renewal character of

DSC types (i.e., HSCs and NSCs), lineage-committed progenitors,

mouse ESCs, and iPSCs each had ASRA gene signatures more

characteristic of symmetric self-renewal. This relationship could

account for the failure of earlier gene profiling studies to identify

‘‘stemness genes,’’ when ESCs and adult stem cells (i.e., DSCs) were

treated as equivalent [62]. Many important stemness genes

expressed specifically in DSCs were most likely overlooked, because

they were not also expressed significantly in ESCs.

The uniqueness of the ASRA gene signature
We developed a random sampling-BGA method for evaluating

the uniqueness of the ASRA gene signature’s ability to

discriminate between asymmetric and symmetric self-renewal

states (Fig. 5). This method also constitutes a general bioinfor-
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matics approach to mining for gene signatures of prescribed gene

number that have the greatest statistical power for delineating two

biologically distinct cell states of interest. It is noteworthy that,

whereas many gene subsets identified by this method distinguished

the experimental ASYM and SYM states with greater statistical

confidence than the ASRA gene signature (515 out of 10,000

trials; Fig. 5A), only a small fraction of these was also able to

discriminate respective NSCs and ESCs as well (22%; Fig. 5C).

These relationships support the starting premise that asymmetric

self-renewal per se is the gnomonic for DSCs [3]. That is to say that,

although other gene subsets can be readily found that distinguish

the experimental cells in their respective ASYM and SYM states,

the ASRA gene signature, defined a priori to distinguish self-

renewal pattern specifically, is better than most when it comes to

discriminating between natural stem cell types with respect to their

pattern of self-renewal.

ASRA proteins and SRPA proteins as potential specific
and universal DSC biomarkers

Three ASRA proteins investigated so far (H2A.Z, Cxcr6, Btg2)

have ideal asymmetric expression patterns for exclusive and

universal identification of asymmetrically self-renewing cells.

However, they have another feature that will require more

investigation before its effect on DSC biomarker capability can be

determined. They are also expressed in both sisters during

symmetric self-renewal by the engineered cell lines (e.g., Fig. 6D

and 6E) and mouse hair follicle stem cell strains (Huh and Sherley,

unpublished). Although this feature models well the concept of DSC

symmetric self-renewal, there is no design feature of the engineered

cell model per se to preclude similar symmetric expression by

transient amplifying cells in tissues. Our initial tissue analyses (Huh

and Sherley, unpublished) and public databases of immunohisto-

chemical analyses [63] indicate that this shortcoming applies to

H2A.Z, but not Btg2. Moreover, Cxcr6, which is expressed in both

the nuclei and cytoplasm of the engineered cell lines, shows a high

level of nuclear expression only in the cycling stem-like cell of

asymmetric divisions. During symmetric divisions, the nuclei of both

sister cells show a marked reduction in nuclear Cxcr6 [30]. Cxcr6

has not been evaluated in tissues as yet, but this pattern of expression

predicts that it will be highly specific for asymmetrically cycling

DSCs. Already it has been shown to identify a discrete

subpopulation of human melanoma cancer stem cells that produce

more aggressive tumors than melanoma cancer stem cells selected

by other biomarkers [30].

So far, an ASRA protein expressed only by the asymmetrically

cycling DSC-like sister and neither by its asymmetric non-stem

sister nor symmetrically cycling sisters in general, has not been

identified. Such biomarkers, if found, might provide even more

specificity for detecting tissue DSCs. Of course, existing ASRA

proteins like Btg2, which appear to be expressed by only rare

positive cells in most tissues [63], may prove to be more sensitive

biomarkers by recognizing DSCs both during predicted common

homeostatic asymmetric self-renewal and rarer symmetric self-

renewal. Thus, full utilization of this resource by the stem cell

research community may yield the biomarkers needed to move

DSC detection from a qualitative discipline to a quantitative one,

while simultaneously revealing more of the rich secrets of these

remarkable tissue cells.

Materials and Methods

Cells
Engineered p53-null vector control line Con-3 (SYM), Zn-

dependent p53-inducible line Ind-8 (ASYM), and c-IMPDH II

line tI-3 (c = constitutive; p53SYM) were maintained as previously

described [21].

Oligonucleotide microarray development
Whole genome expression profiles of p53-induced Ind-8 cells

(ASYM), p53 null Con-3 cells (SYM), and p53 induced c-IMPDH

II tI-3 cells (p53SYM) grown for 48-hours in ZnCl2-supplemented

culture medium were compared by analyzing Affymetrix mouse

whole genome GeneChipH 430 2.0 arrays (Affymetrix, Inc. Santa

Clara, CA). Three independent preparations of Ind-8 and Con-3

cells and two of tI-3 cells were developed as outlined below.

Ind-8 and Con-3 cells were grown over a 3-day period to about

50% confluency, trypsinized, and replated in zinc-free medium

(DMEM, 10% dialyzed fetal bovine serum [DFBS], 5 mg/ml

puromycin) at a cell number:plating area:medium volume ratio of

105:75 cm2:20 ml. This initial ratio was held constant for all

experiments. C-IMPDH II line tI-3 cells were grown and replated

in the same way as Ind-8 and Con-3 cells except for the medium

(DMEM, 10% DFBS, 5 mg/ml puromycin plus 1 mg/ml G418

sulfate). Sixteen to 24 hours later, the culture medium was

replaced with the same volume of respective medium containing

65 mM ZnCl2. This time was designated as time = 0; and a set of

replicate cultures for each condition (ASYM, SYM, p53SYM)

were harvested by trypsinization and counted with a Model ZM

Coulter electronic cell counter for later self-renewal kinetics

verification. After 48 hours of culture in the Zn-supplemented

medium, all cells were harvested by trypsinization and counted to

verify their respective self-renewal kinetics (ASYM or SYM) based

on comparing calculated asymmetric and symmetric population

division cycles (PDC) [20].

Total RNA samples were extracted using the Trizol reagent

(Invitrogen, Carlsbad, CA) and followed by a clean-up step with

the Qiagen RNeasy kit (Qiagen, Valencia, CA). Total RNA

quality was tested with the Agilent 2100 BioAnalyzer (Agilent

Technologies, Palo Alto, CA). Five mg of total RNA was used for

cDNA synthesis, and then cDNA was used to make biotinylated

cRNA. cRNA was fragmented and hybridized onto the Affymetrix

mouse whole genome GeneChipH 430 2.0 array. The arrays were

washed and quantified with a fluorescence array scanner. After

scanning the arrays, quantification and statistics were performed

using model-based expression and the perfect match (PM) minus

mismatch (MM) method in the G-COSH software (version 1.0)

and/or the dChip software version 2005. Data across all 8 arrays

were originally normalized by setting target intensity at 500 in the

G-COS.

Microarray data analysis
Background correction, normalization, and summarization of

data were carried out using RMA [64] as implemented in R. A

custom chip description file (CDF), which organizes the oligonu-

cleotide probes on the chip based on the latest version of RefSeq,

was used [65]. The custom RefSeq CDF results in 22,587 probe

sets and can be downloaded as version 12 at: http://brainarray.

mbni.med.umich.edu/Brainarray/Database/CustomCDF/CDF_

download.asp.

Differentially expressed genes were identified using the

Bioconductor package RankProd, which uses the rank products

method, a non-parametric method that detects genes that are

consistently ranked high in lists of up or down-regulated genes in

replicate experiments [66]. A percent false positive (pfp) cutoff of

0.05 was used. The raw DNA microarray data have been

submitted for public access to Gene Expression Omnibus (http://

www.ncbi.nlm.nih.gov/geo/) and can be obtained using the

following accession number: GSE25334. All data are minimum-
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information-about-a-microarray-experiment (MIAME) compliant,

as detailed on the MGED Society website http://www.mged.org/

Workgroups/MIAME/miame.html.

Between group analysis
Genes identified as differentially regulated in both the

Asym:Sym and the Asym:p53Sym comparisons (the ASRA genes)

were used in supervised classification of additional samples using

Between Group Analysis (BGA), as implemented in the R package

MADE4 [32]. Correspondence Analysis was used to ordinate the

training set of the three asymmetrically and five symmetrically self-

renewing samples. Independently developed control samples from

our own laboratory and test samples publicly available from GEO

were then classified by projecting them onto the discriminator axis.

ASRA protein expression pattern analyses
Specific indirect ISIF conditions for sister pair assays and

cytochalasin D assays for cyclin A and Cxcr6 have been described

[30]. Cyclin D1, cyclin E, p53, Btg2, H2A.Z, and Lgr5 indirect ISIF

analyses were performed with the following respective antibodies:

rabbit anti-cyclin D1 monoclonal antibody (Abcam, Inc.) at a 1:100

dilution; rabbit anti-cyclin E polyclonal antibodies (Abcam, Inc.) at a

1:500 dilution; mouse anti-p53 monoclonal antibodies (Abcam, Inc.)

at a 1:500 dilution; rabbit anti-Btg2 polyclonal antibodies (Santa

Cruz Biotechnology, Inc.) at a 1:200 dilution; rabbit anti-mouse

H2A.Z polyclonal antibody (Cell Signaling Technology, Inc.) at a

1:200 dilution; and goat anti-mouse Lgr5 polyclonal antibody (Santa

Cruz Biotechnology, Inc.) at a 1:50 dilution. As required, AlexaFluor

568 goat anti-rabbit IgG (H+L) (1:300 dilution), AlexaFluor 568 goat

anti-mouse IgG (H+L) (1:500 dilution), and AlexaFluor 488 goat

anti-rabbit IgG (H+L) (1:300 dilution) were used as secondary

detection antibodies (Invitrogen, Inc.).

Supporting Information

Table S1 Self-renewal pattern associated (SRPA) genes, includ-

ing the 85-gene asymmetric self-renewal associated (ASRA) gene

signature. Expression data and annotation of all genes found to be

significantly differentially regulated by the described RankProd

intersection analysis is presented (See Materials and Methods). A

RankProd percent false positive (pfp) cutoff of 0.05 was used. The

expression values are given as log2 values. The fold change (FC;

based on log2 values) refers to the average ratio of probe intensities

on the ASYM chips to corresponding probe intensities the SYM

chips. Genes are grouped based on the comparison in which they

are differentially regulated. Genes up-regulated in the ‘‘A’’ (ASYM

vs. SYM) and ‘‘B’’ (ASYM vs. p53SYM) comparisons are listed as

ASRA_up; those that are down-regulated in these two compar-

isons are listed as ASRA_down. Genes that are up-regulated in

only one comparison are listed in the A_up or B_up sections, and

conversely genes that are down-regulated in only one comparison

are listed in the A_down or B_down sections. Some genes are up-

regulated in one comparison, but down-regulated in the other (i.e.,

if SYM.ASYM.p53SYM or if p53SYM.ASYM.SYM). These

appear in the last two sections. Detection calls – whether

expression is ‘‘present,’’ ‘‘marginal,’’ or ‘‘absent’’ (P, M, or A) –

are summarized in columns immediately following the log2

expression values. If the call is A for all replicate chips for a self-

renewal condition, the value cells are shaded; and if the call is P for

all chips, the value cells are unshaded. If the calls are all M, or if

they differ among replicate chips, an exclamation mark is given

followed by the individual replicate calls. Data on the localization

of the gene products was obtained from LOCATE [1]. ‘‘Type I’’

indicates that the protein is predicted to have one transmembrane

domain, but does not have a signal peptide; and ‘‘type II’’ indicates

that the protein is predicted to have a signal peptide and a

transmembrane domain. In some instances, isoforms from the

same gene are predicted or known to have different subcellular

localizations. In these cases, multiple subcellular localization

indicators appear.

(XLS)
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