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Abstract

Adaptive evolution is characterized by positive and parallel, or repeated selection of mutations. Mouse adaptation of
influenza A virus (IAV) produces virulent mutants that demonstrate positive and parallel evolution of mutations in the
hemagglutinin (HA) receptor and non-structural protein 1 (NS1) interferon antagonist genes. We now present a genomic
analysis of all 11 genes of 39 mouse adapted IAV variants from 10 replicate adaptation experiments. Mutations were
mapped on the primary and structural maps of each protein and specific mutations were validated with respect to
virulence, replication, and RNA polymerase activity. Mouse adapted (MA) variants obtained after 12 or 20–21 serial infections
acquired on average 5.8 and 7.9 nonsynonymous mutations per genome of 11 genes, respectively. Among a total of 115
nonsynonymous mutations, 51 demonstrated properties of natural selection including 27 parallel mutations. The greatest
degree of parallel evolution occurred in the HA receptor and ribonucleocapsid components, polymerase subunits (PB1, PB2,
PA) and NP. Mutations occurred in host nuclear trafficking factor binding sites as well as sites of virus-virus protein subunit
interaction for NP, NS1, HA and NA proteins. Adaptive regions included cap binding and endonuclease domains in the PB2
and PA polymerase subunits. Four mutations in NS1 resulted in loss of binding to the host cleavage and polyadenylation
specificity factor (CPSF30) suggesting that a reduction in inhibition of host gene expression was being selected. The most
prevalent mutations in PB2 and NP were shown to increase virulence but differed in their ability to enhance replication and
demonstrated epistatic effects. Several positively selected RNA polymerase mutations demonstrated increased virulence
associated with .300% enhanced polymerase activity. Adaptive mutations that control host range and virulence were
identified by their repeated selection to comprise a defined model for studying IAV evolution to increased virulence in the
mouse.
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Introduction

The mutational basis for the control of host switching (host-

specific infection) and virulence (disease severity) in influenza A

viruses (IAV) or their interrelationship is poorly understood [1–4]

and the identification of genetic markers of host adaptation is the

subject of much debate [5]. The existing knowledge of the

evolution of virulence and host switching in IAV is incomplete as

recently demonstrated by the introduction of a novel H1N1 IAV

from swine into humans without the genetic markers associated

with virulence and interspecies transmission [6–8]. Because

virulence in IAV is controlled by mutations in multiple genes

(see below) and novel virulent IAV rarely possess the same genetic

markers, it is apparent that there are multiple genetic pathways for
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virulence and host-switching. Fundamental questions remain

about the IAV adaptive mutations that modulate infection and

disease, such as their identity, number, and repeatability of

occurrence. Experimental studies of mouse adaptation (MA) of

IAV identify parallel adaptive mutations that involve the repeated

selection of mutation sites in HA and NS1genes among viruses

from independent MA experiments [9,10]. Parallel evolution is

characteristic of drug resistance and is increasingly being observed

among organisms that have evolved common traits ([11–13]. We

now extend these studies of parallel evolution by performing full

genomic sequence analysis of MA variants with mapping of all 11

viral proteins listed in Table 1. However, the links between IAV

evolution, adaptation and virulence have yet to be elucidated.

IAV are enveloped with genomes composed of 8 negative sense

RNA segments encoding 11 proteins (Table 1). IAV replication

requires an ability to overcome host resistance and establish a

productive infection that is achieved by entering cells to express

genes that function to replicate and assemble genomes into virus

particles. Replication also entails extensive interactions among

viral proteins as well as host-factors [14]. Genome wide screens

have identified 1,449 host proteins that are required for IAV

replication [15] and a recent protein interaction analysis has

identified 87 virus-host and 31 virus-virus protein interactions

[16], however the binding sites of only a minority of these

interactions are known [17–19]. Because replication occurs in the

nucleus, the sites of interaction with host nuclear import and

export proteins have been mapped for viral proteins involved in

replication (reviewed [20]). It is generally assumed that adaptation

of IAV to a non-permissive host involves mutations that overcome

deficits in interaction with host factors to restore host factor

binding such as seen for HA receptor binding to specific host sialic

acids [10,21]. Alternatively mutations affecting virus protein

subunit interactions or functions such as HA fusion may also

compensate for deficits in replication [10,21].

Mammalian IAV species originate from the migratory aquatic

bird reservoir of avian influenza viruses through processes that

include reassortment of genome segments and adaptation of

constituent genes [22]. Avian IAV species are typically non-

pathogenic however they can evolve to become highly pathogenic

strains that cause fatal infections in specific avian species [22], with

some causing fatal infections in humans as seen for the 2003

H5N1lineage [23,24]. The genetic basis for pathogenicity and host

range has been extensively studied for 1918 H1N1 pandemic [25–

28] and 1997 avian H5N1 viruses that are virulent for both

humans and mice (with mouse LD50 values of #103.5 pfu,

[29,30]). Genetic analyses in mice and human cells have identified

roles in pathogenesis for HA, polymerase, PB1-F2 and NS1 genes

in both 1918 H1N1 and H5N1 viruses (reviewed in [31]). The

mutational basis for the virulence properties of most of these genes

remains unknown except for sites in H5N1 HA [32] and NS1

[33,34] as well as the PB1-F2 gene of both viruses [35,36].

Adaptive evolutionary theory states that phenotypic variation

and speciation is explained by the selection of biological variants

that function to increase replicative fitness [37]. However a

complete molecular theory of adaptation is still in development

(reviewed by Orr [38]). Experimental studies of adaptation and

variation demonstrate that large phenotypic changes involve the

selection of a small number of mutations with those with the

greatest effect selected first [39]. Recent genetic studies of

bacteriophage host-range and virulence have demonstrated the

repeated selection of identical or parallel adaptive mutations for

50% of amino acid (aa) substitutions among independent

experiments [40–43]. Parallel evolution constitutes strong evidence

of natural selection as characterized for drug resistant mutants

[11,12,44].

Although phylogenic studies of humans and canine IAV show

abundant variation, evidence of positive selection is generally

lacking with nonsynonymous to synonymous mutation ratios (dN/

dS) of ,1 demonstrating stochastic variation [45–47]. However

influenza viruses demonstrate both parallel and positive Darwin-

ian evolution for mutations selected with neutralizing monoclonal

antibodies [48,49]. Antibody escape mutants are present at the

rate of 1 per 1-36105 infectious viruses because populations of this

size possess all single nucleotide polymorphisms (40,887 SNP’s, see

methods). In addition parallel evolution of drug resistance occurs

in the M2 ion channel and neuraminidase (NA) where S31N and

Table 1. Influenza A virus genome structure and function.

genome segment genea length (ntd)b length (aa) location in virion functionsc

1 PB2 2341 759 internal transcription/capping/replication

2 PB1 2341 757 internal transcription/replication

2 PB1-F2 91 nonstructural (cellular) apoptosis

3 PA 2233 716 internal transcription/replication

4 HA 1765 565 transmembrane receptor/uncoating

5 NP 1565 498 internal RNA synthesis

6 NA 1467 469 transmembrane release

7 M1 1027 252 internal assembly/regulation

M2 97 transmembrane uncoating

8 NS1 890 237 nonstructural (cellular) IFN antagonist

NEP 121 internal nuclear export

all all 13629 4562 nad na

Specific values are for A/Hong Kong/1/68(H3N2).
aPB2 (polymerase subunit basic 2); PB1 (polymerase subunit basic 1), PB1-F2 (PB1-frame 2); PA (polymerase subunit acidic); HA (hemagglutinin); NP (nucleocapsid); NA
(neuraminidase); M1 (matrix); M2 (M2); nonstructural 1 (NS1); nuclear export protein (NEP).

bnucleotide (ntd).
cdetails from reference[14].
dnot-applicable.
doi:10.1371/journal.pone.0021740.t001
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H274Y mutations are diagnostic of adamantane [50] and NA

inhibitor resistance, respectively [51–53].

Although IAV are host restricted such that high dose intranasal

infection of mice with human IAV does not typically result in

disease, virulent MA variants that cause primary viral pneumonia

at low dosage can be selected by serial mouse-lung passage

(reviewed [54]). The mouse model has been shown to be relevant

for the genetic analysis of pathogenesis of avian and mammalian

IAV [55,56]. We and others have demonstrated that adaptation to

increased virulence in the mouse is associated with mutations that

increase fitness and replication in virulent mouse-adapted variants

[57–70] including the 2009 pandemic H1N1 strain [71–73]}

(Table S1). These studies have generally identified polymerase and

HA mutations as the most prominent aspect of adaptation to

increased virulence, but have identified very few adaptive

mutations in the smallest genes (NP, NA, M1/2, NS1/NEP) (see

Table S1).

Mouse adaptation of A/HK/1/68 (H3N2) (HK-wt) by 20 serial

passages in mouse lungs increased virulence by .105 fold

(reduction in LD50 from .107.7 to 102.7 plaque forming units

(pfu)) [59]. Significantly, on initial sequence assessment of 3 HK-

MA genomic clones plus M1/2 and NS1/NEP genes of 9 of 12

clones, we observed that 11 of 14 mutations were present in

multiple clones and therefore under positive selection [59].

Subsequent HA gene sequence analysis of 42 mouse-adapted

variants from 11 independent replicate mouse serial passage

experiments identified 25 amino acid (aa) mutations with 4 sites

demonstrating parallel evolution [10]. The observation of multiple

MA variants with the same mutation in a group of 3–6 isolates, or

alternately the same mutation in 2 virus isolates in independent

mouse-adapted populations, cannot be explained by random

chance and thus constitutes evidence of positive selection

(P#261028 and P#661027, respectively, see methods). Sequence

analysis of the NS1 gene of 42 MA variants of A/HK/1/68

identified 11 mutations with parallel evolution detected at position

106 (M106I and M106V) [9]. The parallel mutations selected in

HA and NS were adaptive; increasing virulence and growth in

mice when introduced into the HK-wt genome [9,10]. The NS1

F103L and M106I mutations had also been selected in the A/

HK/156/1997(H5N1) NS1 gene, where both mutations were

shown to be required for the virulence property of this gene in

reverse genetics studies [9]. Furthermore, reverse genetics studies

of pathogenesis of the A/HK/1/68-MA (H3N2) and A/FM/1/

47-MA (H1N1) variants, derived by serial high dose infection,

showed that all of the mutant genome segments functioned to

increase virulence in the mouse model [58,74].

In this paper we extend our previous studies of HK-wt mouse

adaptation by performing full genome sequencing of all 10

parental and 39 MA variants derived from 10 independent mouse-

adaptation experiments in order to derive genetic and protein

structural maps of adaptation to high virulence in the mouse. We

identified adaptive regions within individual viral genes that

included multiple instances of positive selection and parallel

evolution.

Results

Assessment of adaptive evolution after 12 and 20 mouse-
lung passages

We determined the nucleotide sequence of the genomes of 12

clonal isolates of HK-MA virulent variants that had been

previously obtained after 12 and 20 serial mouse infections but

only partially sequenced [59]. Sequence analysis of 6 clones

derived after passage 12 showed that each clone acquired 4 to 7

(average 5.8) nonsynonymous mutations per genome (Table 2 and

3) that were responsible for their adaptation to increased virulence,

(LD50 values of 105.4 to 103.6 pfu from [59] relative to .107.7 pfu

for HK-wt, (Table S2)). After 20 passages the average number of

nonsynonymous mutations of 6 clones was increased to an average

8.8 per genome (Table 2 and 3) with LD50 values from 104.2 to

102.6 pfu [59] (Table S2). Comparisons of the individual mutations

in each virus demonstrated more genetic heterogeneity at passage

12 than 20, with a trend to increased fixation of mutations within

viral populations with increasing passage number (Table 2). Novel

mutations were also selected at passage 20, including mutations in

PB2, NP, M1, M2, NS1, and NEP (Table 2). An increased

accumulation of mutations and virulence was observed with

increasing numbers of cycle of serial mouse infections. The MA

populations were under strong selection as evidenced by high

nonsynonymous to synonymous (dN/dS) ratios for each virus; with

an average of 2.8 for both the passage 12 and 20 virus groups

(Table 3). Because we saw a greater selection of mutations in the

smaller genes by passage 20 our subsequent mouse adaptation

experiments employed 21 passages.

Independent MA experiments demonstrate parallel
evolution

Fig. 1 illustrates the strategy used for performing multiple

independent MA experiments. Each of 9 HK-wt clones was

subjected to a total of 21 mouse passages before isolating 3 MA

clones from each passage 21 population, that were then annotated

as HKMA21-population #-clone# (Fig. 1). Viral stocks of the 9

HK-wt subclones provided viral populations that originated from

individual virus particles (HK-wt subclones) and thus the selection

of mutations in these populations constitutes independent events

relative to those mutations characterized in the passage HKMA12

and 20 populations (Table 2).

The genomes of each HK-wt subclone as well as each of the 27

HKMA21 variants was subjected to full genome sequencing to

identify mutations selected on mouse-adaptation (Genbank

numbers in Table S9). Only one coding mutation and 8

synonymous mutations were found among the 9 subclones of

HK-wt (Table S3, S4, S5, S6, S7, S8) indicating that each genome

possessed an average of 1 single nucleotide polymorphism that

defined the parental sequence used to initiate infections in the 9

independent MA series. Comparison of the gene sequences of 27

HKMA21 clones with their corresponding HK-wt clones

identified an average of 7.7 non-synonymous mutations per MA

genome (Table S2). Of the 429 sequenced MA genes (from 39 MA

viruses) most possessed 0 or 1 mutations (45 and 42% respectively)

with 2 or 3 mutations in 11 and 1.4% respectively (Table S2). The

HA and PB2 genes acquired the most mutations on average, 1.54

and 1.38 respectively, with most mutations selected in the

ribonucleocapsid complex of genes (PB2+PB1+PA+NP) that

possessed an average of 4.33 mutations per genome, relative to

the remainder of the genome (HA+NA+M1+M2+NS1+NEP+
PB1-F2 genes) that possessed an average of 3.23 mutations per

genome (Table S2). The LD50 values for 7 of the 27 MA21

variants ranged from 101.1 to 106.5 pfu (Table S2).

PB2 protein
Genome segments of each MA21 derivative were aligned with

respect to the coding sequence for each parental strain to identify

mutations (Tables S3, S4, S5, S6, S7, S8). Sequence comparison of

the MA PB2 genes showed that 100% of the MA strains possessed

mutations with 1 to 3 coding substitutions each (Table 2 and S3).

Parallel evolution was seen for the D701N, D740N and K482R

mutations that were obtained in 6, 4, and 2 populations

Evolution of Virulence in Influenza A Virus
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respectively. PB2 D701N and D740N were the most commonly

selected, found in 25 and 7 of 39 clones, respectively (Table 2 and

S3). Positive selection as evident by the isolation of multiple mutants

with the same mutation from the same population was also seen for

3 other mutations: V480I, E249G and S286G (shown in red in

Table S3). PB2 mutations clustered in regions on both the primary

(Fig. 2) and 3D structure maps (Fig. 3), involving the nuclear

localization signal (NLS) and cap binding domains. PB2 mutations

between position 249 and 569 reside in the host 7methyl guanosine

cap binding domain with the R355M and V421 mutations in

contact with the cap phosphate as well as in a solvent exposed loop

of PB2, respectively [75] (Fig. 3A). PB2 mutations between 554 and

Table 2. Mutations in genomes of mouse-adapted variants obtained after 12 and 20 mouse-lung passages relative to HK-wt.

HKMA12 clones and mutations HKMA20 clones and mutations

gene HK-wta 12b 12A 12B 12C 12D 12E 20b 20A 20B 20Ca 20D 20E positive selection

PB2 D701 N N N N N N N N N N N N yes

D740 N N N N N N N N N N N N nd

PB1 R190 N N N N N N K N N N N N nd

K578 N T N N T N T N N N T N yes

PA D27 G N N G N N N N N N N N yes

Q556 N N N N N R R R R R R R yes

E610 N N G N N N N N N N N N nd

K673 N N R N N N N N N N N N nd

HAc D21 N Y N N N N N N N N N N nd

P1621 N N L N N N N N N N N N nd

G2181 W N N W W W W W W W W W yes

N2461 N D N N N N N N N N N N nd

N1542 N N N N N N N N N N S N yes

T1562 N N N N N N N N N N N N yes

D1582 N N N N N N N N N N N N nd

NP D34 N N N N N N N N N N N N yes

D480 N N N N N N N N N N N N yes

NA A110 N N N N N N N N N N V N nd

P468 H H H H N N H N H H N H yes

M1b D232 N N N N N N N N N N N N yes

M2b D44 N N N N N N N N N N . N yes

NS1a V23 N N N N A N A A N N N N yes

F103 N N N N N N N N L L L N yes

NEPa K88 N N N N N N N N R N N N nd

apreviously independently sequenced in [59].
bpartially independently sequenced as reported in [59].
cmutation found in multiple clones is indicated (yes) versus not-detected (nd).
dindependently sequenced in [10].
eHA mutations in the HA1 and HA2 subunits are indicated with superscripts 1 and 2 respectively.
fidentity to HK-wt amino acids is indicated by dots.
gsame loss of glycosylation as HA T1562N.
doi:10.1371/journal.pone.0021740.t002

Table 3. Assessment of nonsynonymous (dN) versus synonymous (dS) nucleotide changes (ntd), are shown for HKMA12 and
HKMA20 variants relative to HK-wt.

HKMA12 clones HKMA20 clones

genome values HK-wt 12 12A 12B 12C 12D 12E 20 20A 20B 20C 20D 20E average

total ntd change 0 9 10 9 9 7 6 14 12 14 12 11 10 10.3

total dN 0 6 6 7 6 6 4 10 8 10 9 9 7 7.3

total dS 0 3 4 2 3 1 2 4 4 4 3 2 3 2.9

dN/dS 0 2.0 1.5 3.5 2.0 6.0 2.0 2.5 2.0 2.5 3.0 4.5 2.3 2.8

doi:10.1371/journal.pone.0021740.t003
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740 surround the 627 site in the C-terminal domain (Fig. 3B). The

PB2 D701N mutation disrupts a salt bridge with R753 that

sequesters the nuclear localization signal to result in NLS release

(Fig. 3C). In addition D701N and D740N mutations occurred in the

NLS domain that binds human importin 5a (Fig. 3D) [76].

PB1 protein
The PB1 protein was more genetically conserved than PB2 with

12 of 27 MA21 clones (44%) possessing mutations; all were single

mutations except one double mutation (Table S4). Parallel

evolution was seen at PB1 aa position 577, with 10 clones in 6

MA21 populations possessing 3 alternative mutations (K577E,

K577M or K577Q). The 577 residue is adjacent to the K578T

mutation selected in the HKMA12+20 population (Table 2) thus

defining a pair of adjacent adaptive sites that map to the center of

the PB2 binding site (Fig. 2). PB1 mutation R190K resides in a

nuclear localization site and a mutation at N476S maps to a site

involved in RNA polymerase activity (Fig. 2). The PB1 Q15H

mutation maps to the amino terminal PA binding region (Fig. 2)

adjacent to 14 terminal amino acids that insert into the PA binding

pocket of the PB1-PA co-crystal (Fig. 4B).

PA protein
The PA protein was highly adaptive with 24 of 27 MA21 clones

(89%) possessing 1 or 2 mutations (Table S4). Considering all PA

mutations, parallel evolution was seen for M21I, D27G, A70V,

Figure 1. Experimental design of parallel studies of mouse adaptation. The parental strain of A/Hong Kong/1/68 (HK-wt) was clonally derived
on MDCK cells and grown in chicken embryos before dilution in PBS to 16105 pfu/ 0.05 mL to initiate serial mouse passage; followed by 20 serial passages
with 6 clones derived by plaque isolation from the passage 12 and 20 populations on MDCK cells. Replicate stocks of HK-wt (HK-#) were generated from
individual infectious virions of HK-wt by plaque isolation. Each subclone was amplified in eggs and used without dilution to infect mice ($16106 pfu/
0.05 mL for each mouse) to initiate 9 parallel MA series as indicated in methods before isolating 3 clones from each of the passage 21 populations.
doi:10.1371/journal.pone.0021740.g001

Evolution of Virulence in Influenza A Virus
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T97I and S190F/T mutations (Table 2 and S4). These mutations

localized to the PA amino-terminal domain comprised of aa 1–209

(Fig. 2 and 4A) that is involved in multiple functions, including

transcription, replication, RNA endonuclease, and cap binding

[77]. These parallel mutations as well as D3G, L16I, M21I and

V90I cluster on two surfaces of the PA amino terminal domain 3D

structure (Fig. 4A) adjacent to the nuclease active site residues

(H41, E80, D108, E119, K134 in stick model with 2 Mn++ ions in

Fig. 4A). The S190F and S190T mutations reside in one of the

NLSs and the 556 site was adjacent to the hCLE host transcription

factor binding site [19] (Fig. 2). All 3 C-terminal mutations,

E610G, I633V, and K673R, (Table 2 and S4) mapped to sites in

the PB1 binding region (Fig. 2).

NP protein
The NP protein was mutated in 100% of MA clones with

parallel evolution seen for D34N and D290N/E mutations in 8 of

9 HKMA21 populations and 85% of the variants (23 of 27),

(Table 2 and S5). It appears that both mutation sites may affect

similar functions because they are juxtaposed on the 3D map

(Fig. 5), but reside in separate regions of primary structure that

have been involved in PB2 interaction (Fig. 2). The carboxyl

terminal mutations, M4261, A428T, V476A, D480N and D497N,

map to overlapping NP and PB2 interaction regions (Fig. 2).

Positions V476, and D480 of subunit A bind to subunit B in the

NP-trimer complex and M426I and A428T are located in the tail

loop that contacts adjacent NP molecules (Fig. 5A). The V186I

mutation is located on the surface of the RNA binding groove

(Fig. 5). The Q4K and Q20P mutations map to a NLS site binding

region (Fig. 2) but were not resolved in the crystal structure (Fig. 5).

HA protein. The HA mutations from 42 HK MA variants

have been independently sequenced and presented previously on

the 3D map of the HA monomer [10], which we have now

generated in modified form from independently derived sequence

data (data of Table S1 shown in Fig. 6 and 7A). In addition, we

present novel maps of the HA trimer and low pH form of the HA2

trimer (Fig. 7B and 7C, respectively) as well as the HA1 and HA2

primary sequence maps (Fig. 6). We observed a total of 25 HA

gene mutations involving 37 of 39 HKMA clones (Table 2 and S6)

that included 4 sites with parallel evolution (HA1 positions 1621,

2101, 2181, and HA2 1542) with 6 more showing positive selection

(G1241D,N1651D, S2311N, T2621N, T1562N, and D1602N). The

mutations were clustered in 2 regions of the primary and 3D maps.

One region in HA1 (Fig. 6) defined a HA1-HA1 contact face

adjacent to the receptor binding site and the 1651 glycosylation site

(Fig. 7A and C). The second adaptive region was around the 1542

Figure 2. Mouse adaptive mutations on the primary structural maps of PB2, PB1, PA and NP proteins. The amino acid location of
mutations are numbered and indicated with arrowheads on the linear sequence, sites of positive selection are shown red and parallel mutations are
additionally indicated with an asterisk and the number of populations in parenthesis. The locations of regions of interaction, or functions are
indicated with rectangles and are labeled with respect to interacting viral proteins as indicated in Methods. Nuclear localization signals (NLS) are in
black, and host protein sites are indicated for PB2, PA and NP; PB1 polymerase activity regions are in purple and PB2 cap binding regions are in
orange. hCLE, the human transcription factor is positioned In PA according to [124] The following mutations were mapped previously: PB2 D701N, PA
Q556R, NP D34N, and NP D480N[59].
doi:10.1371/journal.pone.0021740.g002
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glycosylation site in the HA2 subunit that included mutations

between positions 154 to 160 that aligned on a loop extending to

the transmembrane region in the low pH form of HA2 (Fig. 6 and

7B).

NA Protein
The NA protein was mutated in 18 of 27 (67%) MA21 clones

(Table S7 and 2). Parallel evolution was seen at position 110

(MA21-5-1 and MA20) and positive selection was observed for

mutations at sites 20 and 176. The mutations formed 2 groups on

the primary sequence map that were in the amino terminal half of

the protein including the transmembrane domain, and in the C-

terminal region (Fig. 6). On the 3D structural maps, the mutations

primarily localized on the top surface around the sialic acid

binding and glycosylation sites as well as contacts with adjacent

NA monomers in the tetrameric structure (Fig. 8).

M1 and M2 protein
M1 and M2 are overlapping genes encoded in different reading

frames. Both were highly conserved among MA21 clones; with 3

and 4 variants, respectively (Table S8 and 2). M1 mutations

showed positive selection for 2 of 3 sites in the C-terminal region of

unsolved 3D structure between residues 198 and 232 in a region

that has been shown to bind ribonucleoprotein (RNP) (Fig. 6).

Only 3 mutations were observed in the M2 protein, at position 26

and 32 and the positively selected mutation at 44, all of which

resided in or near the ion channel domain (Table 2 and S8;

Fig. 9A). All 3 clones of the HKMA21-12 population possessed an

M2 L26F mutation that was present in the HK-12 parental clone

and thus was not selected during mouse passage (Table S8). The

mutations at residues 32 and 44 were adjacent to the same residues

of adjoining monomers in the tetrameric ion channel (Fig. 9A).

NS1 and NEP protein
NS1 and NEP are also overlapping genes encoded in different

reading frames but were more variable on mouse adaption than

the M1 and M2 proteins. Four NEP mutants were observed

among the MA21 clones and one in MA20B (Tables 2 and S8)

that were distributed along the length of the primary structure with

the positively selected S23P mutations occurring in the nuclear

export signal site (Fig. 6). The NEP G70S and E108K mutations

were adjacent to each other on the 3D structure suggesting that

they may affect a similar function (Fig. 9B).

The NS1 proteins possessed 8 mutations among 11 MA21

variants occurring as single or double mutations (Table S8) that

have been reported previously but have not been mapped [9].

Among 10 mutations that included 2 mutations in MA20 viruses,

parallel evolution was seen for M106I, and M106V and positive

selection was seen for V23A, L98S, F103L, and V180A (Table 2

and S8). The two most adaptive regions encompassed the 98, 103

and 106 sites in the middle of the protein in binding regions of the

eukaryotic translation initiation factor 4GI (eIF4GI) and the

cleavage and polyadenylation factor 4 (CPSF30), in addition to the

M124I and D125G mutations in the PKR binding site (Fig. 6).

Figure 3. Mouse adaptive mutations on PB2 three dimensional maps. Mutation sites are shown on ribbon structures of PB2 protein with
space filling models of amino acids numbered in black for mutations found once, or red for positively selected mutations. (A) PB2 cap binding
domain bound to m7GTP (in stick image); (B) PB2 C-terminal domain with the 627 site shown in stick image. (C) PB2 NLS with R753 (stick image) that
forms a salt bridge with D701, NLS in red; (D) PB2 NLS in complex with human importin a5; NLS in red.
doi:10.1371/journal.pone.0021740.g003
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The D2N and V23A mutations resided in the RNA/PABP1/RIG-

I/EIB-AP5 binding domain (Fig. 6) and mutations V180A and

R227K were found in the CPSF30 binding and PABPII binding

domains respectively (Fig. 6). Mapping the mutations on the 3D

structure of the NS1 dimer in complex with the C-terminal

CPSF30-F2F3 fragment showed that the 106 site of each NS1

monomer were in direct contact, and positions 103, 106, and 180

were in contact with CPSF30 (Fig. 10A and 10B). Each of the

mutations in contact with CPSF30 resulted in a loss of CPSF30

binding in pull-down assays of recombinant NS1 proteins

(Fig. 10C). Western blots of input levels of NS1 and CPSF30-

F2F3 are shown relative to pull down levels of anti-FLAG IgG

(Coomassie brilliant blue stained) and NS1 proteins (anti-NS1

western blot) where HK NS1-wt and the HK NS1-V23A both

bound CPSF30-F2F3 and the F103L, M106V, M106I,

M106I+L98S, and V180A did not bind CPSF30-F2F3 (Fig. 10C)

(similar data were obtained with the full length CPSF30 protein

(data not shown)). None of the recombinant NS1 proteins were

immunoprecipitated from control pull-down assays that used

empty vector transfected 293T cell lysates (data not shown). These

data indicate that mouse-adapted NS1 mutations in the CPSF30

binding site decrease CPSF30 binding which would be predicted

to reduce inhibition of mRNA processing [78].

Validation of PB2, PA and NP mutations as virulence
determinants in the mouse model

Recombinant HK-wt (rHK-wt) and mutant viruses that differed

from HK-wt due to each of the parallel PB2 mutations, K482R,

D701N, D740N, as well as D701N+D740N were generated using

reverse genetics. We assessed the ability of each of these

combinations of PB2 mutations to cause disease in groups of

mice that had been infected with each virus and monitored for

weight loss and lethality. Because the LD50 of HK-wt is .107.7 pfu

[59] increased mortality is not usually observed due to single

additional mutations therefore increased disease severity is

measurable by weight loss [74]. Although all mutations induced

increased weight loss (P#0.05 at day 2 post infection (pi) and

P,0.01 by paired t-test from day 2 to 6 for all mutants), the

greatest effect was seen for the K482R mutant. Only the D701N

mutation on its own or in combination with D740N resulted in

mortality (14% each), indicating that the LD50 of each mutant

virus was .56106 pfu (Fig. 11A and B). The D701N + D740N

mutations in combination resulted in more prolonged weight loss,

than for each mutation in isolation (Fig. 11B).

Similar infections of mice with rHK viruses that possessed the

parallel NP mutations D34N, D290N, D209E or PB2 D701N+NP

D34N showed increased lethality relative to HK-wt for the D34N

and D290N mutations (72% and 28% respectively). All mutants

had an LD50.56106 pfu except for D34N (LD50 = 2.76106 pfu)

that also caused a significantly reduced time to death relative to

HK-wt (#0.05 by t-test). All of these mutants enhanced disease

severity as monitored by weight loss (P#0.05 at day 2 pi and

P,0.01 by paired t-test for days 2 to 6 for all mutants) (Fig. 11C

and D). Lethality and weight loss (from day 4 to 10) was reduced

for the PB2 D701N+NP D34N mutations relative to that of NP

D34N suggesting gene interaction effects between these mutated

NP and PB2 genes.

We also tested the effect of the PA Q556R mutation on the HK-

wt backbone and the replacement of PA Q556R with HK-wt PA

on the HKMA20 backbone. Infection of groups of 5 mice with

16105 pfu of each virus showed that the PA Q556R mutation

resulted in significantly increased body weight loss (P#0.001 by

paired t-test) on the HK-wt backbone and a decreased time to

death (P#0.05 by t-test) in the MA20 virus relative to rMA20 +
HK PA (Fig. 11E and F). The LD50 of r-MA20 + HK PA was

103.8 pfu relative to the LD50 of 102.9 pfu for r-MA20, indicating

that the PA Q556R mutation increased virulence by 8 fold.

The effect of PB2, NP, and PA mutations on viral replication in

mouse lung was also measured at 1 dpi relative to rHK-wt by

plaque assay of lung homogenate for groups of 3 mice infected

with 56103 pfu. Significantly increased yields ranging from 5.8 to

43 fold more than rHK-wt was seen for NP D290N and PB2

mutations (K482R, D740N, and D701N). NP mutations D34N,

D209E, and PA Q556R did not significantly increase yields

relative to rHK-wt at this time point (Fig. 11G) nor at 3 dpi (data

not shown). Replication of the PB2 D701N+D740N was increased

whereas the PB2 D701N+NP D34N mutant was decreased

relative to PB2 D701N alone (Fig. 11G), which reflected the

Figure 4. Mouse adaptive mutations on PA and PB1 three
dimensional maps. Images are shown as in Fig. 3. A) PA N-terminal
domain with nuclease site active residues, H41, E80, D108, E119 and
K134 shown in stick diagram; manganese ions are shown with purple
spheres. (B) PA (blue) PB1 (red) complex; PA amino acids 1–14 are in
direct contact with PB2[125].
doi:10.1371/journal.pone.0021740.g004
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relative differences seen in virulence and/or body weight loss in

mice infected with these viruses (Fig. 11A–D). The NP D34N and

D290E mutations both increased disease severity but did not

significantly enhance replication indicating that their increased

virulence was replication-independent. Using reverse-genetics we

have shown that each of the 7 tested PB2, NP and PA mutations

increased virulence but that this was not proportional to

replication in the mouse lung that demonstrated epistatic effects

between PB2 and NP mutations.

The effect of PB2, PA, and NP mutations on RNA polymerase

activity was measured using the luciferase minigenome assay in

mouse B82 cells (Fig. 11H). The PB2 K482R, D701N, D740N,

and PA Q556R, all increased polymerase activity by .300%. In

addition the PB2 D701N + D740N mutations were additive to

enhance activity by .500% and thus demonstrated their adaptive

properties in mouse cells (Fig. 11H). The polymerase activities of

the NP D290N and D34N mutations were reduced or not changed

relative to HK-wt, respectively. Activity was reduced by half for

NP D34N + PB2 D701N relative to the PB2 D701N mutation

alone, demonstrating negative epistatic effects for both NP

mutations.

Because the D34N mutation was the most highly selected NP

mutation (Table 4) but reduced D701N polymerase activity we

assessed the effect to this mutation in several combinations of

polymerase mutations including those found in HKMA12 and

HKM20 clones in both mouse and human cells (Table 2). The

PB2 D701N, PB1 R190K+K578, PA Q556R, NP D34N and NP

D34N+D480N mutations were included as controls. In mouse B82

cells, all individual mutant polymerase subunits, PB2 D701N, PB1

R190K+K578T, and PA Q556R (Fig. S1A bars a-f) as well as

combinations significantly increased RNA polymerase activity by

.250% of HK–wt activity (Fig. S1A bars i-m, HKMA12E bar j,

HKMA20B, 20C and 20D bar m). The HKMA12A and 12D

(PB2 D701N + PB1 K578T + NP D34N) increased activity by

648% (P#0.05 by t-test) (Fig. S1A bar i). The PB1 K578T

mutation increased polymerase activity but the R190K mutation

did not and reduced activity when in combination with K578T

indicating epistatic effects (Fig. S1A bar c,d,e). Assaying polymer-

ase activity in human 293T cells showed increased activity to

approximately half of the levels seen in the mouse cells for the PB2

D701N and PB1 K578T, but not PA Q556R mutation (Fig. S1B).

The NP D34N mutation increased activity by about 50% in

human cells (Fig. S1B). Thus all RNA polymerase mutations

except PB1 R190K were shown to be adaptive with respect to

increased RNA polymerase activity [74].

Discussion

We extended our previous demonstration of parallel and

positive evolution in the HA and NS1 genes on IAV adaptation

to now include ribonucleocapsid components (PB1, PB2, PA, NP)

and NA proteins. In this study, we provide evidence for sites of

natural selection in all of these genes (Table 4). We observed that

serial high-dose passage of human influenza virus in the mouse

lung resulted in the positive selection of mutations. Adaptive

mutations clustered in regions of the primary (Fig. 2 and 6) and 3-

dimensional structures of viral proteins (Fig. 3–5 and 6–10). We

identified 115 mutations distributed among all influenza proteins

except PB1-F2, including 27 examples of parallel evolution that

primarily involved the polymerase subunits, NP and HA (Table 4).

Adaptive mutations were primarily located in regions of

interaction with host and in several instances involved sites of

viral subunit interaction or oligomerization (NP, NS1, HA, and

NA).

Adaptive mutations affect interaction with host proteins
and factors

Mouse adaptive mutations would be expected to affect sites of

virus-host interaction, however very few host proteins binding sites

have been mapped. As influenza virus replication is nuclear, 8

mutations were found in nuclear trafficking signals [20] of the

polymerase subunits, NP, and NEP proteins (Table 4). Mouse

Figure 5. Mouse adaptive mutations on NP protein trimer three dimensional maps. A). The mutations are shown on the asymmetric NP
trimer of subunits A (blue), B (grey) and C (gold). Mutations are shown in numbered space filling models on the ribbon backbone of subunit A with
the exception to position 480 that is shown on both subunits A and B. Mutations are numbered and shown as described in Fig. 3. Mutation sites in
contact with NP A and B subunits in the oligomer are: M426(B) to M448+E449(A); A428(B) to R261(A), V476(B) to D482+S483(A); and D480(A) to
M481(B). B). Side view of trimmer showing the clustering of mutation on alternate faces that define adaptive domains.
doi:10.1371/journal.pone.0021740.g005

Evolution of Virulence in Influenza A Virus

PLoS ONE | www.plosone.org 9 June 2011 | Volume 6 | Issue 6 | e21740



adaptive mutations that involved defined nuclear trafficking signal

sequences are shown in bold: PB2 736-KRKR(D740N)X11KRIR-

755; PB1 187RKR(R190K)VRDNMTKKMVTQRTIGKRKQ-

R211; NP 1MAS(Q4K)GTKRSYxxM13; and NEP S23P in NES

(11DILLRMSKMQLE(S23P)) (Fig. 2 and 6) [20]. The PB2

D701N mutation disrupts a salt bridge with 753R (736-

KRKR(X12)KRIR-755) to result in unfolding of the PB2 NLS

structure, (Fig. 3C and 3D) [76] to increase PB2 NLS activity. This

is associated with increased binding to mammalian (but not avian)

importin 1a and 7a [79] and increased nuclear localization of PB2

and NP proteins [80]. This may have increased nuclear localization

activity which in turn would explain the higher polymerase activity

seen in the double mutant (PB2 D701N + D740N) (Fig. 11H). The

PB2 K482R was also independently selected in the H1N1 MA

variant A/FM/1/47-MA where it was shown to enhance virulence

(20 fold) and replication in the mouse lung [58].

Cap binding domains were primary targets for

adaptation. Both the PB2 and PA proteins demonstrated

adaptive mutations in their respective cap binding domains,

suggesting that increased ability to access host mRNA cap

complexes for priming viral transcription is important for

overcoming restricted viral replication in a new host. The N-

terminal PA cap-binding domain also possesses RNA

endonuclease, transcription, replication and protein stability

functions that may be affected by mutations in this domain [77].

Sites of virus-virus protein interaction
Influenza viruses replicate through the action of 11 genes that

interact extensively with each other and with host proteins [16].

Adaptive mutations were found to occur extensively in regions that

involved contacts with the trimetric RNA-dependent RNA

polymerase subunits as well as NP that encapsidates viral RNA

in RNP complexes (Fig. 2 and 6). Because the current maps of

viral protein interaction are largely incomplete (see [19]) it is

possible that the adaptive regions, although concurrent with virus-

virus interaction regions, are actually affecting interactions with

unknown host factors. We have previously identified adaptive HA

mutations that affect subunit interaction to raise the pH of fusion

Figure 6. Mouse adaptive mutations on the primary structural maps of HA, NA, M1, M2, NS1 and NEP proteins. Mutations are shown
as indicated for Figure 3. The locations of protein binding and active sites are indicated; RNP ribonucleocapsid protein; NLS nuclear localization signal;
NES nuclear export signal; dsRNA double-stranded RNA (aa 1–73); PABPI poly-A binding protein 1; PABPII poly-A binding protein II; RIG-I retinoic acid
inducible gene I; E1B-AP5, E1B associated protein 5; CPSF cleavage and polyadenylation specificity factor; eIF4GI eukaryotic initiation factor 4GI; and
PKR protein kinase R. The following mutations were mapped previously: HA1 G218W, HA2 T156N, NA P468H, M1 D232N, NS1 F103L + V23A, NEP K88R
[59].
doi:10.1371/journal.pone.0021740.g006

Evolution of Virulence in Influenza A Virus

PLoS ONE | www.plosone.org 10 June 2011 | Volume 6 | Issue 6 | e21740



Figure 7. Mouse adaptive mutations in the crystal structure of the HA protein monomer, trimer and low-pH HA2 trimer. Mutations
are shown as described in Fig. 3. (A) the side view of the HA monomer composed of HA1 and HA2 (indicated with superscripts 1 and 2) with
carbohydrate side chains shown (CHO) in stick diagram is included here for reference (a similar but unglycosylated map that was generated from an
independent sequence analysis has been published [10]); (B) the low pH form of HA2; and (C) the HA trimer, top view with receptor sites indicated
with arrows.
doi:10.1371/journal.pone.0021740.g007
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[10]. We have now shown mutations in the NA, NP and NS1

proteins at sites of known viral contact in their crystal structures.

These findings indicate that adaptive mutations occur at sites

involved in viral protein interactions and oligomerization and may

affect properties associated with these interactions (Fig. 2, 5, 7, 8,

and 10). The RNA polymerizing subunit, PB1, that binds PB2 and

PA, had an adaptive region defined by adjacent amino acid

mutations K577Q/E/M and K578T situated in the center of its

PB2 interaction domain (Fig. 2). The PB1 Q15H mutation

situated adjacent to the amino terminal 14 amino acids in direct

contact with the PA subunit binding-cleft could affect this

interaction (Fig. 4B). NP protein oligomerization requires contacts

mediated by the C-terminal tail linker region that was mutated at

multiple sites of NP-NP contact including M426I, A428T, V476A,

and D480N (Fig. 5). Future studies will address the roles of these

mutations in NP structure and function. The predominance of

mutations in RNP components and the increased polymerase

activity shown for some of these mutations (Fig. 11 and S1)

indicates that increased gene expression is a major driving force in

interspecies adaptive evolution. The effect of these adaptive

mutations on virus protein interactions and functions remains to

be determined.

NS1 evolution on mouse-adaptation
The NS1 protein is a multifunctional protein that binds RNA

and protein factors to antagonize IFN functions and modulate

infection [18]. NS1mutations occurred in regions that involve

binding sites for dsRNA and factors involved in post transcrip-

tional processing of host mRNA and initiation of protein synthesis

as indicated in Fig. 10. NS1mutations between position 98 and

125 with parallel evolution at position 106, involve the eIF4GI/

CPSF30 and protein kinase R (PKR) binding sites that enhance

viral replication through modification of RNA or protein factor

binding to favor viral gene expression (N. E. Forbes and E.G.

Brown in preparation). Surprisingly, earlier studies have shown

that the F103L and M106I mutations found in the first fatal

H5N1human infection in 1997 [81], resulted in a loss of ability of

NS1 to bind CPSF30 and inhibit host gene expression [82] as has

also been reported for A/PR/8/34 (H1N1) [83]and pandemic

2009 H1N1 viruses [84]. The NS1 F103L and M106I mutations

increase replication and virulence in both the A/HK/156/

1997(H5N1) and HK/1/68(H3N2) genes [9] indicating that

virulence is not dependent on an ability of NS1 to bind CPSF30.

Several of the adaptive mutations occurred at or near the sites of

NS1subunit contacts in the dimer (F103L, M106I, M106V) and

also at sites of contact of the dimer with CPSF30 (F103L, M106I,

M106V, V180A) [85], all of which resulted in loss of binding to

human CPSF30 (Fig. 10C). Although we expected that these

mutations would mediate stronger host protein binding to achieve

greater host protein shut-off, reduced CPSF30 binding may

Figure 8. Mouse adaptive mutations on NA three dimensional
maps. Mutations are shown as described in Fig. 3. (A) Mutations are
shown in the NA monomer with receptor site indicated with SA and
carbohydrate (CHO) in stick diagram; (B) the tetrameric form of NA.
doi:10.1371/journal.pone.0021740.g008

Figure 9. M2 tetramer and NEP three dimensional maps of
mouse adaptive mutations. Mutations are shown as described in
Fig. 3. (A) on the M2 tetramer and (B) the NEP protein.
doi:10.1371/journal.pone.0021740.g009
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decrease inhibition of host gene expression to favor viral

replication which requires host mRNA derived capped oligonu-

cleotide primers [86] as well as host proteins [87]. The NS1

mutations were not selected in response to differences in mouse

CPSF30 binding site structure because human and mouse CPSF30

(CPSF subunit 4) proteins have identical sequences in the NS1-

binding domain (CPSF30-F2/F3 fragment) (Fig. S2). Thus

adaptive mutations can lead to the loss of interaction with host

proteins. Adaptive mutations therefore included those that either

enhanced (PB2 D701N and mammalian importins [79,80]; HA1

G2181W/E and a2,3 sialic acid [10,88]) or reduced binding to

host factors such as CPSF30 (Fig. 10C).

Surface proteins
The adaptive map of the HA receptor has been previously

shown to define clusters of mutations in the HA1 subunit adjacent

to the receptor binding pocket in the HA monomer, (included here

for reference, Fig. 7A); as well as a domain in the HA2 stalk. Most

of the parallel HA mutations (P1621S, Q2101R, G2181W) have

been shown to increase the pH of fusion (except T1562N) and all

of these were associated with increased mouse cell infection and

virulence as a function of increased mouse-lung tropism and

replication [10]. The G2182W mutation increases a2–3 sialic acid

(SA) binding, consistent with the fact that a2–3 SA linkages are the

only form of SA present in the mouse respiratory tract [89]. In

addition to the proximity of both of the HA1 and HA2 adaptive

domains to the respective 1651 and 1542 glycosylation sites (that

were both lost due to adaptive mutations) suggests that differences

in host mediated glycosylation may also be contributing to HA

adaptive evolution (Fig. 7) [90].

The 3D NA adaptive map demonstrated surface mutations that

surrounding the active site in the monomer and also subunit

contacts in the tetrameric structure that were also proximal to 2

glycosylated sites at aa positions 146 and 200 (Fig. 8); implicating

glycosylation and viral (NA-NA) plus host (sialic acid) factor

interactions with adaptation. NA mutations also occurred in the

C-terminal domain that has been identified in the control of acid

stability and avian to mammalian adaptation that may be involved

in mouse adaptation [91–94].

The M2 ion channel protein had mutations in the ion channel

region, including D44N that normally stabilizes the W41 gating

amino acid in the closed position[95] (by interacting with both

R45 and W41) and the I32T mutation that is adjacent to the

important hydrophilic position 31 [96]. Highly pathogenic avian

influenza virus has been identified that requires modified M2

protein to prevent premature acid activation of HA fusion in

cytoplasmic transport vesicles [97].

Mutations selected on serial mouse-lung passage were
adaptive

In addition to the validation of the adaptive roles of individual

mutations selected on serial passage (see introduction), increased

RNA polymerase activity was shown for 6 mutations: (PB1

K578T; PB2 D701N, D740N and K482R; and PA Q556R

Figure 10. NS1 three dimensional maps of mouse adaptive
mutations and effects on CPSF binding. Mutations are shown as
numbered space filling images as described in Fig. 3. (A) in the NS1
monomer; (B) the NS1 dimer effector domain (grey) bound to 2 CPSF
F2F3 fragments (dark blue). Amino acid NS1 106 of each monomer is in
direct contact in the dimer. CPSF30-F2F3 is in direct contact with NS1
amino acids 103, 106 and 180. (C) Coimmunoprecipitation of HK-wt and

V23A, F103L, M106V, M106I, M106I+L98S, and V180A mutant NS1
proteins with FLAG-CPSF30-F2/F3. Recombinant NS1 proteins (2.0 mg)
were mixed with equivalent amounts of FLAG-tagged CPSF30-F2/F3
before blotting in parallel using anti-NS1 or anti-FLAG monoclonal
antibody respectively to demonstrate the input. Pull down samples
were blotted in side-by-side comparisons for immunoglobulin (as a
loading standard) and NS1 protein to demonstrate association of NS1
with CPSF30-F2/F3.
doi:10.1371/journal.pone.0021740.g010
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Figure 11. Assessment of the roles of PB2, PA and NP mutations in mouse models of virulence, replication and polymerase activity.
Body weight and survival were monitored for groups of mice infected with recombinant HK viruses that possessed mouse adaptive mutations. (A and
B), r-HK-wt and PB2 mutants, (K482R, D701N, D740N, D701N+D740N) were used to infect groups of 4 mice with 56106 pfu of virus for body weight
loss and with n = 7 for survival. (C and D) r-HK-wt and mutant viruses with NP mutations D34N, D290N, D209E, or PB2 D701N+NP D34N were used as
indicated to infect groups of 4 mice with 56106 pfu of virus and with n = 7 for survival. (E and F) r-HK and r-HK + MA20-PA (Q556R) as well as r-MA20
and r-MA20 + HK-wt-PA were used to infect groups of 5 CD-1 mice with 16105 pfu of each with monitoring of weight loss and mortality. Weight loss
was assessed relative to r-HK-wt infections using the single sample t-test at day 2 pi or using the paired t-test for 2–6 dpi; time to death was
significant as indicated using student’s t-test, P,0.05 indicated with *. (G) Replication in mouse lungs was monitored 1 dpi after infection of groups
of 3 mice with 56103 pfu each. The values are means of infections yields 6SD for groups of 3 mice. (H) Polymerase activity was measured in mouse
B82 cells for each of the indicated mutations relative to luciferase minigenome expression via a mouse POL1 polymerase by HK-wt plasmids
expressing PB1, PB2, PA and NP and firefly luciferase driven by the NP promoter. Values are means 6SD for n = 3 samples. Statistical significance
relative to HK-wt at the P#0.05 and P#0.01 are indicated with * and ** respectively.
doi:10.1371/journal.pone.0021740.g011
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(Fig. 11)). Increased virulence on the basis of body weight loss in

the mouse was shown for 7 mutations: PB2 (D701N, D740N

K482R), NP (D34N, D290N, and D290E) and PA (Q556R).

These observations demonstrate that MA by serial high dose

passage is an effective method for identifying adaptive mutations.

Convergent evolution with human and animal influenza
viruses

The PB2 D701N mutation has been demonstrated in MA

variants of A/HK/1/68 [59], and H7N7 where it was shown to

increase mouse-virulence and polymerase activity [98]. The

mutation was also critical for mammalian virulence of a naturally

pathogenic avian H5N1 virus [99]. The PB2 D701N mutation has

also been observed to be selected in the human respiratory tract on

infection with HPAI H5N1 [100] with 10 occurrences of PB2

D701N or D740N mutations (6 and 4 respectively) among 154

human HPAI H5N1 infections currently recorded in GenBank

(Table S10). The PB2 D701N mutation may also have been

important for adaptation of avian H3N8 viruses to equines

because all equine viruses possess PB2 D701N. PB2 D701N has

been maintained on adaptation of equine influenza virus to dogs

with further evolution to the PB2 D701N + D740N double

mutation that may be instrumental in its continued adaptation

(Table S10). The PA T97I mutation has also evolved in parallel in

MA variants of nonpathogenic avian H5N2 and H7N3 [67], as

well as pathogenic H5N1 and H7N1 virus strains [101,102] where

it was shown to be a genetic determinant of increased virulence

and polymerase activity. The PB1 K578T mutation (Table 2)

evolved in parallel with K578Q that was a determinant of

increased virulence and polymerase activity on mouse adaptation

of A/equine/London/1416/73(H7N7)[64]. This indicates that

MA mutations are selected in multiple species including horses,

dogs and humans [100].

Conclusion
We show that a relatively small number of mutations including

those demonstrating parallel evolution mediate mouse adaptation

and increased virulence. Many mouse-adapted mutations map to

regions of interaction with both host and viral proteins. A group of

18 mutation sites were repeatedly selected and were therefore the

most adaptive (Table 4). Thus experimental mouse-adaptation

represents a predictable model system for identifying gain-of-

function mutations for the identification and characterization of

viral protein functions and interactions. Mouse adaptive models

are also useful for testing adaptive theories of evolution [4] and

supplying reference points for bioinformatics and biochemical

studies. Future studies will address the mechanisms of action and

gene interactions of adaptive mutations.

Methods

Ethics Statement
This study was carried out in compliance with the guidelines of

the Canadian Council on Animal Care (CCAC) as outlined in the

Care and Use of Experimental Animals, Vol.1, 2nd Edn. (1993),

which are recognized as ‘‘best-practices’’ by the International

Council for Laboratory Animal Science (ICLAS). The protocol

was approved by the University of Ottawa Animal Care

Committee (Protocol Number: BMI-85). Animal studies were

also performed under the supervision of a veterinarian (DVM)

and trained personnel. All efforts were made to minimize

suffering and mice were euthanized at humane end-points, if

infection resulted in greater than 25% body weight loss plus

respiratory distress.

Cells
Madin-Darby canine kidney cells (MDCK) (Health Canada,

Ottawa) were maintained in autoclavable minimum essential

medium (MEM) with Earle’s salts, and both 293T human

embryonic kidney cells (ATCC, Manassas, VA) and mouse B82

fibroblasts (Coriell Institute for Medical Research, Camden, NJ;

catalogue number GM00347) were maintained in Dulbecco’s

MEM (Invitrogen Canada Inc., Burlington). Media were supple-

mented with L-glutamine (2 mM), Penicillin (100 U/ml), Strep-

tomycin (100 ug/ml) (Invitrogen Canada Inc., Burlington) and

fetal bovine serum (FBS) (10%) (Hyclone Laboratories, Utah).

Table 4. Sites of parallel, positive and nuclear trafficking signal mouse adapted mutations.

gene sites of parallel evolution/mutations (mutants)a postiveb total nuclear traffic signals

PB2 482(3), 701(27), 740(9) 6 17 480, 482, 701, 740 (NLS)

PB1 577/3(10) 4 8 190 (NLS)

PB1-F2 none none none none

PA 21(4), 27(4), 70(4), 97(6), 190/2(5) 7 13 190 (NLS)

NP 34(24), 290/2(14) 7 13 4 (NLS)

HA HA1:162/2(2), 210(4), 218/2(19) HA2:154/2(2)+156(8) 13 25 na

NA 110/2(2) 4 19 na

M1 none 2 3 ?

M2 none 1 2 na

NS1 106/2(6) 6 10 ?

NEP none 1 5 23 (NES)

total 17/27(39) 51 115 8

aformat - amino acid positions/number of mutations if .1 (number of mutants among 39 MA clones in parentheses).
btotal number of positive and parallel mutations.
NLS, nuclear localization signal.
NES, nuclear export signal.
na, not applicable.
doi:10.1371/journal.pone.0021740.t004
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Mouse serial passage
The prototype clinical isolate A/Hong Kong/1/68 (H3N2)

(HK-wt) was obtained from the Laboratory Center for Disease

Control, Health Canada, Ottawa that was originally obtained

from H.G. Pereira (World Influenza Centre, London). The

passage history of HK-wt was: (2 passages in rhesus monkey

kidney cells) + (3 passages in chicken allantoic cavity) before 2

plaque purifications (plaque-to-plaque) on MDCK cells before

seed and stock preparation in chicken allantoic cavity. The

generation of mouse-adapted clones was described previously [59]

where 105 pfu HK-wt stock in 50 mL PBS was inoculated

intranasally into each of 3, 20 g CD-1 strain mice under halothane

anesthesia (3.5% halothane in O2), that were housed for 3 days

and euthanized by CO2 narcosis and surgical removal of lungs.

Lungs were pooled in 3 ml PBS and a virus extract prepared by

sonication for 2 minutes on ice, before sedimentation of debris by

centrifugation at 250 G for 5 minutes. Virus extracts were diluted

10 fold in PBS before inoculating another group of CD-1 mice

with 50 mL each with repeated passage for a total of 20 serial

passages (all lung extracts were titrated by plaque assay and

contained $56105 pfu of virus [24]). Clonal isolates were derived

by sequential plaque-to-plaque isolations on MDCK cells from

passage 12 (6 clones), and passage 20 (6 clones), and stocks were

prepared in MDCK cells or alternatively by a single passage in the

allantoic cavity of 10-day-old SPF chicken embryos (Canadian

Food Inspection Agency, Ottawa). MA variants were also derived

from 9 separate mouse adaption experiments that each involved

the serial passage of separate HK-wt stocks produced from HK-wt

subclones. The 9 separate HK-wt subclones were obtained by

plaque isolation from diluted HK-wt stock and used to produce 9

independent HK-wt stocks that were each used to perform 9

separate mouse passage experiments that employed 21 serial

passages each as indicated in Fig. 1. After 21 mouse passages 3

biological clones were derived from each of the 9 ‘‘MA

populations’’ by 2 sequential plaque isolations as previously

described [10] and shown in Fig. 1. The passage schedule for

each of the replicate numbered HK-wt clones (HK(clone #))

involved initial inoculation of individual mice with undiluted stock

virus (.106 pfu/mouse) with serial passage of undiluted lung

extract into individual mice for a total of 10 passages before 5

serial undiluted passages of 2 days each in groups of 2 mice,

followed by 6 serial undiluted passages of 3 days duration in

groups of 2 mice. In each of these passages, infected lungs were

suspended in 1 ml PBS each to make extracts that were sterilized

using 0.22 mM Millipore Millex-GV PVDF (Cork, Ireland)

filtration before serial passage that involved infection with 50 mL

of lung extract. All MA variants derived from the 9 independent

mouse-adapted passage 21 populations clones were designated as

HK(clone #) MA (mouse passage #)-(clone #).

Titration of infectivity by plaque assay
Virus stocks were subjected to serial 10 fold dilution in PBS

before application to PBS washed MDCK cells monolayers in 6

well plates as described previously [9]. Average values were

calculated for three samples that were each titrated in duplicate

plaque assays.

Calculation of median lethal dose
Median lethal dosage (LD50) of IAV variants were determined

in groups of CD-1 mice as described previously [10]. Groups of 5

female (19–21 g) CD-1 mice were infected under halothane

anesthesia (2.5% in O2) with undiluted stock virus and serial 10

fold dilutions made in PBS. Mice were monitored for survival and

weight loss over a 2 week period or until body weight increased.

Mice that lost .25% body weight and were in respiratory distress

where considered to have reached ‘‘humane endpoint’’ as required

by our animal care protocol and were euthanized by CO2

narcosis. The median lethal dose (LD50) was determined using the

Karber–Spearman method, using the formula (negative log10 of

LD50) = (negative log10 of highest dose) – (–((sum of percent

mortality at each dose/100) – 0.5)) 6log10 of dilution steps)[103].

The standard deviation of LD50 values calculated from n = 3

independent assays using groups of 5 CD-1 mice, has been

determined to be 100.3 pfu [57].

Statistical analysis
Sample values were calculated as averages 6 standard deviation

for sample size $3 with statistical significance at the P # 0.05 level

determined using the paired or single sample, 2-tailed student’s t-

test where indicated, using the Microsoft Office ExcelH 2007 or

Graphpad PrismH v3.02 programs.

Population size required to contain all possible single
nucleotide polymorphisms (SNP)

There are 13,629 nucleotides per HK-wt genome with 3

possible substitutions at each site to yield 13,62963 = 40,887

SNP’s. The observed mutation rate of 1.561025 per nucleotide

per replication cycle [104], or ((1.561025) 613,629 ntds) = 0.2

mutations per genome (Table 1)), therefore the total number of

40,887 SNP’s is predicted to be present in a population of 2.06105

infectious virions (40,887 SNP/(0.2 mutations per genome). Virus

populations of 2.06105 infectious viruses are expected to possess

all possible single amino acid substitution mutations (multiple

combinations of 2 or more SNP’s are too rare to be relevant to

molecular evolution [44]).

Calculation of the random probability of isolation of
multiple variants with identical mutations

Positive selection results in the increased prevalence of mutation

due to enhanced fitness versus random occurrence of the same

mutations. In analysis of positive selection the null hypothesis is

that the mutants occur at a frequency predicted by random

probability or chance. Given that prototype A/HK/1/68 virus

has a genome of 13,629 nucleotides and each position can be

substituted with 3 alternative nucleotides, there are 3 times

genome length (13,62963) or 40,887 possible SNP variants. Thus

any SNP mutant has a random probability of occurrence of 1/

40,887 and thus the probability that multiple strains of influenza

(n) will have the same mutation (SNP) is the product of the

individual probabilities times the number of samples tested (N) to

get (N/40,887)n (see reference [44])that is P#261028 for 2 or

more identical mutations in a population of 6 viruses which is

much less than the significance limit of p = 0.05 and thus causes

rejection of the null hypothesis in favor of positive selection.

Similarly the probability of $2 identical mutation among multiple

populations composed of 36 viruses (the largest N in this

manuscript) has P = (36/40,887) $2 or P#261025 again leading

to rejection of the null hypothesis to support positive selection.

Thus the selection of $2 mutants with the same mutation in the

same or different populations is strong evidence of positive

selection indicating that the mutation was positively selected and

therefore adaptive.

Reverse genetics
HK-wt and mutants were produced using the 8 plasmid

recombineering approach with pLLB plasmids [105] as describe

previously [74].
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Sequencing
Viral RNA was extracted from 140 mL of stock allantoic fluid

from each virus using the QIAamp Viral RNA Mini Kit (Qiagen,

Mississauga, Ontario) and full length influenza genomic segments

were amplified [106], sequenced, and assembled as previously

described [107,108]. All Genbank accession numbers are listed in

Table S9.

RNA Polymerase assays in human and mouse cells
To compare the activities of viral RNP complexes in human

and mouse cells, a Promega Dual-Glo Luciferase Assay System

(Promega) was used [98,109]. A luciferase reporter minigenome

polymerase assay was constructed that possessed the firefly

luciferase gene driven by the human RNA POL I promoter

(phPOLI-NP-LUC) and mouse RNA POL I terminator to

generate a luciferase negative sense transcript flanked by the

influenza NP gene noncoding regions.

The phPOL1-NP-LUC plasmid was constructed by insertion of the

firefly luciferase gene and NP non-coding regions that were amplified

by PCR using pGL3 Basic (Promega, Fisher Scientific, Nepean, Ont.)

as template and the following primers: Fw: 59TATTCGTCTCAGG-

GAGCAAAAGCAGGGTAGATAATCACTCACTGAGTGAC-

ATCAAAATCATGGAAGACGCCAAAAACATA-39 Bw: 59ATA-

TCGTCTCGTATTAGTAGAAACAAGGGTATTTTTCTTTA-

CACGGCGATCTTTCCG-39. The PCR product was digested by

BsmBI and cloned into BsmBI digested pHH21, resulting in plasmid

phPOL1-NP-LUC.

The pmPOL1-NP-LUC plasmid (mouse Polymerase I promot-

er-Luc construct) was constructed by PCR amplification of the

firefly luciferase gene flanked by NP non-coding region using the

pGL3 Basic plasmid (Promega) as template and the following

primers:Fw:59ATATCGTCTCAGGGAGCAAAAGCAGGGTA-

GATAATCACTCACTGAGTGACATCAAAATCATGGAAGA-

CGCCAAAAACAT-39, Bw: 59-TATTCGTCTCAAGGTAGTA-

GAAACAAGGGTATTTTTCTTTACACGGCGATCTTTCC-

GC-39. The PCR product was digested by BsmBI and cloned into

BsmBI digested pHL1261 [110], resulting in plasmid pmPOL1-NP-

LUC. Plasmids were sequenced to ensure there were no unwanted

mutations.

To perform the luciferase assays, 96 well plates of human 293T

or mouse B82 cells were respectively transfected with 0.06 mg of

the reporter plasmids, phPOLI-NP-LUC or pmPOLI-NP-LUC,

in combination with 0.06 mg of each of the four pLLB-plasmids

encoding the HK-wt or mutant forms of PB2, PB1, PA, NP[105]

plus 0.06 mg of the internal control renilla luciferase expression

plasmid PRL-SV40 (Promega), using 0.5 mL of lipofectin 2000 in

100 mL of Opti-MEM (Invitrogen, Burlington, Ontario). At 48 h

post-transfection, luminescence was measured using the Promega

Dual-Glo Luciferase Assay System and a Glomax Multi Detection

System, Model 9301-010 (Fisher Scientific, Nepean, Ont.)

according to the manufacturer’s instructions. Relative luciferase

activities were calculated as the average + standard deviation of

the ratios of firefly and renilla luciferase luminescence for three

independent experiments of 3 replicates each.

Genomic mapping of mutations
Nucleotide and amino acid sequences were aligned to identify

mutations using BioEdit version 7.0.5.3 and Genedoc Multiple

sequence alignment Editor and Shading Utility version 2.7.000

software.

Linear mapping of mutations
For each influenza protein, adaptive mutations were positioned

according to their amino acid sequence location onto linear

primary structural maps that indicated known site of function or

interaction with other viral and host factors. Linear maps were

made with CorelDRAW 10 v10.410 software. The linear maps of

PB2, PB1, PA, and NP were derived from the previous maps of

Boulo et al [20] as modified by Naffakh et al., 2008 [19] with

pertinent references therein. The HA primary structure element

maps of the active site were derived from the reviews of Skehel and

Wiley [111] and Stevens et al [112]. The NA domains were

derived from the crystal structure [113] and the review of Nayak

and Jabbar [114].The M1 protein map was composed from data

in [115–119]. The M2 ion channel was mapped from data of

Lamb et al, [120]. The primary structural map of NS1 was

modified from the map of Hale et al., [18] and references therein.

The location of the NEP nuclear export signal was from [121].

Three dimensional structural maps
Structural maps were generated using the PDB ProteinWorkshop

version 3.7 [122] with protein shown in ribbon diagram with

numbered mutations in space filling models. Maps used the following

structural files: PB2-(aa 535–742) PDB ID 3CW4, PB2-C-terminus

(aa 688–756) PDB ID 2GMO, PB2-C-terminus (aa 686–757) human

importin a5 co-crystal PDB ID 2JDQ; PB2-(aa 320–483)-7methy

guanosine cap co-crystal, PDB ID 2VQZ; PA (aa 257–716) bound to

amino terminus of PB1 (aa 1–16) co-crystal PDB ID 3CM8; PA

amino-terminal domain (aa 1–209) PDB ID 2W69; H3 HA (HA1

aa1–328, HA2 aa 1–175) PDB ID 1HDG; H3 low pH form (aa34–

178) PDB ID 1QU1; NP trimer (aa 8–498) PDB ID 2IGH; NA2

PDB ID 1NN2; M2-(aa 23–60) PDB ID 2KIH; NS1-(aa 1–215) PDB

ID 3F5T; NS1-(aa 85–203)-CPSF30-F2F3-(aa 56–118) co-crystal

PDB ID 2RHK; and NS2-(aa 63–116) PDB ID 1PD3.

Protein Gel Electrophoresis and Western blot
Samples were fractionated by SDS PAGE using 12.5% acrylamide

gels as described previously [57]. Western blots employed rabbit

antiserum raised against purified recombinant A/HK/1/68 NS1

protein or anti-FLAG M1 mouse monoclonal antibody (Sigma

Chemical, Burlington) and were performed as described previously

[123] but were detected with HRP conjugated goat-anti-rabbit or

goat-anti-mouse (Sigma Chemical, Burlington) respectively, and

SuperSignal West Pico chemiluminescent substrate (Pierce). Quan-

tification employed densitometry using the UN-SCAN-IT Gel

version 6.1 software (Silk Scientific Corp).

NS1 CPSF30 binding assay
Recombinant NS1 proteins with amino terminal 6xHis tags

were synthesized as described previously [123] in BL21 pLysS E.

coli using pET17b plasmids for 16 h at 21uC with 10 mM of IPTG

except that the soluble fraction was employed for purification and

was dialyzed against PBS. Purified NS1 protein was quantified

using the Bio-Rad Protein Assay and standardized by comparative

western blot. Plasmids were constructed by insertion of the NS1

genes of HK-wt and each mutant produced by PCR mutagenesis

into pET17b after PCR amplification using pfu Turbo polymerase

(Stratagene, La Jolla, CA). CPSF30 or the CPSF30-F2F3 fragment

was expressed in 1.56107 293T cells transfected with 30 mg of

pCAGGS-CPSF30-Flag or pCAGGS-CPSF30-F2F3-Flag plasmid

(obtained from L. Martinez-Sobrido, Mt. Sinai school of

Medicine) in 112 ml of Lipofectamine 2000 transfection reagent

(Invitrogen, Burlington, Ont.) for 24 hrs before lysis with 100 mM

Tris, 250 mM NaCl, 0.5% NP-40, and 0.5% DOC, pH 8.5. Pull

down experiments employed the lysate from 56105 293 T cells,

1 ug of anti-FLAG M1 monoclonal antibody (Sigma-Aldrich,

Canada), defined amounts of NS1 protein, and 20 ml of protein G

Dyna-beads (Invitrogen, Burlington, Ont,) in a 0.25 ml volume
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with rotation for 2 hr at room temperature. Beads were washed

three times in lysis buffer for 10 minutes before western blotting.

Control pull-down assays used the lysate from 56105 293 T cells

transfected with empty vector that did not result in NS1 pulldown

indicating a lack of nonspecific binding to anti-FLAG M1

monoclonal antibody. Similar results were obtained for both

CPSF30 or the CPSF30-F2F3 fragment pull-downs and therefore

only the CPSF-F2F3 fragment data were shown. Bound NS1

proteins were detected by western blotting with rabbit anti-NS1

antibody. Anti-FLAG M1 monoclonal antibody was monitored

after pull-down by Coomassie Brilliant Blue staining of samples

separated on 12.5% SDS-PAGE gels.
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PA and NP mutations in mouse and human cells.
Polymerase activity is shown for B82 mouse cells (A) and human

293T cells (B). Mouse adaptive mutations at the indicated

positions are masked in gray and HK-wt is shown without mask

in the table aligned with bars of activity. Influenza luciferase assays

employed luciferase minigenomes expressed via a human or

mouse POL1 polymerase in mouse B82 and human 293T cells

respectively. Samples (i) has the HKMA12A and 12D combination

of mutations; (j) has HKMA12E; and (m) has the HKMA20B, C,

and D combination. Values were standardized relative to HK wt

luciferase activity as 100% and are shown as averages for n = 3
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P#0.05 and P#0.01 by t-test respectively).

(TIF)

Figure S2 Blast alignment of mouse CPSF30 with
human CPSF30. Amino acid sequence of mouse CPSF30
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consensus sequence indicated between each sequence. The F2F3

binding fragment is indicated in yellow mask showing identical
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