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Abstract

Disruption of 14-3-3 function by alpha-synuclein has been implicated in Parkinson’s disease. As 14-3-3s are important
regulators of cell death pathways, disruption of 14-3-3s could result in the release of pro-apoptotic factors, such as Bax. We
have previously shown that overexpression of 14-3-3h reduces cell loss in response to rotenone and MPP+ in dopaminergic
cell culture and reduces cell loss in transgenic C. elegans that overexpress alpha-synuclein. In this study, we investigate the
mechanism for 14-3-3h’s neuroprotection against rotenone toxicity. While 14-3-3s can inhibit many pro-apoptotic factors,
we demonstrate that inhibition of one factor in particular, Bax, is important to 14-3-3s’ protection against rotenone toxicity
in dopaminergic cells. We found that 14-3-3h overexpression reduced Bax activation and downstream signaling events,
including cytochrome C release and caspase 3 activation. Pharmacological inhibition or shRNA knockdown of Bax provided
protection against rotenone, comparable to 14-3-3h’s neuroprotective effects. A 14-3-3h mutant incapable of binding Bax
failed to protect against rotenone. These data suggest that 14-3-3h’s neuroprotective effects against rotenone are at least
partially mediated by Bax inhibition and point to a potential therapeutic role of 14-3-3s in Parkinson’s disease.
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Introduction

Disruption of 14-3-3 expression and function has been implicated

in the pathogenesis of Parkinson’s disease (PD). This highly

conserved protein family, which includes seven isoforms in

mammals, are key regulators of cell death [1]. 14-3-3 proteins form

homo- and heterodimers that create a concave groove in which

ligands bind [2,3]. Upon ligand binding, 14-3-3s can alter the

conformational state of the ligand to alter activity or can bring

together two ligands to interact [2,3]. 14-3-3 ligands are implicated

in many cellular functions, including transcription, metabolism, and

apoptosis [2,3]. In general, 14-3-3 isoforms act to promote cell

survival through inhibition of many known pro-apoptotic factors [1].

In PD, several 14-3-3 isoforms – 14-3-3e, c, h, and f – colocalize

with the protein alpha-synuclein (a-syn) in Lewy bodies [4,5].

Although its mechanism of toxicity is unclear, a-syn plays a central

role in PD [6,7,8,9,10,11], and the amount of 14-3-3s that

coimmunoprecipitates with a-syn is increased in PD brains [12].

We have previously shown that the expression of several 14-3-3

isoforms is decreased in the brains of transgenic mice that

overexpress wildtype human a-syn [13,14]. Because of 14-3-3s’

anti-apoptotic role, we have hypothesized that disruption of 14-3-

3s by a-syn in PD could lead to the activation of pro-apoptotic

pathways that are normally inhibited by 14-3-3s. In support of this

hypothesis, we have shown that overexpression of 14-3-3h, e, or c
reduced cell loss in response to rotenone and MPP+ in

dopaminergic cell culture, while other isoforms showed variable

effects [14]. Human 14-3-3h and the C. elegans 14-3-3 homologue

ftt-2 also reduced cell loss in transgenic C. elegans that overexpress

a-syn [14]. The mechanism by which 14-3-3s are neuroprotective

has not been examined in these PD models.

14-3-3s’ effect on cell survival is thought to be mediated by their

ability to inhibit pro-apoptotic factors. 14-3-3s have been

demonstrated to bind and inhibit several different apoptotic

factors, including BAD, Bax, and Bim [1,15,16,17,18]. Bax is an

essential component in the apoptotic cascade, and its activation is

induced by rotenone and MPTP, neurotoxins that are used to

produce animal models of PD [19,20,21,22]. In the pro-survival

state, Bax is thought to be retained in the cytosol by binding to 14-

3-3s. In response to pro-apoptotic signals, Bax can become

dissociated from 14-3-3s and then be translocated to the

mitochondria [16,17,23]. Similarly, other pro-apoptotic factors,

such as BAD, can be bound by 14-3-3s to prevent the activation of

apoptosis [24].

Here we investigate whether inhibition of Bax plays a role in 14-

3-3s’ neuroprotective effect against rotenone. Because the theta

isoform showed the most substantial and consistent neuroprotec-

tion in our previous experiments, we focused on this isoform for
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the current study. We show that the rotenone-mediated Bax

activation is inhibited when 14-3-3h is overexpressed. Preventing

Bax activation by alternative means imparts similar reduction in

rotenone-induced cell death as 14-3-3h overexpression, and

disruption of 14-3-3h’s ability to bind Bax eliminates its protection

against rotenone toxicity. These findings suggest that inhibition of

Bax is key to 14-3-3h’s neuroprotective effects against rotenone.

Methods

14-3-3h cell lines
Full-length 14-3-3h was subcloned into the expression vector

pcDNA3.1/V5-His-TOPO (Invitrogen, Carlsbad, CA). C-termi-

nally deleted 14-3-3h (amino acids 1-239) was created by

subcloning the DNA fragment representing amino acids 1 to

239 by PCR (forward primer 59 caccgatcaaagtggtgggactcg; reverse

primer 59 cgcatcacattcttctcctg) into the expression vector

pcDNA3.1D/V5-His-TOPO (Invitrogen). Both full-length and

mutant 14-3-3h were tagged with V5-His at the C-terminal end.

SK-N-BE(2)-M17 (M17) cells (ATCC, Manassas, VA) were

transfected with these constructs using Superfect (Qiagen,

Germantown, MD), and stably-transfected cells were selected for

in the presence of G418 (500 mg/ml; Invitrogen). Experimental

controls included M17 cells transfected with the empty

pcDNA3.1/V5-His vector and selected for stable transfection in

the presence of G418.

Immunoprecipitation
Control, 14-3-3h, or 14-3-3h mutant cell lysates were sonicated

for 15 seconds on ice in lysis buffer [150 mM NaCl, 10 mM Tris-

HCl, pH 7.4, 1 mM EDTA, 1 mM EGTA, protease and

phosphatase inhibitor cocktail (Roche Diagnostics, Indianapolis,

IN), 0.5% NP-40] and centrifuged at 14000 g for 10 minutes.

Protein concentrations were determined by the bicinchoninic acid

assay (Pierce, Rockford, IL). Lysates were precleared with Protein

G Sepharose (Invitrogen) for one hour, and then incubated

overnight at 4C with 2 mg of a rabbit polyclonal antibody against

Bax (Cell Signaling, Danvers, MA) or rabbit IgG (Cell Signaling).

After a 3 hour incubation of the antibody-lysate mix with Protein

G Sepharose beads that had been preincubated with bovine serum

albumin, Sepharose beads were washed in lysis buffer five times

and then boiled for five minutes in 4xDTT sample loading buffer

(0.25 M Tris-HCl, pH 6.8, 8% SDS, 200 mM DTT, 30%

glycerol, bromophenol blue). Immunoprecipitate samples were

analyzed by Western blotting.

Subfractionation
Control and 14-3-3h cells were resuspended into cavitation buffer

(5 mM HEPES, pH 7.4, 3 mM MgCl2, 1 mM EGTA, 250 mM

sucrose). Cells were then fractionated and mitochondria were

isolated as previously described with minor modifications [25].

Briefly, cells were disrupted by nitrogen cavitation (250 psi) for five

minutes on ice. After centrifugation of the resulting cell lysate at

5000 g for five minutes, the supernatant fraction was saved for

preparation of the cytosolic fraction, while the pellet was saved for

preparation of the mitochondrial fraction. The cytosolic fraction

was obtained by centrifugation of the supernatant at 100000 g for

one hour and concentration of the resulting supernatant using a

SpeedVac concentrator. To obtain the mitochondrial fraction, the

pellet from the initial centrifugation at 5000 g was resuspended in

cavitation buffer and layered over a discontinuous 1.0/1.5M

sucrose gradient prior to being centrifuged at 100000 g for 30

minutes at 4C. A hazy ring corresponding to the mitochondrial

fraction was carefully recovered from the interface between the two

sucrose solutions and diluted 1:2 in 5 mM HEPES (pH 7.4), 3 mM

MgCl2, and 1 mM EGTA prior to centrifugation at 20000 g for ten

minutes at 4C. The resulting pellet was washed several times in

cavitation buffer without sucrose, and then resuspended and

sonicated in lysis buffer (175 mM NaCl, 50 mM Tris-HCl,

pH 7.4, 5 mM EDTA, protease and phosphatase inhibitor cocktail,

1% Triton X-100). The resulting fractions were examined for Bax

and cytochrome C by Western blotting.

Bax oligomerization assay
Control and 14-3-3h cells were collected in cavitation buffer and

then disrupted by nitrogen cavitation (250 psi for 5 minutes) at 4C.

The resulting cellular lysates were centrifugated at 300 g for three

minutes at 4C to remove cellular debris. The resulting supernatant

was centrifuged at 21000 g for 10 minutes at 4C. The

mitochondrial-enriched pellet was washed three times in cavitation

buffer and then solubilized in 2% CHAPS buffer for one hour at

4C. This mitochondrial-enriched sample was then crosslinked with

1 mM ethylene-glycol-bis(succinic acid N-hydroxy-succinimide

ester) (Sigma) for 30 minutes at room temperature as previously

described [26]. Protein samples were analyzed for Bax monomers

and oligomers by Western blotting using a polyclonal antibody

against Bax.

Western Blot
Protein samples were resolved on 15% SDS-polyacrylamide gels

and transferred to PVDF or nitrocellulose membranes. Blots were

blocked in 5% non-fat dry milk in TBST (25 mM Tris-HCl,

pH 7.6, 137 mM NaCl, 0.1% Tween-20) for one hour, and then

incubated overnight with primary mouse monoclonal antibody

against 14-3-3h (1:1000; Abcam, #ab10439, Cambridge, MA),

rabbit polyclonal antibody against Bax (1:1000; Cell Signaling,

#2772), mouse monoclonal antibody against cytochrome C

(1:1000; Thermo Scientific, #MS-1192, Fremont, CA), rabbit

polyclonal antibody against cleaved caspase 3 (1:1000; Cell

Signaling, #9661), mouse monoclonal antibody against cyclophi-

lin D (1:7500; EMD Biosciences, #AP1035, Gibbstown, NJ),

mouse monoclonal antibody against the V5 epitope (1:5000;

Invitrogen, #R960), or mouse monoclonal antibody against a-

tubulin (1:1000; Sigma-Aldrich, #T9026, St. Louis, MO). After

three washes in Tris-buffered saline with 0.1% Tween-20 (TBST),

blots were incubated with HRP-conjugated goat anti-mouse or

anti-rabbit secondary antibody (Jackson ImmunoResearch, West

Grove, PA) for two hours and then washed in TBST six times for

ten minutes each. Immunoreactive proteins were detecting using

the enhanced chemiluminescence method (Pierce). Immunoblots

were quantified using densitometry (Un-Scan-It Automated

Digitizing System, Silk Scientific, Orem, UT).

Immunocytochemistry
Cells were fixed in 2% paraformaldehyde for 15 minutes,

washed in Tris-buffered saline (TBS), and incubated in 0.2%

CHAPS buffer for 30 minutes. After an hour incubation in

blocking buffer (2% goat serum, 3% bovine serum albumin in

TBS), cells were incubated with the 6A7 mouse monoclonal

antibody against Bax (1:1500; Sigma-Aldrich, #B8429) overnight

at 4C. After several washes in TBS, cells were incubated with a

secondary Alexa 488-conjugated goat anti-mouse antibody

(Invitrogen) for two hours at room temperature. After three

washes in TBS, cells were incubated with 1 mg/ml Hoechst 33342

(Invitrogen) for five minutes, rinsed in TBS, and then mounted in

Vectashield (Vector Laboratories, Burlingame, CA). Cells were

imaged using a Nikon Eclipse E800 epifluorescence microscope,

and images were captured with a Spot Flex CCD camera
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(Diagnostic Instruments, Sterling Heights, MI). Ten high power

(20X) fields per well were randomly selected for quantification,

and the number of 6A7-positive cells and the total number of cells

stained by Hoechst 33342 were counted per high power field with

the rater blind to experimental conditions. Four wells per

condition were stained in each experiment, with a total of two

independent experiments.

JC-1 assay
Mitochondrial membrane potential (Dym) was determined

using the fluorescent dye 5,5,6,6-tetrachloro-1,1,3,3-tetraethylben-

zimidazolyl-carbocyanine iodide (JC-1), which is able to enter

mitochondria selectively [27]. JC-1 exists as a monomer emitting

at 528 nm after excitation at 485 nm; however, depending on the

Dym, JC-1 is able to form aggregates that are associated with a

large shift in emission (590 nm) after excitation at 530 nm. The

color of JC-1 changes from green to red as the mitochondrial

membrane becomes more polarized. The ratio of JC-1 aggregates

to monomers is independent of cell number or mitochondrial

density, such that quantification of the fluorescent state of JC-1 is a

direct indicator of the relative mitochondrial potential. Cell

staining was performed as follows: cells were plated in 24-well

plates and treated with rotenone (Sigma-Aldrich) at varying

concentrations. After drug treatment, cells were incubated with

5 mg/ml JC-1 for 30 minutes at 37C. After washing cells twice

with PBS, fluorescence was measured using a fluorescent plate

reader (Bio-Tek Synergy HT, Winooski, VT) set at excitation

485 nm and emission 528 nm for the green monomer, and at

excitation 530 nm and emission 590 nm for the red aggregates.

The ratio of JC-1 fluorescence (590 nm/ 528 nm) was calculated

as a direct measure of Dym.

LDH assay
Cells were grown in pyruvate-free DMEM for a few days prior

to plating in 24-well collagen-treated plates. Following treatment

with rotenone in serum-free DMEM for 48 hours, toxicity was

assayed by lactate dehydrogenase (LDH) release into media using

the LDH cytotoxicity kit (Roche). LDH release into media was

normalized to maximal LDH release for each well.

Statistical analysis
GraphPad Prism 5 (La Jolla, CA) was used for statistical analysis

of experiments. Western blots, 6A7 immunostaining, JC-1 assay,

and LDH assay experiments were analyzed by 2-way ANOVA,

followed by post-hoc Bonferroni’s multiple comparison test. For

the Bax subfractionation experiment, Bax expression level for

rotenone-treated cells was normalized to Bax expression level for

corresponding untreated cells. Normalized Bax levels were

analyzed by one sample t-test.

Results

14-3-3h immunoprecipitates with Bax
We have previously shown that overexpression of 14-3-3h in the

dopamine-producing cell line SK-N-BE(2)-M17 (M17) reduces cell

death induced by the neurotoxin rotenone [14]. To investigate

whether Bax inhibition may play a role in 14-3-3h’s neuroprotective

effects, we first examined whether 14-3-3h can immunoprecipitate

with Bax in M17 cells. After immunoprecipitation of lysates from

control M17 cells with a polyclonal antibody against Bax or rabbit

IgG, immunoprecipitates were immunoblotted with a monoclo-

nal antibody against 14-3-3h. Immunoprecipitation revealed that

14-3-3h did interact specifically with Bax in control cells (Fig. 1a).

We next examined whether 14-3-3h immunoprecipitated with Bax

in M17 cells that stably overexpressed 14-3-3h tagged with V5-His.

Lysates from vector control and 14-3-3h cells were immunoprecip-

itated with an anti-Bax antibody and then immunoblotted with an

anti-14-3-3h antibody. Endogenous 14-3-3h (Fig. 1b; lower band

around 30 kD, arrow) was immunoprecipitated with Bax in both

vector control and 14-3-3h stable cells, while exogenous, tagged 14-

3-3h was immunoprecipitated with Bax only in 14-3-3h stable cells

(Fig. 1b; higher band around 35 kD, arrowhead). Thus, 14-3-3h
immunoprecipitates with Bax, and overexpression of 14-3-3h results

in an increase of its association with Bax.

14-3-3h overexpression reduces Bax activation
Since 14-3-3h interacts with Bax as demonstrated by immuno-

precipitation, we hypothesized that increased binding of Bax in the

presence of higher 14-3-3h levels could reduce Bax activation. In

Figure 1. 14-3-3h immunoprecipitates with Bax in M17
dopaminergic cells. a) Cell lysates from M17 cells were immunopre-
cipitated with a polyclonal rabbit antibody against Bax or rabbit IgG,
and resulting immunoprecipitants were blotted with a monoclonal
mouse antibody against 14-3-3h in top blot. Lysate lane on right is
shown at a different exposure time than the immunoprecipitant lanes
from the same gel. Blot was reprobed with anti-Bax antibody to verify
Bax pulldown (bottom blot). 14-3-3h shows specific immunoprecipita-
tion with Bax. b) Cell lysates from M17 cells stably transfected with
empty vector or 14-3-3h tagged with the V5 epitope tag were
immunoprecipitated with a polyclonal antibody against Bax and then
immunoblotted against 14-3-3h. Both endogenous 14-3-3h (lower band
marked by arrow) and exogenous, tagged 14-3-3h (higher band marked
by arrowhead) were immunoprecipitated with Bax from cells overex-
pressing 14-3-3h, and the total amount of 14-3-3h immunoprecipitated
was increased in 14-3-3h cells compared to empty vector control cells.
Lysate lanes on right were run on a separate gel from the
immunoprecipitant lanes. Blot was reprobed with anti-Bax antibody
to verify pulldown of Bax (bottom blot).
doi:10.1371/journal.pone.0021720.g001

14-3-3theta Blocks Rotenone-Induced Bax Activation

PLoS ONE | www.plosone.org 3 July 2011 | Volume 6 | Issue 7 | e21720



response to an apoptotic trigger, Bax undergoes conformational

alterations and translocates to the mitochondrial outer membrane,

where it undergoes oligomerization that leads to pore formation

[28,29]. We first tested whether 14-3-3h overexpression altered the

translocation of Bax into the mitochondria in response to

rotenone. Control and 14-3-3h stable cells were treated with

5 mM rotenone for approximately 24 hours, and then cell lysates

were fractionated into cytosolic and mitochondrial fractions. For

vector control cells treated with rotenone, immunoblotting of these

fractions showed that Bax levels decreased to 48% of untreated

cells in the cytosolic fraction (p,0.01, one sample t-test) and

increased to 194% of untreated cells in the mitochondrial fraction

(p,0.05, one sample t-test); this suggests that Bax translocates to

the mitochondria upon rotenone treatment (Fig. 2a). In contrast,

incubation of 14-3-3h cells with rotenone did not result in

significant changes in the cytosolic or mitochondrial Bax levels as

determined by Western blotting (Fig. 2a). Levels of total Bax

protein were similar in control and 14-3-3h cell lines and were not

affected by rotenone treatment in both cell lines, as determined by

Western blotting of whole cell lysates (Fig. 2b).

We next examined whether rotenone induced Bax conforma-

tional changes and whether these changes were altered in the

presence of 14-3-3h overexpression. We did immunocytochemistry

against activated Bax using the monoclonal antibody 6A7 that

detects an N-terminal Bax epitope that is exposed only upon Bax

activation [30,31]. Vector control and 14-3-3h stable cells were

incubated in the absence or presence of 1 or 5 mM rotenone for

24 hours, and then cells were fixed and stained with the 6A7

antibody. As seen in Fig. 2c, the numbers of 6A7-positive cells

increased with rotenone treatment in vector control cells, but this

increase was significantly attenuated in 14-3-3h cells (p,0.01 at

1 mM, p,0.001 at 5 mM, Bonferroni’s multiple comparison test).

We then tested whether the formation of Bax oligomers is

affected by 14-3-3h overexpression. Vector control and 14-3-3h
cells were treated with 5 mM rotenone for 24 hours, and then

mitochondrial-enriched cell lysates were crosslinked with 1 mM

ethylene-glycol-bis(succinic acid N-hydroxy-succinimide ester), as

previously described [26]. After crosslinking, lysates were run on a

gel and immunoblotted with an antibody against Bax to detect

monomers and oligomers of Bax. As seen in Fig. 2d, rotenone

induced oligomerization of Bax in vector control cells, while 14-3-

3h cells showed a reduced level of Bax oligomers in response to

rotenone treatment. The rotenone-mediated Bax dimer formation

in 14-3-3h cells was 15% of that in vector control cells treated with

rotenone (p,0.001, Bonferroni’s multiple comparison test).

Therefore, Bax activation is reduced upon rotenone treatment in

14-3-3h cells, as determined by decreased translocation, confor-

mational change, and oligomerization.

14-3-3h overexpression reduces signaling events
downstream of Bax activation

We next investigated whether apoptotic signaling events

downstream of Bax were altered in 14-3-3h cells upon rotenone

treatment. Upon activation and oligomerization, Bax causes

permeabilization of the outer mitochondrial membrane that

results in cytochrome C release and caspase 3 activation. We

examined whether cytochrome C release into the cytoplasm and

caspase 3 activation were affected by 14-3-3h overexpression by

Western blotting. Cytochrome C release into the cytoplasm was

observed in vector control cells upon rotenone (5 mM) treatment

for 24 hours but was robustly decreased in 14-3-3h cells.

Cytochrome C release in 14-3-3h cells was about 18% of that of

vector control cells (Fig. 3a; p,0.01, Bonferroni’s multiple

comparison test). As shown by Western blotting of whole cell

lysates, rotenone-mediated caspase 3 activation was also reduced

in 14-3-3h cells compared to vector control cells; quantitative

analysis revealed that cleaved caspase 3 levels in 14-3-3h cells was

reduced to 33% of vector control cells (Fig. 3b; p,0.01,

Bonferroni’s multiple comparison test). Therefore, 14-3-3h
overexpression not only reduced Bax activation but also reduced

the activation of signaling events downstream of its activation.

Bax inhibition by alternate means is neuroprotective
If the inhibition of Bax by 14-3-3h is sufficient to mediate 14-3-

3h’s neuroprotective effects, then we predict that inhibition of Bax

through alternative mechanisms should also reduce toxicity in

response to rotenone in M17 cells. To test this, we inhibited Bax

through two methods: 1) pharmacological inhibition with the Bax

inhibitor peptide (BIP) [32], and 2) shRNA-mediated knockdown

of Bax expression. Vector control and 14-3-3h cells were

pretreated with 200 or 500 mM BIP for four hours and then

treated with 1 mM rotenone for 48 hours in the presence of BIP.

Cell death was assayed by lactate dehydrogenase (LDH) release

into the media, and LDH release was normalized to total LDH

release per well, as previously described. BIP showed a reduction

in rotenone toxicity in M17 cells in a dose-dependent manner.

Treatment with 500 mM BIP reduced LDH release to 65% of cells

treated with rotenone only (Fig. 4a; p,0.001, Bonferroni’s

multiple comparison test).

We then examined whether knockdown of Bax by shRNA

would affect the sensitivity of M17 cells to rotenone. M17 cells

were infected with lentivirus containing a shRNA targeting Bax or

with lentivirus containing the pLKO.1 empty vector only. Cells

infected with the Bax shRNA showed knockdown of Bax

expression by Western blotting (Fig. 4b). After incubation with

1 mM rotenone for 48 hours, Bax shRNA cells showed reduced

cell death compared to control cells, as measured by LDH release.

At 1 mM rotenone, Bax knockdown reduced cell death to 54% of

control cells (Fig. 4c; p,0.001, Bonferroni’s multiple comparison

test). The amount of protection with Bax knockdown was

comparable to protection provided by 14-3-3h overexpression

that we have previously observed ([14] and Fig. 5b).

We next tested whether knockdown of Bax in 14-3-3h stable

cells would provide additional protection against rotenone. Both

control stable and 14-3-3h stable cell lines infected with Bax

shRNA showed knockdown of Bax as determined by Western

blotting (Fig. 4d). After incubation with rotenone for 48 hours, 14-

3-3h cells in which Bax expression was eliminated by shRNA

showed additional protection against rotenone compared to 14-3-

3h cells infected with control (pLKO.1 empty vector) virus (Fig. 4e).

Control stable cells infected with Bax shRNA showed less

protection compared to 14-3-3h cells infected with Bax shRNA

(Fig. 4e).

Mutant 14-3-3h that cannot bind Bax is not protective
against rotenone

To test whether the interaction of 14-3-3h with Bax is required

for its neuroprotective effects, we created a mutant 14-3-3h that

shows significantly reduced affinity for Bax. Upon apoptotic

stimuli, caspases can cleave 14-3-3h at Asp 239 in the C-terminal

end that results in a reduction of 14-3-3h’s binding to Bax [16].

Unlike other 14-3-3 ligands, Bax binds to 14-3-3s in a

phosphorylation-independent manner requiring the C-terminal

end of 14-3-3 [16]. Our mutant has a deletion of six amino acids at

the C-terminal end to mimic this caspase cleavage product. After

creating a V5 epitope-tagged deletion mutant, we transfected M17

cells with this mutant construct and selected for stably-transfected

cells.

14-3-3theta Blocks Rotenone-Induced Bax Activation
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Figure 2. Rotenone-induced Bax activation is reduced in 14-3-3h-overexpressing cells. a) Less Bax translocated to mitochondria in
14-3-3h cells in response to rotenone. After treatment with 5 mM rotenone for 24 hours, vector control and 14-3-3h cell lysates were
subfractionated into cytosolic and mitochondrial fractions and immunoblotted with a polyclonal rabbit antibody against Bax. For each fraction, lanes
for vector control and 14-3-3h cells are from the same gel and exposure time but are separated for clarity with regard to quantification. Bax levels
were normalized to tubulin for the cytosolic fraction or cyclophilin D for the mitochondrial fraction. Bax levels for rotenone-treated cells are shown as
the relative percentage of the corresponding untreated cells. Densitometric quantification included seven separate experiments. Error bars reflect
SEM. *p,0.05, **p,0.01 (one sample t-test). b) Total Bax levels were unchanged with rotenone treatment in either cell line. After

14-3-3theta Blocks Rotenone-Induced Bax Activation
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We confirmed that this 14-3-3h mutant does not immunopre-

cipitate with Bax in these stable 14-3-3h mutant cells in contrast to

full-length 14-3-3h(Fig. 5a). We next investigated whether stable

cells overexpressing the mutant 14-3-3h were similarly resistant to

rotenone treatment as were full-length 14-3-3h cells. Control, full-

length 14-3-3h, and mutant 14-3-3h cells were treated with

varying doses of rotenone for 48 hours, and cell death was assayed

by LDH release into the media. While 14-3-3h cells showed

reduction in cell death in response to rotenone treatment, cells

overexpressing the mutant 14-3-3h did not show any protection

against rotenone toxicity (Fig. 5b).

14-3-3h overexpression also protects against disruption
of the mitochondrial membrane potential

Our Bax knockdown experiments implicate additional mecha-

nisms besides Bax inhibition for 14-3-3h’s neuroprotective effects.

Since rotenone can directly inhibit Complex I to disrupt the

mitochondrial membrane potential (Dym), 14-3-3h could modu-

late this effect in a manner independent of Bax inhibition. We

measured the effect of 14-3-3h overexpression on Dym. Changes

in Dym were determined by using the ratiometric fluorescent dye

JC-1. As expected, Dym was reduced with increasing doses of

rotenone in vector control cells. The rotenone-mediated decrease

in Dym was significantly attenuated in 14-3-3h cells (Fig. 6). The

mitochondrial respiratory chain uncoupler, carbonyl cyanide 3-

chlorophenylhydrazone (CCCP) was used as a positive control for

disruption of Dym (Fig. 6).

Discussion

In this study, we have investigated the mechanism by which

14-3-3h is neuroprotective in a cellular PD model. While 14-3-3s

are known to interact with and inhibit many pro-apoptotic factors,

here we demonstrate that inhibition of one such factor in

particular, Bax, is important to 14-3-3h’s protection against

treatment with 5 mM rotenone for 24 hours, whole cell lysates were immunoblotted with an anti-Bax antibody. c) Fewer 14-3-3h cells were
positive for activated Bax upon rotenone treatment. After treatment without (i-iv) or with rotenone (v-viii) for 16 hours, vector control and 14-
3-3h cells were fixed in 2% paraformaldehyde and immunostained with a monoclonal mouse antibody against the active Bax conformation (6A7) and
a goat Alexa 488-conjugated anti-mouse secondary antibody (i, ii, v, vi). Nuclei were stained with Hoechst 33342 (iii, iv, vii, viii). The number of 6A7-
positive cells was quantitated with rater blind to experimental conditions. Error bars reflect SEM. **p,0.01, ***p,0.001 (Bonferroni’s multiple
comparison test). Scale bar = 50 mm. d) Rotenone-induced Bax oligomerization was reduced in 14-3-3h cells. Vector control and 14-3-3h
stable cells were treated with 5 mM rotenone for 24 hours. Mitochondrially-enriched fractions were crosslinked and immunoblotted for oligomers
with an anti-Bax antibody. Cyclophilin D served as loading control. Densitometric quantification includes three independent experiments. Error bars
reflect SEM. ***p,0.001 (Bonferroni’s multiple comparison test). n.s. = non-significant.
doi:10.1371/journal.pone.0021720.g002

Figure 3. 14-3-3h overexpression reduces rotenone-induced cytochrome C release and caspase 3 cleavage. a) Vector control and 14-3-
3h cells were treated with 5 mM rotenone for 24 hours, and cytosolic fractions were immunoblotted with a mouse monoclonal antibody against
cytochrome C. Densitometric quantification includes five independent experiments. Tubulin was used as the loading control for Western blots. Error
bars reflect SEM. **p,0.01 (Bonferroni’s multiple comparison test). n.s. = non-significant. b) Vector control and 14-3-3h cells were treated with 5 mM
rotenone for 24 hours, and cell lysates were immunoblotted with a rabbit polyclonal antibody against cleaved caspase 3. Densitometric
quantification includes three independent experiments. Tubulin was used as the loading control for Western blots. Error bars reflect SEM. **p,0.01,
***p,0.001 (Bonferroni’s multiple comparison test). n.s. = non-significant.
doi:10.1371/journal.pone.0021720.g003
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rotenone-induced toxicity in dopaminergic cells. We found that

overexpression of 14-3-3h reduced Bax activation and downstream

signaling events, including cytochrome C release and caspase 3

activation. Inhibition of Bax by pharmacological or shRNA

knockdown provided protection against rotenone toxicity, while

14-3-3h mutant that is incapable of binding Bax showed no

protection against rotenone toxicity. These findings suggest that

Bax inhibition is required for 14-3-3h’s effects against rotenone.

However, as 14-3-3h overexpression promotes additional neuro-

protection in the presence of Bax knockdown, additional

mechanisms likely contribute to 14-3-3h’s neuroprotective effects.

In this study, we focused on 14-3-3h as it showed the most

significant protection against cell death in several PD models [14].

As both 14-3-3e and f can also interact with Bax [16,23], it is

possible that the neuroprotective effects of these isoforms seen in

our previous study [14] could also be mediated through Bax

inhibition.

Nomura et al. (2003) have previously shown that 14-3-3h inhibits

Bax by binding directly to Bax at the N- and C-terminal ends of

Bax [16]. This interaction between 14-3-3s and Bax does not

involve the usual phosphorylation binding motifs (RSXpSXP or

RXXXpSXP) that most ligands require for binding to 14-3-3s.

Cleavage of 14-3-3h’s C-terminal end by caspases results in the

release of Bax [16], and we demonstrate that this 14-3-3h cleavage

product cannot protect against rotenone toxicity. The simplest

interpretation of our data is that 14-3-3h directly binds to Bax via

its C-terminal end to induce neuroprotection. However, we cannot

rule out the possibility that 14-3-3h interacts indirectly with Bax by

means of an intermediary ligand.

While our study reveals that inhibition of Bax is key to 14-3-3h’s

neuroprotective effects, it is likely that other mechanisms do

contribute to 14-3-3h’s effects. Knockdown of Bax in M17 cells did

provide comparable protection against rotenone as 14-3-3h
overexpression did, but we found that knockdown of Bax in the

presence of 14-3-3h overexpression provided additional protec-

tion. This finding suggests that the amount of 14-3-3h overex-

pression was likely not sufficient to inhibit all Bax expressed in our

cells. It also suggests that additional mechanisms may also mediate

14-3-3h’s effects, as Bax knockdown in 14-3-3h stable cells was

more protective against rotenone than Bax knockdown in control

stable cells. We did find that 14-3-3h overexpression reduces

disruption of Dym by rotenone, suggesting that 14-3-3h can act

directly or indirectly at the mitochondrial respiratory chain in a

manner that may be independent of Bax.

Given 14-3-3s’ known interactions with other apoptotic factors

[1], 14-3-3h could also inhibit other pro-apoptotic factors to

promote cell survival. We did investigate a potential role for BAD,

another apoptotic factor inhibited by 14-3-3s, but we saw a

comparable increase in BAD phosphorylation and translocation of

BAD to the cytosol upon rotenone treatment in both control and

14-3-3h cells (data not shown). Pro-apoptotic signals typically

promote BAD dephosphorylation, resulting in release from 14-3-3

binding, mitochondrial translocation, and activation of apoptotic

signaling cascades [33]. Since we observed decreased BAD

Figure 4. Bax inhibition through alternative means is protective against rotenone toxicity. a) M17 cells were pretreated with BIP (0, 200,
or 500 mM) for four hours prior to treatment with rotenone at 1 mM. After 48 hours, cell death was assessed by LDH release into the culture media.
LDH release into media was normalized to maximal LDH release for each well. Cells treated with BIP were more resistant to rotenone compared to
untreated cells. Error bars reflect SEM. Results reflect three independent experiments with at least two replicates per experiment. ***p,0.001
(Bonferroni’s multiple comparison test). b) shRNA targeting Bax showed considerable knockdown of Bax protein expression. Naı̈ve M17 cells were
infected with a pLKO.1 lentiviral construct containing Bax-specific shRNA sequence or with an empty pLKO.1 lentiviral construct (with no shRNA
sequence; C). Infected cells were selected for in the presence of puromycin. Protein lysates from these infected cells were immunoblotted with a
polyclonal antibody against Bax (top blot). Immunoblotting against tubulin (bottom blot) shows comparable protein loading. c) pLKO.1 control or
Bax-shRNA M17 cells were treated with rotenone at varying concentrations for 48 hours. Cell death was assessed by LDH release. Bax-knockdown
cells showed considerable protection against rotenone compared to control cells at all concentrations tested. Error bars reflect SEM. Results reflect
three independent experiments with at least two replicates per experiment. ***p,0.001 (Bonferroni’s multiple comparison test). d) shRNA targeting
Bax also showed knockdown of Bax protein in both empty vector control and 14-3-3h stable cell lines. Control and 14-3-3h stable lines were infected
with an empty pLKO.1 virus (C) or with the Bax-specific shRNA lentivirus. Protein lysates from these cells were immunoblotted with a polyclonal
antibody against Bax and tubulin. e) Empty vector stable and 14-3-3h stable cells infected with either empty pLKO.1 or Bax shRNA viruses were
treated with rotenone at varying concentrations for 48 hours, and cell death was assessed by LDH release. Knockdown of Bax in 14-3-3h stable cells
provided additional reduction of rotenone toxicity. Error bars reflect SEM. Results reflect four independent experiments with at least two replicates
per experiment. *p,0.05, **p,0.01, ***p,0.001 (Bonferroni’s multiple comparison test).
doi:10.1371/journal.pone.0021720.g004
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activation, with increased BAD phosphorylation and decreased

mitochondrial translocation in response to rotenone, we concluded

that BAD is unlikely to play a role in our cellular system. Whether

inhibition of other pro-apoptotic factors by 14-3-3h contributes to

its neuroprotective effects, inhibition of Bax is central to 14-3-3h’s

neuroprotection, as disruption of the interaction between 14-3-3h
and Bax abolishes 14-3-3h’s effect.

Accumulating evidence supports the role of 14-3-3s in the

pathogenesis of PD, and direct interactions with several other

proteins implicated in PD has been shown. 14-3-3s have been

demonstrated to colocalize with a-syn in Lewy Bodies and show

increased immunoprecipitation with a-syn in PD brains [4,12]. In

addition, we have previously shown that expression levels of

several 14-3-3 isoforms are reduced in transgenic mice overex-

pressing human wildtype a-syn [13,14]. 14-3-3g can regulate the

ubiquitin ligase activity of parkin, while disease-causing mutations

in parkin disrupt its interaction with 14-3-3h [12]. The interaction

of 14-3-3s with LRRK2 suggests a role for 14-3-3s in regulating

LRRK2 function, especially since some common disease-causing

mutations in LRRK2 can disrupt its interaction with 14-3-3s

[34,35,36].

While we do not directly examine the interaction of 14-3-3h and

Bax in a genetic model of PD, our data presented here has

implications for the pathophysiology of PD. Rotenone is a widely

accepted toxin-based model of PD. Pesticides have been associated

with an increased risk of developing PD [37,38,39,40], and

oxidative stress has long been implicated in the pathogenesis of PD

[41]. Rotenone is a pesticide that causes toxicity in cultured

neuroblastoma cells via inhibition of complex I in mitochondria,

and causes specific loss of nigral neurons in rodents when injected

systemically [42,43,44]. Chronic treatment with rotenone causes

a-syn aggregation in vitro and in vivo [42,43,44]. If increased a-syn

levels observed in PD can cause disruption of 14-3-3 function, we

predict that pro-apoptotic factors normally inhibited by 14-3-3s

could be freed to activate cell death pathways that then contribute

to the neurodegeneration seen in PD. Our data here supports this

hypothesis. In response to rotenone, which induces a-syn

aggregation in M17 cells [14], Bax is activated and cell death

occurs. With overexpression of 14-3-3h, Bax activation is reduced,

resulting in decreased cell death in response to rotenone. In

contrast, overexpression of mutant 14-3-3h which cannot bind Bax

is incapable of preventing rotenone toxicity. The balance of 14-3-

3s and pro-apoptotic factors likely determines the fate of cells in

response to rotenone toxicity. Further examination of this

interaction between Bax and 14-3-3h in other PD models will be

of interest.

Bax has been previously investigated for its potential role in PD.

Bax immunoreactivity is increased in the substantia nigra of PD

brains compared to control [45], and its expression and activation

are induced in cells treated with rotenone and MPP+ [19,20,22].

In a chronic MPTP mouse model, protein levels of Bax are

increased within days after the last MPTP injection, and

mitochondrial translocation of Bax is observed [21,46]. Bax

knockout mice are resistant to MPTP-induced neurodegeneration

in the substantia nigra [21], while blocking the increase in Bax

Figure 5. 14-3-3h mutant that cannot bind Bax is not protective
against rotenone. a) Lysates from stable cells overexpressing either
full-length 14-3-3h or a C-terminally deleted mutant 14-3-3h (aa1-239)
were immunoprecipitated with a polyclonal rabbit antibody against Bax
and then immunoblotted with a monoclonal mouse antibody against
V5. Blot was reprobed with anti-Bax antibody to verify Bax pulldown
(bottom blot). Lysate lanes on right in the Bax blot are shown at a
different exposure time than the immunoprecipitant lanes from the
same gel. Considerably much less mutant 14-3-3h was immunoprecip-
itated with Bax compared to full-length 14-3-3h. b) Vector control, full-
length 14-3-3h, or mutant 14-3-3h cells were treated with rotenone for
48 hours. Cell death was assessed by LDH release. While full-length 14-
3-3h cells showed decreased cell death in response to rotenone, cells
overexpressing mutant 14-3-3h showed no protection against rotenone
compared to vector control cells. Error bars reflect SEM. Results reflect
three independent experiments with at least two replicates per
experiment. ***p,0.001 (Bonferroni’s multiple comparison test). n.s.
= non-significant.
doi:10.1371/journal.pone.0021720.g005

Figure 6. 14-3-3h overexpression reduces rotenone-induced
disruption of mitochondrial membrane potential. Vector control
and 14-3-3h cells were treated with varying doses of rotenone or 10 mM
carbonyl cyanide 3-chlorophenylhydrazone (CCCP), a mitochondrial
toxin, for 24 hours. Mitochondrial membrane potential was assayed by
the JC-1 assay. Ratio of aggregated JC-1 (red) to monomer JC-1 (green)
for each condition was normalized to that ratio for the corresponding
untreated cells. Results reflect three independent experiments with
three replicates per experiment. Error bars reflect SEM. **p,0.01,
***p,0.001 (Bonferroni’s multiple comparison test).
doi:10.1371/journal.pone.0021720.g006
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levels or blocking its mitochondrial translocation via other means

can also reduce dopaminergic cell loss in MPTP-treated mice [47].

Our studies here show that 14-3-3h is neuroprotective in a PD

model through its inhibition of Bax. We show that M17 cells

overexpressing 14-3-3h show reduced Bax activation, signaling

downstream of Bax, and cell death, while a mutant 14-3-3h that

cannot interact with Bax fails to reduce rotenone toxicity. As Bax

activation is important to PD pathogenesis, 14-3-3h could serve as

a potential target for the development of new PD therapeutics.
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