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Abstract

Hair is preserved for millennia in permafrost; it enshrines a record of biologic rhythms and offers a glimpse at
chronobiology as it was in extinct animals. Here we compare biologic rhythms gleaned from mammoth’s hairs with
those of modern human hair. Four mammoths’ hairs came from varying locations in Siberia 4600 km, four time zones,
apart ranging in age between 18,000 and 20,000 years before present. We used two contemporaneous human hairs for
comparison. Power spectra derived from hydrogen isotope ratios along the length of the hairs gave insight into
biologic rhythms, which were different in the mammoths depending on location and differed from humans. Hair
growth for mammoths was ,31 cms/year and ,16 cms/year for humans. Recurrent annual rhythms of slow and fast
growth varying from 3.4 weeks/cycles to 8.7 weeks/cycles for slow periods and 1.2 weeks/cycles to 2.2 weeks/cycles for
fast periods were identified in mammoth’s hairs. The mineral content of mammoth’s hairs was measured by electron
microprobe analysis (k-ratios), which showed no differences in sulfur amongst the mammoth hairs but significantly
more iron then in human hair. The fractal nature of the data derived from the hairs became evident in Mandelbrot sets
derived from hydrogen isotope ratios, mineral content and geographic location. Confocal microscopy and scanning
electron microscopy showed varied degrees of preservation of the cuticle largely independent of age but not location
of the specimens. X-ray fluorescence microprobe and fluorescence computed micro-tomography analyses allowed
evaluation of metal distribution and visualization of hollow tubes in the mammoth’s hairs. Seasonal variations in iron
and copper content combined with spectral analyses gave insights into variation in food intake of the animals. Biologic
rhythms gleaned from power spectral plots obtained by modern methods revealed life style and behavior of extinct
mega-fauna.
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Introduction

Hair is often well preserved for centuries; it resists decay especially

in Siberian permafrost where it can be conserved for millennia.

Modern sequencing has spawned remarkable advances in the

study of ancient DNA. These include the sequencing of 28 mil-

lion base pairs of mammoth DNA, which established that this

behemoth split from its African elephant cousin about 6 million

years ago. The physiological underpinnings of life in the cold

Siberian winter, where mammoths roamed, have also been re-

vealed by the special hemoglobin sequence found in mammoth

DNA and subsequently reproduced in modern bacteria [1]. These

studies showed that substitutions in hemoglobin confer biochem-

ical properties adaptive for cold-tolerance. The genetic material

from which these details were gleaned originated in mammoth

hair found in permafrost [2].

In multicellular organisms, with functioning nervous systems,

clock-like signals originate in the anterior part of the

hypothalamus; the ‘‘master time keeper’’ of the brain; these

signals drive biologic rhythms. These rhythms, in turn, are

paced by changes in gene expression, which then drive

intracellular clock-proteins which are found in all tissues. The

signals reach the peripheral tissues, such as hair, through the

autonomic nervous system (ANS), a part of the nervous system

that is independent of volitional control and, ultimately, this

affects hair growth [3]. To understand the feeding behavior and

survival strategies of extinct vertebrates such as mammoths, it is

necessary to understand their energy requirements and their

capacities to cope with varying climates [4]. The daily light-dark

cycle affects numerous aspects of physiology through the

circadian clock and the Siberian climate is greatly affected by

its high latitude and months-long uninterrupted darkness. Many

organs, including hair, have their own clocks that function

independently of the master clock in the brain’s hypothalamus

[5]. The human circadian clock has been studied in hair

follicles, the bulbous attachment at the root of the hair [6]. The
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circadian cycles of clock genes are accurately reflected in the

behavioral rhythms of the subjects. Even in shift workers, who

have deranged expressions of clock genes, which are out of

phase with their life styles, the oscillations of the genes in their

hair roots mirror their unusual life style.

Using spectral analysis of the variation in hydrogen isotope

ratios along the length of the hair allows assessment of biologic

rhythms in animals and gives insight into their physiology. These

vary depending on geography, as different environments contain

slightly different ratios. As a result the hydrogen isotope ratios

preserved in hair or feathers can trace an animal’s migrations over

its lifetime [3].

We thought to explore the effects on biorhythms of the pro-

longed darkness that prevails in Siberia and the wide geographic

separation of the terrain where mammoths roamed on the chrono-

biology of these animals. We also used the same techniques on

human hair for comparisons of the effects of different body size

and usual circadian light-dark cycles on hair-derived chronobiology.

Here we report on biologic rhythms of wooly mammoths using

the variation in hydrogen isotope composition of their hairs and

from their elemental content.

Results

Wooly mammoth hairs came from Northern Siberia. They were

labeled Jar, Smith, YUK and Fish. Jar and YUK were found

,4600 km apart spanning four time zones. The hairs varied in

age carbon dated to between 18,000 and 20,000 years ago.

Human hair from contemporaneous individuals, one young

woman from Italy and the other from an elderly US male were

also analyzed. Differences were seen in the hydrogen-isotope-

derived power spectra of the hairs reflecting the different biologic

rhythms of the animals and humans (Fig. 1).

A comparison of the power spectra derived from the hydrogen

isotope ratios of the hairs (Fig. 1) shows that the low and high

frequencies of the spectra differ considerably in power amongst the

4 mammoths and are also markedly different from the spectrum

obtained from the woman’s hair.

Mammoth hair grows approximately 31 cms./year [7]. By

contrast human hair grows only, on average, 16 cms./year. These

differences in growth rate are most likely due to the thermo-

regulatory demands and life styles of mammoth’ in Northern

Siberia [3].

Figure 1. Power spectra derived from hydrogen isotope ratios along the hair from a human (red) and from mammoths identified by
colors. The spectra contain low and high frequencies but their power varies across species and mammoth locations. The spectra are similar in shape,
but not power, to those derived from human heart rate variability.
doi:10.1371/journal.pone.0021705.g001
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The spectral indices of the hydrogen isotope ratios along the

length of the mammoth’s hairs were used to identify recurring

annual rhythms of slow and fast periods (Fig. 2). The slow periods

varied from 3.4 weeks/cycles (Smith) to 8.7 weeks/cycles (FISH);

the fast periods from 1.2 weeks/cycles (Smith and FISH) to 2.2

weeks/cycles (YUK).

To determine the relationships between the power spectra de-

rived from hydrogen isotope ratios (proxies for biologic rhythms),

the mineral content of the mammoths’ hairs (a reflection of diet)

and the different geographical locations where the specimens

were found we turned to Mandelbrot fractal analysis. The data

are infinitely complex and thus lend themselves to such analysis

(Fig. 3). The most remarkable differences in the Mandelbrot sets

were found in the YUK mammoth. Notably, the fractal sets for

Mg, Ca, and Fe were not different for each hair, individually,

implying that the power spectra reflecting biologic rhythms and

the geographic locations and not the intake of elements were the

predominant drivers of the Mandelbrot fractal sets (Fig. 3).

We next examined the hairs using confocal microscopy

(Fig. 4). The preservation of the hairs varied greatly with

location, while age was a lesser factor. The YAR and FISH hairs

were of approximately the same age yet showed different stages

of deterioration of the cuticle, the outer tough shell of the hair,

as evidenced by the destruction of this structure from large areas

of FISH’s hair and the relative preservation of the cuticle in

JAR. The human hair was characterized by preservation of the

cuticle but marked invasion by bacteria shown in extensive

biofilms, largely absent from the mammoths’ hairs. This implies

that permafrost was, as expected, protective from bacterial

invasion and contributed to the millennia-long preservation of

the mammoth’s hairs.

To appraise further taphonomic effects (the conditions and

processes that affect tissues before they become stabilized for

millennia) on the mammoths’ hairs we used scanning electron

microscopy (SEM) (Fig. 4). This revealed large craters in YUK and

surprisingly less ‘‘cratering’’ in YAR and FISH, the older hairs

(Fig. 4). The confocal images confirmed the SEM results (Fig. 4).

To investigate the elemental composition we examined the

mammoths’ hairs using the X-ray fluorescence microprobe at

the National Synchrotron Light Source (beam line X26A),

Figure 2. Fast and slow annual periods of hydrogen isotope ratios from mammoth hair. The fast periods are markedly faster than in
human hair consistent with faster growth rate and appropriate thermoregulation in the Siberian climate. The slow period cycling differs amongst the
4 locations and is also remarkably accelerated in the mammoth. Note that the slow periods of Smith (3.25 weeks) and YUK (7.4 weeks) may reflect the
geographic separation of these animals (spanning over ,4600 Km in longitude) and the different isoscapes along this great distance.
doi:10.1371/journal.pone.0021705.g002
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Brookhaven National Laboratory Upton, NY, USA. Two-

dimensional fluorescence compositional maps for selected

elements such as Fe, As, and Mn were generated to construct

plots of the fluorescence intensity versus the lengths of the hairs

for the YUK and JAR (Figs. 5, 6). Additionally, an overview for

the Fish hair is given in Fig. 7. Small sections of the hairs were

analyzed by X-ray fluorescence computed micro-tomography to

show the three-dimensional distribution of trace metals in the

reconstructed cross-sections through the hair (Fig. 8). This

allowed qualitative evaluation of metal distribution within the

hair. Arsenic is uniformly distributed; Cu is increased at the

hair’s outer layers and then uniformly distributed internally

while Fe shows localized variability in abundance within the

hair. Reconstruction of X-ray attenuation through the samples

also shows the presence of void spaces within the hairs; the air-

tubes (Fig. 8).

Plots for fluorescence intensity for Fe, Ti, Ni, Mn, As, Cu, Ca,

and Zn and the distance from the hair root for Yuk’s hair are

shown in Fig. 9. This plot demonstrates the abundance of Fe over

the other elements on a logarithmic scale and the periodic syn-

chronous increases in all elemental content in the YUK hair

plotted along the length of the hair (Fig. 9).

To guide the power spectral analysis of seasonal variations

in hair growth (Fig. 10) the two periods of abundant Fe uptake

at 5 and 104 mm from the hair root were used, a distance of

approximately 9 cm corresponding to ,4 months of growth

(growth-rate, 31 cms/year). Mammoths are thought to have

increased their food intake in the spring and fall, before and

after the food scarcity in winter or the presumed abundance of

food during the summer months. This may account for the two

‘‘humps’’ in the fluorescence intensity (Fig. 10). The power

spectra derived from Fe and Cu content depicted in Figs. 11

and 12 shows, for the summer variation in the power derived

from Fe for the low-frequency, mid- frequency and high-

frequency but only random oscillations for the Cu intake

during the same period (Fig. 11). By contrast spring and

autumn periods resulted in power spectra derived from the

abundance of both metals most likely the result of increased

Figure 3. Mandelbrot sets derived from one human and three mammoth’s hairs found at geographically separate locations in
Siberia. All sets were derived using the data for power spectra obtained from the hydrogen isotope ratios along the length of the hairs and the hair
content of sulfur and other elements (Mg, Ca, and Fe), using Mandelbrot set-on line generator (� 2007–2011 Dawid Makieła) (Mandelbrot.ovh.org).
The sets depicting the fractals for each hair, using different elements, were similar in contrast to the set generated for the YUK hair, which shows
marked deviations from the usual forms seen in FISH and JAR (arrows). The human fractals are noticeably different although the same parameters as
those for the mammoths were used. All images were 30% brightness and 10% contrast enhanced.
doi:10.1371/journal.pone.0021705.g003
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food intake in preparation for the cold months or for migration

to warmer areas (Fig. 12).

The chemical content of 3 mammoths’ hairs (YUK, JAR and

FISH) and of the human hair was determined (Table 1). There

were no discernible differences in sulfur content among the

mammoth hairs but significant differences in magnesium and

calcium were present. The human hair contained much less iron

than mammoth hair and more sulfur (Table 1).

Discussion

Until recently the study of biologic rhythms was conceived from

the perspective of living organisms. We offer here a glimpse at

biologic rhythms as they were in extinct mammoths that lived

millennia ago and compare those to results obtained from modern

humans.

A major shift in biorhythm research is the availability of

new tools such as hydrogen isotope ratios and micro-focused

synchrotron X-ray fluorescence analyses which facilitated this look

into the past.

Power spectral analysis of heart rate variability (the variation in

the duration of heart rate-intervals) is an accepted method to assess

the biologic rhythms in living humans [8]. Here, this technique

was applied, replacing heart rate intervals with the hydrogen

isotope ratios along the length of the hairs.

Hydrogen isotopes, have offered a non-invasive probe into the

behavior of living animals. These ratios measured, at intervals

along the length of hair, have been found to vary with age of the

individuals, with disease and with residence at altitude in con-

temporaneous humans; they also reflect the geographic ‘‘iso-

scapes’’ (isotope-landscapes) of the hydrogen isotopes in the food

and water consumed [3]. We found that the hydrogen isotope

ratios along the length of mammoth’s hairs show slow and fast

rhythms, as determined by the power spectra of these stable

isotope, which varied greatly with the location of the find-spots in

Siberia (Figs. 1), supporting the contention that they are a

reflection of the hydrogen isotope content of water and the food

consumed [9] during life and are proxies for ‘‘isoscapes’’ (isotope-

landscapes) or grazing grounds of the mammoths; to some extent

they also account for the differences found in the annual fast and

Figure 4. Confocal and scanning microscopic images of mammoth’s and human hair. Taphonomic changes, indicated by arrow-heads and
straight white arrow in the confocal image. Bacterial-fungal colonies are shown by broken arrows. Red arrow indicates space between cuticle and hair
shaft due to shrinkage. Extensive taphonomic changes in YUK are evident. Note the preservation of the cuticle in the human hair in contrast to the
craters in the cuticles of the mammoth’s hair. Bacterial biofilms are a feature of human hair; mammoth’s hair was protected from bacterial invasion in
permafrost.
doi:10.1371/journal.pone.0021705.g004
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slow periods of growth cycles (Fig. 2). The very speedy fast cycling

is consistent with the fast mammoth’s hair growth; about twice as

fast as human hair grows.

To illustrate the relationships between the complex natural

influences that control biologic rhythms, such as soil content of

nutrients, geography and circadian rhythms (the power spectra

derived from hydrogen isotope ratios along the length of the

mammoth’s hairs) we used Mandelbrot fractal sets (Fig. 3) [9].

Fractals, a term coined by Benoit Mandelbrot, are ubiquitous in

nature; they are defined by recurrence relations at each point in

a space and are valuable to illustrate complex natural

phenomena such as the formation of frost crystals on a glass

pane or the contour of mountains and, in biology, the L scaling

(M3/4) of cellular metabolism, heart beat (here hydrogen isotope

ratios along the length of hairs) blood circulation, growth and

size, development and life-span [10].

Because in nature, numerous ecological and biological

phenomena, such as, river networks and blood vessel branching,

are self-similar or fractal-like [11], we generated fractals to

illustrate the natural interplay of physical systems, such as soil

content of minerals, stable isotope levels in water and food, the

power spectra derived from hydrogen isotope ratios in the hair,

and the rotation of the earth around the sun, as reflected in the

circadian and longer term rhythms during life of the

mammoths.

The most Eastern location in Siberia, separated by approxi-

mately 4 time zones (,4600 Km), showed the greatest deviation

from the fractal patterns generated from the other two mammoths

(Fish and Jar) implying that geography, soil content of nutrients

and circadian rhythms have an important determining effect on

biologic rhythms (Fig. 3). Additionally, the fractal patterns

generated from similar data derived from humans showed marked

differences from the mammoths implying that size, which scales

with metabolism, is also an important determinant of biologic

rhythms (Fig. 3).

We used confocal and scanning electron microscopy to gage the

degree of preservation of the tissues. This varied with age and

location (Fig. 4.). Notably, mammoths hair preserved in perma-

frost had less bacterial colonization than contemporaneous human

hair (Fig. 4.).

Microfocused synchrotron X-ray fluorescence analyses of the

hairs enabled us to identify the concentrated and diffuse

distributions of Fe, As and Cu as a function of hair length and

thus time (Figs. 5, 6, 7). X-ray fluorescence tomography also

Figure 5. Micro-focused synchrotron X-ray fluorescence images. Compositional scan and high resolution scans of selected areas of the Yuk
mammoth hair. Note the focal accumulation (z1–z5) of Fe along the length of the hair.
doi:10.1371/journal.pone.0021705.g005
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showed that mammoth’s hairs like that of other modern arctic

animals, such as polar bears, have hollow shafts filled with air for

better insulation (Fig. 8).

Using X-ray fluorescence data, a clear definition of seasonal

variations in food consumption, or migration (Figs. 9, 10) and

consequent changes in biologic rhythms were found (Figs. 11, 12).

The power spectrum derived from the Cu content during the

summer/winter showed no clear discernable power at any

frequency (Fig. 11) consistent with the presumed micro-nutrient

function of Cu and its reduced food intake and abundance during

those periods. By contrast, Fe the most abundant element in the

hair (and soil) had clear low, mid- and high frequency power

during the same season (Fig. 11). Conversely, during spring and

autumn, discernable low, mid- and high frequency power were

evident in both spectra (Fig. 12) supporting our contention that

the power spectra, derived from the elemental content, also

reflect, in part, the quantities of food intake which vary with the

seasons and the different seasonal biologic rhythms of the

animals.

The elemental content of the hairs (Table 1) were also used

as proxy for food intake. Fe showed no differences among the

mammoths’ but was, not surprisingly, significantly higher in

these animals than in the human hair; their food intake must

have been several orders of magnitude larger and very

different, than that consumed by humans. Sulfur content, a

major constituent of hair, is primarily a reflection of hair

metabolism and was significantly lower in human hair-a

reflection of the smaller size and very different metabolism of

humans (Table 1).

Circadian rhythms are driven by earth’s rotation and studies

have centered on these complex, 24 hour, oscillations. Additional,

long-period rhythms, as we have shown here, (Fig. 3), exist that are

especially important for large bodied and slower growing animals

such as mammoths [12].

In biology there is no observation free model. Every data point

rests on some theoretical model of the measurement system.

Moreover, the assumptions that a model is based on can be equally

important as the accuracy of data [13]. Here power spectral plots

were used to model biologic oscillations and find correlations to diet,

climate, geographic location and life styles of extinct mega-fauna.

Materials and Methods

The hair from the Yuribey, Gidan peninsula, Siberian

mammoth was found at 71u99 latitude; 76u559 longitude donated

Figure 6. Micro-focused synchrotron X-ray fluorescence images. Compositional scan and high resolution scans of selected areas of the Jar
mammoth hair. Note the focal accumulation of Fe (z1, z2, z3) along the length of the hair; high resolution scans, lower panels (yellow rectangles).
doi:10.1371/journal.pone.0021705.g006
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by the Smithsonian Institution (R. Purdy) to the University of New

Mexico, Department of Earth and Planetary Sciences (Z. D.

Sharp) and designated herein ‘‘Smith’’ (no dating available). The

hair from the Jarkov Siberian, male mammoth, was found at

73u329 latitude; 105u499 longitude. It was 14Carbon dated to

,20,380 years before present and designated herein ‘‘Jar’’. Hair

from the Yukagir, Siberian, male mammoth, was found at 71u529

latitude; 140u349 longitude. It was 14C dated to ,18,500 years

before present and designated herein ‘‘YUK’’. Hair from the

‘‘Fishhook mammoth’’ was found at 74u089 latitude; 99u359

longitude. It was 14C dated to ,20,620 years BP and designated

herein ‘‘Fish’’. The Jarkov, Yukagir and Fishhook mammoths’s

hairs were donated by The Mammoth Site, Hot Springs, SD. The

human hair was donated by an elderly contemporaneous US male

for the SEM and con-focal microscopic imaging and a young

Italian female, aged 31, for the power spectral analyses, both

designated herein ‘‘Human’’. Written informed consent was

obtained from both individuals. The Ethics committee of the

NMHEMC Research Foundation reviewed and approved the

study.

Microfocused synchrotron X-ray fluorescence analyses were

performed at beamline X26A at the National Synchrotron

Light Source, Brookhaven National Laboratory, Upton, NY,

USA.

Samples were prepared for confocal microscopy by cutting the

hair into short segments and mounting them in Prolong Gold

mounting medium (Invitrogen) on a microscope slide under a

number 1.5 cover-slip. Images show only intrinsic fluorescence of

the samples.

Hair samples were coated with gold to provide conductivity for

analysis on a JEOL 8200 electron microprobe.

Hydrogen isotope ratios were determined using the continuous-

flow-high-temperature-reduction technique.

Computations of growth rate of the hairs, periodicities of the

observed oscillations in hydrogen isotope ratios, high and low

periodicities from spectra and growth rates were carried out using

the SAS programming.

Data derived from each hair were entered into the Mandelbrot

set-online generator by Dawid Makiela� (Mandelbrot.ovh.org).

Full methods and associated references are given in Text S1.

Figure 7. Micro-focused synchrotron X-ray fluorescence images. Overview of entire Fish hair, showing the focal accumulation of various
elements. Note the distribution along the cuticle of Ti and the diffuse occurrence of Fe.
doi:10.1371/journal.pone.0021705.g007
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Figure 8. X-ray fluorescence tomography of selected elements in the YUK hair. Note: a) the double air spaces in the hair, a feature of the
thermoregulatory function of the hair. b) in the grayscale images, whiter areas reflect higher elemental concentrations. c) the focal distribution of Fe
and Cu contrasts to the diffuse dispersal of As throughout this hair.
doi:10.1371/journal.pone.0021705.g008
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Figure 9. Micro-focused synchrotron X-ray fluorescence analyses of Yuk[agir] mammoth hair. Note the large preponderance of Fe
compared to the other elements (logarithmic scale).
doi:10.1371/journal.pone.0021705.g009
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Figure 10. Micro-focused synchrotron X-ray fluorescence analyses of Yuk[agir] mammoth hair. During the summer/winter months
(orange line), the amount of Fe is lower than that which occurs during spring and autumn (red lines); a reflection of the increased food intake during
these relatively short periods in Northern Siberia.
doi:10.1371/journal.pone.0021705.g010
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Figure 11. Power spectra of micro-focused synchrotron X-ray fluorescence analyses of Yuk mammoth hair derived from Cu and Fe
during the summer months. Notable is the absence of discernable power in the low, mid and high frequencies in the Cu spectrum and the clear
spectral peaks derived from Fe in this segment of the hair grown during the Siberian summer (,4months, 20–90 mm).
doi:10.1371/journal.pone.0021705.g011
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Figure 12. Power spectra of micro-focused synchrotron X-ray fluorescence analyses of Yuk mammoth hair derived from Cu and Fe
during the spring and autumn months. The spectra for both seasons have been ‘‘stacked’’ along rows. Discernable power in the low, mid and
high frequencies of the spectra obtained from both metals is evident. Cu is a micronutrient and food intake must have increased during these periods
to generate sufficient power in the spectra derived from Cu, (see also Fig. 11).
doi:10.1371/journal.pone.0021705.g012

Table 1. Mean 6 SD elemental quantities derived from electron microprobe analysis (k-ratios).

Species Human Yuk Jar Fish ANOVA P value

S 107.969.5A 89.3614.6AB 84.3612.2B 79.266.7B 0.03

Mg 2.260.1C 7.862.0B 21.463.9A 13.662.0D ,0.001

Ca 7.962.4C 25.960.8B 57.9619.2A 23.860.3BC ,0.001

Fe 0.260.4B 10.565.5A 12.168.3A 12.364.3A 0.03

P-values by 1-way ANOVA. Means with the same superscript letter (A, B, C, D) are not significantly different in post hoc pair-wise comparisons.
Note that the Fe content among the mammoths’ hairs does not differ significantly, but is significantly higher than in human hair.
doi:10.1371/journal.pone.0021705.t001
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