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Abstract

Massively parallel sequencing of DNA molecules in the plasma of pregnant women has been shown to allow accurate and
noninvasive prenatal detection of fetal trisomy 21. However, whether the sequencing approach is as accurate for the
noninvasive prenatal diagnosis of trisomy 13 and 18 is unclear due to the lack of data from a large sample set. We studied
392 pregnancies, among which 25 involved a trisomy 13 fetus and 37 involved a trisomy 18 fetus, by massively parallel
sequencing. By using our previously reported standard z-score approach, we demonstrated that this approach could
identify 36.0% and 73.0% of trisomy 13 and 18 at specificities of 92.4% and 97.2%, respectively. We aimed to improve the
detection of trisomy 13 and 18 by using a non-repeat-masked reference human genome instead of a repeat-masked one to
increase the number of aligned sequence reads for each sample. We then applied a bioinformatics approach to correct GC
content bias in the sequencing data. With these measures, we detected all (25 out of 25) trisomy 13 fetuses at a specificity of
98.9% (261 out of 264 non-trisomy 13 cases), and 91.9% (34 out of 37) of the trisomy 18 fetuses at 98.0% specificity (247 out
of 252 non-trisomy 18 cases). These data indicate that with appropriate bioinformatics analysis, noninvasive prenatal
diagnosis of trisomy 13 and trisomy 18 by maternal plasma DNA sequencing is achievable.
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Introduction

Trisomy 13 (Patau syndrome) and trisomy 18 (Edwards

syndrome) are the most clinically important autosomal trisomies

besides trisomy 21. Trisomy 13 occurs in about 1 out of every

10,000 newborns and the incidence of trisomy 18 is estimated to

be 1 in 6,000 live births [1].

Detection of such fetal chromosomal aberrations is an

important indication for prenatal diagnosis. Conventional prenatal

diagnostic methods, such as sampling of fetal genetic materials by

amniocentesis or chorionic villus sampling, are invasive, and carry

potential risks to the fetus [2]. Besides these invasive approaches,

noninvasive screening approaches by ultrasound scanning and

maternal serum markers are useful for identifying high-risk cases,

but have limited sensitivity and specificity. For example, the

detection rate of first-trimester combined screening is 77%–86%

and the false positive rate is 3.2%–5.6% [3]. These approaches

measure epiphenomena associated with the trisomies, rather than

directly detecting the core abnormality involving chromosomal

dosage [3,4].

Cell-free fetal DNA has been shown to be present in the plasma

of pregnant women [5], and has opened up new possibilities for

noninvasive prenatal diagnosis [6]. Tests based on circulating fetal

DNA have been used clinically for the prenatal management of

sex-linked disorders and rhesus D incompatibility [7–9]. Recently,

strategies have also been developed for the noninvasive diagnosis
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of fetal aneuploidy by fetal nucleic acid analysis in maternal

plasma, including the detection of fetal DNA methylation

signatures and mRNA markers in maternal plasma [10–15].

In addition, when a woman is pregnant with a trisomic fetus,

there should be an increased proportion, i.e. over representation,

of fetal-derived DNA molecules from the extra chromosome in

her plasma when compared to a pregnancy with a euploid fetus.

With the availability of massively parallel sequencing (MPS)

technologies which sequence DNA molecules in a high

throughput manner, the genomic identities and quantities of

millions of DNA molecules in biological samples could be

determined. It has been shown that sequencing of maternal

plasma DNA can be applied to the noninvasive detection of fetal

trisomy 21 [16–19]. Essentially, maternal plasma DNA molecules

are sequenced, and the chromosomal origin of each sequenced

molecule is identified by comparing to a reference human

genome sequence. The number of molecules derived from

chromosome 21 (chr21) as a proportion of all sequenced

molecules has been shown to be elevated in trisomy 21

pregnancies when compared with euploid ones. Our group has

demonstrated that detection of fetal trisomy 21 could be achieved

using two different MPS platforms, namely the sequencing-by-

synthesis (SBS) platform [16] and the sequencing-by-ligation

(SBL) platform [17]. Two recent large scale studies on trisomy 21

detection based on SBS platform both showed a 100% sensitivity

and 97.9% to 99.7% specificity [19,20].

Theoretically, if there were no analytical or biological bias of

MPS, it would be expected that the molecules from the whole

genome could be sequenced uniformly by the procedure.

However, it has been reported that molecules from different

regions of a genome may not be uniformly sequenced by MPS.

The guanine and cytosine (GC) content of the sequenced nucleic

acids has been reported to contribute to the non-uniformity

[21,22]. Fan et al. and our group found that the patterns of non-

uniform representation of each chromosome were different

when maternal plasma DNA was sequenced with the use of

different MPS platforms [17,18]. These data suggest that the

non-uniform representation of each chromosome is more likely

to be due to sequencing or alignment bias than biological

reasons [17,21]. Furthermore, in our previous study, we have

highlighted that chr13 and chr18 have relatively lower average

GC content than chr21 which has a modest average GC content

[16]. In addition, we have previously shown that the

measurement of the genomic representations of chr13 and

chr18 is less precise than that for chr21 based on both the SBS

and SBL platforms [16,17]. The variance of measuring the

genomic representations of chr13 and chr18, as indicated by the

coefficient of variation (CV), are 5.8 times and 2.4 times,

respectively, greater than that of chr21 on the SBS platform

[16]. Similar results were also observed on the SBL platform on

which the variance of measuring the genomic representations of

chr13 and chr18 are 5.7 times and 1.8 times, respectively,

greater than that of chr21 [17]. These observations have led us

to hypothesize that noninvasive prenatal diagnosis of trisomy 13

and trisomy 18 by MPS would likely be less accurate than for

trisomy 21 [17]. As the variance in the GC content of the

sequenced molecules is a contributor to the issue, quantitative

correction to minimize such an effect on the measurement of the

genomic representations of chr13 and chr18 might allow

accurate diagnosis of trisomy 13 and trisomy 18.

To this end, here we assessed the prenatal diagnostic

performance by MPS of maternal plasma DNA on a cohort of

392 pregnancies of whom 25 involved trisomy 13 fetuses and 37

involved trisomy 18 fetuses.

Methods

Ethics Statement
Approvals were obtained from the institutional review boards of

each recruitment site: Joint Chinese University of Hong Kong-

New Territories East Cluster Clinical Research Ethics Committee,

Joint Institutional Review Board of the University of Hong Kong-

Hospital Authority Hong Kong West Cluster, Clinical and

Research Ethics Committees of the Hospital Authority in the

Kowloon Central/Kowloon East, Kowloon West, Hong Kong

East, New Territories West Clusters, King’s College Hospital

Ethics Committee and Ethics Committee of the VU University

Medical Center. All participants gave informed written consent.

Study design, setting and population
252 participants were recruited prospectively from Hong Kong,

the Netherlands and UK. 140 archived maternal plasma samples

from pregnancies with and without trisomy 13, 18 or 21, matched

for gestational ages were also retrieved from the participating sites

in the Netherlands and UK. Samples that passed the inclusion

criteria as described in our previous investigation on the prenatal

diagnosis of trisomy 21 [20] were used in this study. Only singleton

pregnancies with clinical indications for amniocentesis or CVS

were recruited and samples with full karyotypes were included.

A total of 392 cases were analyzed, including 25 cases each

involving a trisomy 13 fetus, 37 cases each involving a trisomy 18

fetus and 86 cases each involving a trisomy 21 fetus (Figure 1). 314

of the cases were those analyzed using 2-plex sequencing (see

below) in a recent study on the noninvasive diagnosis of trisomy 21

[20]. Another 30 cases were from those analyzed using 8-plex

sequencing by Chiu et al [20], but were re-sequenced in this study

using 2-plex sequencing. The remaining 48 cases were newly

recruited and sequenced in this study. 91 cases in the previously

recruited cases and 12 cases in the newly recruited cases, which

were from women pregnant with a euploid fetus, were used as

normal controls.

Maternal plasma DNA sequencing
Plasma samples from participating pregnant women were

processed as previously described [16,20]. Briefly, five to ten

milliliters of peripheral venous blood was collected from each

participating pregnant woman in ethylenediaminetetraacetic acid

(EDTA)-containing tubes. The blood samples were first centri-

fuged at 1,600 g for 10 min at 4uC so as to separate the plasma

from the peripheral blood cells. The plasma portion was carefully

transferred to plain polypropylene tubes and then subjected to

Figure 1. Recruitment of samples.
doi:10.1371/journal.pone.0021791.g001
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centrifugation at 16,000 g for 10 min at 4uC to pellet the

remaining cells [23]. Plasma DNA from 2 to 4.8 milliliters of

maternal plasma was extracted by using the QIAamp DSP DNA

blood mini kit (Qiagen, Hilden, Germany) following the blood and

body fluid protocol.

The DNA library for the extracted plasma DNA was

constructed using the Genomic DNA Library Preparation Kit

and Multiplexing Sample Preparation Oligonucleotide kit (Illu-

mina) mostly according to manufacturer’s instructions. Since

plasma DNA molecules are short fragments in nature [24]; hence,

the steps of fragmentation and size selection by gel electrophoresis

were omitted. Multiplexing was achieved by introducing a 6-bp

index barcode to the adapter-ligated DNA of each plasma sample

through a triple-primer PCR amplification.

Indexed DNA libraries were sequenced using the 2-plex strategy

[20]. 2-plex multiplexing allows two plasma samples to be

sequenced in each lane by using different short index sequences

(6 bp) for different samples. The index sequences were randomly

assigned to the sequencing samples and had at least three-nucleotide

differences between each other. A total of 16 specimens could be

sequenced in each run. DNA clusters were generated using an

Illumina cluster station according to manufacturer’s instructions.

We sequenced 36 basepairs (bp) from one end of each plasma DNA

molecule. An additional 7 cycles of sequencing were performed to

decode the index sequence on each sequenced plasma DNA

molecule. The sequencing was performed on the Genome Analyzer

IIx (Illumina) using the Sequencing Kit V3 (Illumina).

Samples from women pregnant with male euploid fetuses were

used as controls for trisomy detection. Four control samples were

sequenced in each sequencing run. Thus, in each 2-plex

sequencing run, the remaining 12 samples (either trisomy or

euploid) were test samples. Samples from women pregnant with

trisomic fetuses were identified by comparing the test samples with

control samples within each sequencing run by a specific statistical

approach. Two statistical approaches have been developed for the

diagnosis of trisomy 13 and trisomy 18. One is our previously

reported approach (named the standard z-score approach) which

was originally designed for trisomy 21 diagnosis [16]. The other

was based on z-score calculation but with an additional GC

correction step (named the z-score approach with GC correction).

Diagnostic performance of these two approaches was assessed by

comparing with the results of full karyotyping of the amniotic fluid

or chorionic villus samples.

Sequencing data analysis
The 36-bp read from one end of each sequenced plasma DNA

molecule was first mapped to the repeat-masked reference human

genome (NCBI Build 36 version 48) using the Short Oligonucleotide

Alignment Program 2 (SOAP2) [25] with no mismatches allowed.

Then, in order to increase the number of aligned reads for each

sample, we also mapped the reads to the non-repeat-masked

reference human genome (Hg18 NCBI.36). We only used the

‘‘unique perfectly aligned reads’’, defined as reads that could be

mapped to only one location without any mismatch in the reference

human genome, for further analysis. Due to the 2-plex sequencing

strategy, the reads in each lane were then sorted back to the

corresponding samples according to the index DNA sequence

information with one mismatch allowed in the index DNA sequences.

Detection of trisomy 13 and trisomy 18
We counted the number of aligned reads for each chromosome.

The genomic representations of chr13 and chr18 are defined as

the percentages of the aligned reads originated from chr13 and

chr18, respectively, among the total reads sequenced from a

sample. A maternal plasma sample from a pregnancy with a

trisomy 13/18 fetus is expected to have a higher genomic

representation of chr13/18 compared with a set of reference

samples (samples from women pregnant with euploid fetuses). In

order to quantitatively measure this overrepresentation for each

tested sample, for the standard z-score approach, the z-score for

the chromosome of interest (chr13/18) was calculated by the

following equation:

z{score test sample ~ GR test sample{ GR mean reference samples

� �

=SD reference samples

ð1Þ

where GR test sample is the genomic representation of the

chromosome of interest in the test sample; GR mean reference samples

is the mean of the genomic representations of the chromosome of

interest for all reference samples; and SD reference samples is the

standard deviation of the genomic representations of the

chromosome of interest for the reference samples.

For the z-score approach with GC correction, instead of using

read counts to directly calculate the genomic representations of the

chromosomes of interest, a GC-corrected read count was used to

calculate the genomic representations with an aim to eliminate the

effect of the GC bias on the sequenced read counts. For each

sample, all chromosomes were first bioinformatically divided into

segments of the same size, called bins. In preliminary analyses, we

tested bin sizes of 50 kb, 100 kb, 500 kb and 1000 kb. We found

that the CVs for measuring chr13 and chr18 in maternal plasma

did not vary significantly using these bin sizes. Thus, we chose

50 kb as the bin size for all subsequent analyses. The number of

sequenced reads and GC content in each bin (rounded to 0.1%)

were determined. We filtered bins without any reads and bins with

‘N’ in the sequences. Then, locally weighted scatterplot smoothing

(LOESS) regression was applied to fit the number of sequenced

reads in each bin against the GC content of the corresponding bin

in order to calculate the LOESS fit predicted value (P) [22]. Using

the regression function and the GC content of each bin, we

obtained the LOESS fit predicted value for each bin. The GC

corrected read counts (RCGC) of each bin were calculated from the

raw read counts (RCraw) with the correction factor (F). The latter

was derived from the median counts of all the bins (M) and the

LOESS fit predicted value by the following equations:

F ~ M=P ð2Þ

RCGC~ RCraw|F ð3Þ

After GC correction, the z-score statistic was calculated by using

the genomic representations derived from the GC-corrected read

counts of chr13/18 with equation 1.

For both approaches, a z-score value greater than 3,

representing a genomic representation greater than that of the

99.9th percentile of the reference set for a one-tailed distribution,

was used as the cut-off to determine if overrepresentation of

chr13/18 plasma DNA molecules and hence fetal trisomy 13/18

was present.

Statistical analysis
We reported the diagnostic sensitivity and specificity values of

the standard z-score approach and the z-score approach with GC

correction, using the z-score value of 3 as the cutoff. LOESS

Noninvasive Diagnosis of Trisomies 18 and 13
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normalization procedure was performed by R (http://www.r-

project.org/) with default parameters. Spearman correlation

coefficient analysis and z-score calculation were also performed

by R.

Results

Study participants
392 pregnancies were studied (Figure 1). Amongst these, 243

had euploid fetuses. 103 of these samples were used as reference

control samples for z-score calculation. Amongst these, 90 and 13

euploid cases were used as reference controls in one and two flow

cells, respectively. To study the detection of the two trisomies, 25

trisomy 13 cases were compared with 264 non-trisomy 13 cases

(consisting of 140 euploid cases not used as reference controls, 86

trisomy 21 cases, 1 sex chromosome mosaic case and 37 trisomy

18 cases). Similarly, 37 trisomy 18 cases were compared with 252

non-trisomy 18 cases (consisting of 140 euploid cases not used as

reference controls, 86 trisomy 21 cases, 1 sex chromosome mosaic

case and 25 trisomy 13 cases).

Diagnostic performance of the standard z-score
approach

We first tested our previously reported standard z-score

approach for trisomy 13 and trisomy 18 detection. We first

aligned all the reads to the repeat-masked reference human

genome as we did in our previous study [16,20]. After alignment,

we obtained a mean of 2.4 million (SD 508,842) unique perfectly

aligned reads per maternal plasma sample. The average per base

coverage per genome is 0.028 (SD 0.006). The diagnostic

performance of the standard z-score approach for detecting fetal

trisomy 13 and trisomy 18 is shown in Tables 1, 2 and 3. The z-

scores of chr13 and chr18 are shown in Figures 2A and 2B. Using

a chr13/18 z-score value of 3 as the cutoff, only 9 of the 25 trisomy

13 cases were detected. In addition, 244 of the 264 non-trisomy 13

cases were classified correctly. In other words, the sensitivity and

specificity for detecting trisomy 13 were 36.0% and 92.4%,

respectively. For the detection of the trisomy 18 cases, 27 of 37

trisomy 18 cases and 245 of 252 non-trisomy 18 cases were

classified correctly, giving a sensitivity and specificity of 73.0% and

97.2%, respectively.

The diagnostic performances for trisomy 13 and 18 detection

were worse than that for trisomy 21 which was 100% sensitive and

97.9% specific [20]. We therefore investigated a number of

bioinformatics approaches to try to improve the classification

accuracies for trisomy 13 and 18. As the statistical power of the

molecular counting approach used in the current study increased

with the number of counted molecules [26], we attempted to

increase the number of aligned reads by using the non-repeat-

masked reference human genome for alignment. Consequently,

we obtained a mean of 4.6 million (SD 964,094) unique perfectly

aligned reads per maternal plasma sample. The average per base

coverage per genome is 0.053 (SD 0.011). The diagnostic

performances of the standard z-score approach for detecting fetal

trisomy 13 and trisomy 18 using these increased aligned read

counts are shown in Tables 1, 2 and 3. The z-scores of chr13 and

chr18 are shown in Figures 2A and 2B. For trisomy 13 detection,

11 of 25 trisomy 13 cases and 247 of 264 non-trisomy 13 cases

were identified correctly, corresponding to improved sensitivity

and specificity of 44.0% and 93.6%, respectively. For trisomy 18,

31 of 37 trisomy 18 cases and 247 of 252 non-trisomy 18 cases

were identified correctly, corresponding to sensitivity and

specificity of 83.8% and 98.0%, respectively.

Diagnostic performance of the z-score approach with GC
correction

Although the detection accuracies of trisomy 13 and trisomy 18

were improved by using the non-repeat masked reference genome

Table 1. Actual and predicted outcome of maternal plasma DNA sequencing for fetal trisomy 13 detection.

Standard z-score approach Standard z-score approach Z-score approach with GC correction

(repeat-masked genome) (non-repeat-masked genome) (non-repeat-masked genome)

Predicted Predicted Predicted

T13 Non-T13 T13 Non-T13 T13 Non-T13

Actual T13 9 16 11 14 25 0

Non-T13 20 244 17 247 3 261

T13: trisomy 13. chr13 z-score .3 was used as the diagnostic cut-off.
doi:10.1371/journal.pone.0021791.t001

Table 2. Actual and predicted outcome of maternal plasma DNA sequencing for fetal trisomy 18 detection.

Standard z-score approach Standard z-score approach Z-score approach with GC correction

(repeat-masked genome) (non-repeat-masked genome) (non-repeat-masked genome)

Predicted Predicted Predicted

T18 Non-T18 T18 Non-T18 T18 Non-T18

Actual T18 27 10 31 6 34 3

Non-T18 7 245 5 247 5 247

T18, trisomy 18. chr18 z-score .3 was used as the diagnostic cut-off.
doi:10.1371/journal.pone.0021791.t002

Noninvasive Diagnosis of Trisomies 18 and 13
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for alignment, these figures still had considerable room for

improvement. We thus attempted to further improve the

classification accuracies for trisomy 13 and trisomy 18 by applying

a GC correction algorithm. For the z-score approach with GC

correction, when using the same diagnostic z-score value of 3, all

the trisomy 13 cases (25 out of 25) were successfully identified,

while 261 out of 264 non-trisomy 13 cases were correctly classified

(Figure 2A and Table 1). The sensitivity and specificity of this

approach were thus 100% and 98.9%, respectively (Table 3). For

trisomy 18, 34 out of 37 trisomy 18 cases and 247 out of 252 non-

trisomy 18 cases were correctly identified (Figure 2B and Table 2),

corresponding to sensitivity and specificity of 91.9% and 98.0%,

respectively (Table 3).

GC correction improved the precision for measuring
genomic representations of chr13 and chr18 in plasma

The improved diagnostic performance of the z-score approach

with GC correction compared with the standard z-score approach

is likely to be due to amelioration of the sequencing GC bias and

the more precise measurement of the genomic representations of

chr13 and chr18 (the percentage of read counts from chr13 and

chr18 over the total read count) in maternal plasma.

As there is a strong positive correlation between read counts and

the average GC content of all bins (average Spearman correlation

coefficient for all the samples = 0.56, SD = 0.13, all p value

,1.0610210 for all samples except one), the difference in GC

content between different chromosomes would likely lead to

quantitative biases in the genomic representations of fragments

from different chromosomes and hence affect the precision of their

measurement in plasma [17].

Thus, we calculated the CV for measuring the genomic

representation of each autosome among the euploid control

samples within each sequencing run. As shown in Figure 3, the

autosomes with high or low GC content tend to exhibit a higher

variance than autosomes with average GC content. The average

CVs for measuring the genomic representations of chromosomes

13 and 18 based on our previous analysis strategy (repeat-masked

genome without GC correction) were 1.5% and 0.86%, respec-

Table 3. Diagnostic performance of maternal plasma DNA sequencing for fetal trisomy 13 and 18 detection.

Standard z-score approach Standard z-score approach Z-score approach with GC correction

(repeat-masked genome) (non-repeat-masked genome) (non-repeat-masked genome)

T13 T18 T13 T18 T13 T18

Sensitivity: 36.0% 73.0% 44.0% 83.8% 100.0% 91.9%

Specificity: 92.4% 97.2% 93.6% 98.0% 98.9% 98.0%

PPV: 31.0% 79.4% 39.3% 86.1% 89.3% 87.2%

NPV: 93.8% 96.1% 94.6% 97.6% 100.0% 98.8%

PPV: positive predictive value, NPV: negative predictive value, T13: trisomy 13, T18, trisomy 18. chr13 or 18 z-score .3 was used as the diagnostic cut-off.
doi:10.1371/journal.pone.0021791.t003

Figure 2. Z-scores of chromosome 13 and 18 determined by
the standard z-score approach and the z-score approach with
GC correction. Z-scores of (A) chromosome 13 and (B) chromosome
18 determined by the standard z-score approach with alignment
against the repeat-masked or non-repeat-masked reference genomes
and the z-score approach with GC correction are shown. Horizontal
dashed lines indicate the z-score cut off value of 3. T13, trisomy 13. T18,
trisomy 18.
doi:10.1371/journal.pone.0021791.g002

Figure 3. Precision before and after GC correction for the
autosomes. Coefficient of variation (CV) for each chromosome was
calculated based on the control euploid cases before GC correction
with alignment against the repeat-masked or non-repeat-masked
reference genomes and after GC correction with alignment against
the non-repeat-masked reference genome. Chromosomes are ordered
from left to right in increasing GC contents. GC content of each
chromosome is shown in the brackets. 95% confidence interval was
shown in error bars.
doi:10.1371/journal.pone.0021791.g003

Noninvasive Diagnosis of Trisomies 18 and 13
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tively. When the non-repeat-masked reference genome was used,

the CVs for chromosomes 13 and 18 were 1.1% and 0.66%,

respectively. After further applying GC correction, the CVs for

measuring the genomic representations of chromosomes 13 and 18

decreased to 0.31% and 0.33%, representing overall reductions of

79.7% and 61.2%, respectively. These results indicate that our

analysis strategy has markedly improved the precision of

quantification of chromosome 13 and chromosome 18, and would

therefore result in greater differentiation in the z-score values

between the respective trisomy and non-trisomy cases.

Discussion

This study reports a large series of trisomy 13 and trisomy 18

cases assessed for noninvasive prenatal diagnosis by MPS. We

showed that the use of the non-repeat-masked genome as

reference and the GC correction approach improved the accuracy

of trisomy 13 and trisomy 18 diagnosis based on maternal plasma

DNA sequencing.

In essence, accurate diagnosis of trisomy 13 and trisomy 18 could

be achieved by having more aligned reads in general. Besides using

the non-repeat-masked genome as the alignment reference, another

way to increase the number of aligned reads is to perform deeper

sequencing. However, the sequencing cost would also increase

along with the more sequencing reads. Therefore, increasing the

number of aligned reads in a bioinformatics way, as described in this

study, is relatively more cost-effective.

The sequencing read length is a potential factor which could

alter the proportion of the aligned reads. In this study, we used 36-

bp sequenced reads for our application since they were long

enough to be aligned to the reference genome and the sequencing

time required was short enough to meet the required turnaround

time for a diagnostic test. It has been shown that reads with 35-bp

length can be uniquely aligned to the human genome at an

alignment rate of 85.4% [27]. Although longer reads may

contribute to slightly higher alignment [27], the tradeoff is a

longer sequencing time. On the other hand, paired-end reads may

improve the alignment accuracy but also requires longer

sequencing time. Other factors which might be usefully investi-

gated in future work would include improvements in plasma DNA

isolation method and technologies for enriching fetal DNA based

on size selection [24,28].

We observed that the improvement for trisomy 13 was more

marked than that for trisomy 18, probably because of the more

significant deviation in the GC content for chr13 (around 38.5%)

when compared with a chromosome with average GC content

(e.g. chr21, with GC content of 40.9%). In comparison, chr18 has

a GC content (39.8%) much closer to that of chr21.

Besides the GC correction method described in this study, we

have also started exploring another approach to reduce the GC

bias by assembling an ‘artificial reference genome’ with genomic

regions selected for specific GC content characteristics. Future

work would shed light with regard to the relative merits of these

approaches.

Fan et al. also reported a study on the diagnosis of trisomy 13

and trisomy 18 by maternal plasma DNA sequencing [29].

However, compared with our study involving 25 samples from

women pregnant with trisomy 13 fetuses and 37 samples from

pregnant women with trisomy 18 fetuses, their test sample size is

small which included only 2 trisomy 18 cases and 1 trisomy 13

case. With such a small sample size, it was difficult to conclusively

ascertain the diagnostic accuracies of their procedures. Further-

more, the samples in their study were collected soon after

amniocentesis or chorionic villus sampling, which might result in

an increase of fetal DNA concentration in maternal circulation

[30]. Conversely, our much larger study was based on samples

collected before amniocentesis or chorionic villus sampling.

In conclusion, maternal plasma DNA sequencing with statistical

correction can accurately detect fetal trisomy 13 and trisomy 18

with high detection rate and low false positive rate. Currently, the

laboratory cost of our approach including the cost for sequencing

reagents and labor is around USD 1000 per case. However, the

sequencing cost is expected to rapidly decrease in the future.

Furthermore, we have also recently shown that maternal plasma

DNA sequencing can also allow one to construct a genome-wide

genetic and mutational map of the fetus. Thus, we believe that

plasma DNA sequencing would play an increasingly important

part of future obstetrics care.
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