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Abstract

The Enhancer of Zeste 2 (EZH2) protein has been reported to stimulate cell growth in some cancers and is therefore considered
to represent an interesting new target for therapeutic intervention. Here, we investigated a possible role of EZH2 for the
growth control of colon cancer cells. RNA interference (RNAi)-mediated intracellular EZH2 depletion led to cell cycle arrest of
colon carcinoma cells at the G1/S transition. This was associated with a reduction of cell numbers upon transient transfection
of synthetic EZH2-targeting siRNAs and with inhibition of their colony formation capacity upon stable expression of vector-
borne siRNAs. We furthermore tested whether EZH2 may repress the growth-inhibitory p27 gene, as reported for pancreatic
cancer. However, expression analyses of colon cancer cell lines and colon cancer biopsies did not reveal a consistent
correlation between EZH2 and p27 levels. Moreover, EZH2 depletion did not re-induce p27 expression in colon cancer cells,
indicating that p27 repression by EZH2 may be cell- or tissue-specific. Whole genome transcriptome analyses identified cellular
genes affected by EZH2 depletion in colon cancer cell lines. They included several cancer-associated genes linked to cellular
proliferation or invasion, such as Dag1, MageD1, SDC1, Timp2, and Tob1. In conclusion, our results demonstrate that EZH2
depletion blocks the growth of colon cancer cells. These findings might provide benefits for the treatment of colon cancer.
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Introduction

The Enhancer of Zeste Homolog 2 (EZH2) protein is a core

component of the Polycomb Repressive Complex2 (PRC2) and

modifies transcription at the epigenetic level by affecting histone

and DNA methylation [1]. EZH2 is overexpressed in several

malignancies, including major human cancers, such as prostate

cancer, breast cancer, pancreatic cancer, renal cell carcinoma, or

cervical cancer [2–6].

There is experimental evidence that EZH2 can directly

contribute to carcinogenesis by acting as a bona fide oncogene.

Specifically, for certain cancer entities, it has been reported that

EZH2 stimulates cell proliferation, blocks apoptosis, promotes cell

invasion and metastasis, activates tumor angiogenesis, and induces

tumors in mouse models [2–11]. These findings suggest that EZH2

inhibition may represent an attractive novel strategy for epigenetic

cancer therapy [1,12].

More recently, however, there is also data suggesting that EZH2

could act as a tumor suppressor protein in certain tissues [13].

Homozygous inactivating EZH2 mutations were detected in a

portion of myeloid malignancies [14,15], raising the possibility that

EZH2 may either exert pro- or anti-oncogenic activities, in a cell

type-dependent manner [16]. Another level of complexity is added

by the detection of heterozygous EZH2 mutations in a portion of

lymphomas of germinal-center origin [13]. In this case, the mutant

protein appears to increase the level of H3K27 methylation, a

critical downstream target of EZH2, by acting in conjunction with

the wild-type protein expressed from the unmutated allele [17].

Colorectal cancer is the fourth most common cancer form in

humans. Each year, more than 1,200,000 individuals will develop

the disease and over 600,000 will die from it [18]. Despite the high

biomedical significance of this tumor, investigations of the EZH2

status and function in colon cancer cells are sparse and partly

contradictory. For example, whereas EZH2 was consistently

reported to be overexpressed in colon cancers, EZH2 expression

levels correlated positively [19], negatively [20,21], or not at all

[22], with the survival of colon cancer patients. Moreover, to our

knowledge, only one functional study investigated the role of

EZH2 for the growth of colon cancer cells, but failed to see an

effect upon EZH2 gene silencing [22]. This finding is in strong

contrast to the growth-promoting role of EZH2 reported for

several other cancer entities [2–6]. In the present work, we

addressed this issue by analyzing EZH2 expression in colon cancer

cells in vitro and in vivo, and by investigating the contribution of

EZH2 to the growth of colorectal cancer cell lines.

Results

Expression of EZH2 in colon cancer cells in vitro and RNA
interference-mediated EZH2 repression

In order to investigate the expression of EZH2 in colon cancer

cells in vitro, we analyzed a panel of twelve tumor-derived colon
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cancer cell lines by immunoblotting and qRT-PCR. All tested

cell lines expressed readily detectable amounts of EZH2 protein

(Figure 1A) and EZH2 mRNA (Figure 1B). For subsequent RNA

interference (RNAi) analyses, we generated three synthetic siRNAs

targeting different regions of the EZH2 transcript. All three

siRNAs efficiently blocked EZH2 expression (Figure 1C). Since

potential off-target effects of individual siRNAs can be reduced by

siRNA pooling [23,24], we also tested a pool consisting of all three

EZH2-targeting siRNAs. This siRNA pool also efficiently blocked

EZH2 expression (Figure 1C) and was used for further functional

analyses.

EZH2 repression results in G1 arrest and growth inhibition
of colon cancer cells

Next, we tested the effect of RNAi-mediated EZH2 repression

on the growth of HCT116, LoVo, and DLD1 colorectal cancer

cells. siRNA-treatment resulted in a strong reduction of EZH2

levels in all tested colon carcinoma cell lines and, as previously

Figure 1. EZH2 expression in colon cancer cell lines. A Immunoblot analysis of EZH2 protein expression. Tubulin, loading control. B qRT-PCR
analyses of EZH2 mRNA expression. Data are presented as fold differences in gene expression, normalized to a housekeeping gene index. Standard
deviations from two reverse transcription replicates are indicated. C Modulation of EZH2 protein expression by RNAi. EZH2 expression was
determined by immunoblot analysis 48 hours after transfection with EZH2-targeting siRNAs or control siRNAs, as indicated. siEZH2pool: pooled EZH2-
targeting siRNAs. Tubulin, loading control.
doi:10.1371/journal.pone.0021651.g001
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reported for other cells [7], in a concomitant decrease of cyclin D1

expression (Figure 2A).

Cell cycle analyses by fluorescence activated cell sorting (FACS)

were performed in parallel. They revealed a statistically significant

increase in G1 populations and a concomitant decrease in S phase

populations, upon EZH2 repression. Typical FACS curves are

shown in Figure 2B, a compilation of the results of three

independent experiments is depicted in Figure 2C. These results

indicate that EZH2 repression induces cell cycle arrest at the G1/S

boundary and therefore may act antiproliferative in colon cancer

cells.

To further address this issue, cell count analyses of colon cancer

cell lines were performed. RNAi-mediated inhibition of EZH2

expression led to a significant reduction of cell numbers, which was

clearly visible 48–72 hours following transfection of synthetic

siRNAs (Figure 3A), indicating that EZH2 silencing results in

growth inhibition of colon cancer cells.

To validate the antiproliferative effect of EZH2 inhibition in

colon cancer cells by an independent method, we performed

colony formation assays. Two different EZH2-targeting siRNAs

were stably expressed from selectable expression vectors in

HCT116, LoVo, DLD1, and RKO cells, for 13 to 15 days. Both

EZH2-targeting siRNAs led to a clear reduction of the colony

formation capacity of all tested colon cancer cell lines versus

control siRNA-treated cells (Figure 3B). Morphological aspects,

FACS profiles, and terminal deoxynucleotidyl transferase dUTP

nick end labeling (TUNEL) analyses did not provide evidence for

increased apoptosis of colon cancer cells upon RNAi-mediated

EZH2 repression (data not shown).

Taken together, these results indicate that EZH2 depletion

induces cell cycle arrest in the G1 phase and inhibits the growth of

colon cancer cells.

Tissue Micro Array analysis of EZH2 expression in colon
adenomas and cancers

Previous studies have shown that EZH2 is significantly

overexpressed in colon cancers when compared to normal colon

tissue [19–22]. However, data comparing EZH2 expression in

benign colon adenomas versus colon cancer is, to our knowledge,

not yet available. We therefore performed immunohistochemical

analyses employing a tissue microarray encompassing 24 adenomas,

25 G1 carcinomas, 24 G2 carcinomas, and 24 G3 carcinomas. In

comparison to colon adenomas, EZH2 expression was significantly

increased in colon carcinomas (Figs. 4A and 4B). Analyses of colon

cancers representing different degrees of histological dedifferentia-

tion (increasing from G1–G3) revealed a trend for a further increase

of EZH2 expression for less differentiated cancers, which, however,

was not statistically significant (Figure 4B).

EZH2 and p27 expression do not correlate in colon
cancer

The cyclin-dependent kinase inhibitor p27 (also named Kip1) is

a growth inhibitory protein that blocks cell cycle progression at the

G1/S transition [25]. In colon cancers, p27 levels are frequently

low [26,27]. Interestingly, it was recently reported that EZH2

depletion led to p27 re-expression in pancreatic cancer cells,

indicating that EZH2 may contribute to tumor cell proliferation

by repressing p27 [4]. In view of our findings that EZH2 promotes

cell proliferation and stimulates G1/S cell cycle progression of

colon cancer cells, we addressed the question whether p27 is

repressed by EZH2 in colon cancer as well.

Immunohistochemical analyses revealed that colon cancers

exhibited significantly decreased nuclear p27 and a trend for

reduced cytoplasmic p27 protein levels (Figure 5A), when

compared with colon adenomas. Within the cancer group,

increasing degrees of cancer cell dedifferentiation (G1–G3) showed

a statistically non-significant trend for a further decrease of p27

expression (Figure 5A). In general, these results are opposite to the

findings obtained for EZH2 expression (Figure 4B), raising the

possibility that EZH2 levels may negatively correlate with p27

levels. However, EZH2 and p27 levels did not significantly

correlate in individual cancers (n = 68) on a per patient basis, i.e. in

tumors derived from the same patient (Figure 5B). This lack of

association applied for analyzing EZH2 amounts in relation to

both nuclear or cytoplasmic p27 expression levels (Spearman’s

rank correlation coefficients r = 0.187, p = 0.572 and r = 20.0623,

p = 0.613, respectively).

In line with these in vivo findings, the basal levels of EZH2

protein expression did not consistently correlate with p27 protein

or mRNA levels in colon cancer cell lines in vitro (Figure 6A and

6B). We also investigated whether p27 expression levels are

affected by EZH2 depletion in HCT116, LoVo, and DLD1 colon

cancer cells. If EZH2 blocks p27 expression, silencing of EZH2

should be linked to a re-increase of p27 expression, as has been

observed in pancreatic cancer cells [4]. In contrast, however,

efficient inhibition of EZH2 expression was not associated with a

substantial increase of p27 expression, neither at the protein

(Figure 6C) nor at the mRNA (Figure 6D) level, in colon cancer

cells. Cellular fractionation studies revealed that p27 is virtually

exclusively localized in the cytoplasm, in HCT116, LoVo, and

DLD1 cells. This subcellular distribution was also not detectably

altered by EZH2 depletion (Figure S1).

Transcriptome Analyses of Colon Cancer Cells upon EZH2
depletion

In order to identify possible target genes affected by EZH2

depletion in colon cancer cells, transcriptome analyses were

performed. To this end, LoVo and DLD1 cells were treated either

with the siRNA pool silencing EZH2 expression or with control

siRNA. Changes in the expression levels of cellular genes were

assessed by using a genome-wide microarray of approximately

25,000 genes. We observed significant changes of 2,235 genes in

DLD1 (1,095 upregulated, 1,140 downregulated) (Table S1) and of

379 genes in LoVo (280 upregulated, 99 downregulated) (Table

S2). The overlap consisted of 139 genes that were affected by

EZH2 depletion in both colon cancer cell lines (100 upregulated,

39 downregulated). A heatmap visualizing these 139 differentially

regulated genes is provided in Figure 7A, indicating high

concordance between the biological replicates. A detailed list of

these genes is provided in Table S3.

Functional annotation of the 139 genes by Ingenuity Pathway

Analysis revealed that 37 gene products have been associated with

cancer (Table 1). In regard of the molecular and cellular functions,

EZH2 depletion was found to affect several genes involved in the

control of cellular development, growth control, cellular move-

ment, and signaling (Table 1).

To validate the array data, we analyzed the expression of 5

cancer-associated genes, which were induced by EZH2 depletion

in the transcriptome analyses, by qRT-PCR: (i) Dag1 (Dystrogly-

can 1) encoding an adhesion molecule, which is frequently

underexpressed in colon cancer [28], (ii) MageD1 (Melanoma-

associated antigen family protein-D1) encoding an inhibitor of

proliferation and tumor cell invasion [29], (iii) SDC1 (Syndecan 1),

encoding a cell surface proteoglycan that inhibits cell invasion

[30], (iv) Timp2 (TIMP metallopeptidase inhibitor 2), encoding an

inhibitor of matrix metalloproteinases whose downregulation

correlates with the invasive potential of LoVo colon cancer cells

EZH2 in Colon Cancer
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Figure 2. EZH2 depletion leads to cell cycle arrest of colon cancer cell lines. A Immunoblot analyses of HCT116, DLD1, and LoVo cells
showing efficient downregulation of EZH2 expression by RNAi. Cyclin D1 levels are indicated. Tubulin, loading control. B Cell cycle analyses by FACS.
Cells were treated with two control siRNAs or with EZH2-targeting siRNAs. Percentages of cells in the G1, S, or G2/M phases of the cell cycle are
indicated. C Compilation of cell cycle analyses from three independent experiments. Standard deviations are indicated. Asterisks equal p#0.05,
double asterisks equal p#0.01, n.s. not significant.
doi:10.1371/journal.pone.0021651.g002
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Figure 3. EZH2 depletion leads to growth inhibition of colon cancer cell lines. A Cell counts following transient transfection with synthetic
control siRNA (sicontr-1) or EZH2-targeting siRNAs (siEZH2 pool). Graphs represent relative cell numbers, at the indicated time points after siRNA
transfection. Cell numbers at transfection (time point 0) were set as 1.0. Experiments were performed in triplicates, standard deviations are indicated.
Asterisks equal p#0.05, n.s. not significant. B Colony formation assays. HCT116, LoVo, DLD1, and RKO cells were stably transfected with plasmids
expressing two different shRNAs against EZH2 (pCEP-shEZH2-1, pCEP-shEZH2-2) or two control shRNAs (pCEP-shluc or pCEP-shcontr-1). Experiments
were independently repeated at least thrice, with consistent results.
doi:10.1371/journal.pone.0021651.g003
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[31], and (v) Tob1 (Transducer of ERBB2), encoding an

antiproliferative protein with tumor suppressive potential [32].

As observed for the microarray, all 5 genes were also significantly

induced by EZH2 depletion in the qRT-PCR analysis (Figure 7B),

further corroborating the transcriptome data.

Discussion

In the present study, we show that EZH2 depletion in colon

cancer cells (i) reduces cell cycle progression at the G1/S

boundary, (ii) decreases cell numbers in short term growth assays,

and (iii) blocks cell growth in long-term colony formation assays.

These results are consistent with a growth-promoting role for

EZH2 in colon cancer and are in contrast to a recent report

indicating that the growth of colon cancer cells is not affected by

siRNA-mediated EZH2 depletion [22].

A possible explanation for this discrepancy may be related to the

assays used to measure cell growth. The previous study relied on the

MTT assay that measures a metabolic activity (reduction of MTT

(3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide to

formazan) [22]. This assay can be affected by many conditions,

e.g. metabolic changes, and can lead to the underestimation of

growth inhibitory effects [33–35]. In contrast, in the present study,

antiproliferative effects following EZH2 silencing were consistently

observed in three independent assays. Our findings thus indicate

that EZH2 stimulates the proliferation of colon cancer cells, as has

been reported for several other cancer entities [2–9,11].

The exact molecular mechanisms how EZH2 stimulates cell

proliferation are still largely unknown. As a crucial component of

the PRC2 transcriptional repressor complex, EZH2 may lead to the

repression of antiproliferative genes. An interesting study recently

demonstrated that EZH2 leads to the repression of the growth-

inhibitory p27 cell cycle regulator gene in pancreatic cancer cells [4].

Since p27 acts at the G1/S transition - which we found to be

affected by EZH2 silencing in colon cancer cells - and since p27

levels are frequently low in colon cancers [26,27], we tested a

possible correlation between EZH2 and p27 levels in vivo and in vitro.

However, comparative analyses of EZH2 and p27 expression

did not exhibit a statistically relevant positive or negative linkage in

colon cancers in vivo, on a per patient basis. Moreover, EZH2

Figure 4. In vivo expression of EZH2 in colon carcinomas. A Immunohistochemical analyses of colon adenomas and colon cancer biopsies
representing increasing degrees of histological dedifferentiation (G1–G3). Black arrows: carcinoma; white arrows: connective tissue. Scale bars, 50 mm.
B Box plot of EZH2 protein expression. Expression levels of EZH2 were significantly increased in carcinomas when compared with adenomas
(p,0.001). Differences for EZH2 expression between G1, G2, and G3 carcinomas were not significant (p = 0.185).
doi:10.1371/journal.pone.0021651.g004
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depletion did not result in a re-expression of p27 in colon cancer

cell lines in vitro, at time points where it resulted in highly increased

p27 expression in pancreatic cancer cell lines [4]. These findings

indicate that - in contrast to the situation in pancreatic cancer cells

- p27 levels are not critically regulated by EZH2 in colon cancer

cells. Thus, the spectrum of EZH2 target genes may vary in a

tissue- or cell-specific manner.

In order to get insight into the spectrum of genes, which are

affected by EZH2 depletion in colon cancer cells, we performed

whole genome transcriptome analyses in DLD1 and LoVo cells.

Among the 139 genes, which were significantly affected in both

cell lines, over one fourth is known to be cancer-associated. The

spectrum of affected genes is consistent with the hypothesis that

EZH2 is an important factor for development, proliferation

control, signaling, and movement/invasion [1,36]. Additional

work is required to analyze the exact mechanisms by which EZH2

may alter the expression of these genes and to study in detail their

possible contribution to the growth deregulation of colon cancer

cells. We corroborated the array data by expression analysis of 5

genes by qRT-PCR: Dag1, MageD1, SDC1, Timp2, and Tob1. In

line with the transcriptome analysis, EZH2 silencing increased the

expression of all 5 genes in qRT-PCR analyses as well. These

findings suggest that EZH2 may repress these genes either directly

or indirectly, in colon cancer cells. All 5 genes are reported to

Figure 5. Relation between EZH2 and p27 expression in vivo. A Box plots of nuclear and cytoplasmatic p27 protein expression in colon
adenomas and carcinomas (G1–G3). Expression levels of nuclear p27 were significantly lower in carcinomas than in adenomas (p = 0.026), cytoplasmic
p27 levels showed a similar trend, which, however, was not statistically significant (p = 0.173). Differences for p27 expression between G1, G2, and G3
carcinomas were not significant. B Immunohistochemical staining of paired samples of colon cancers did not reveal a significant correlation between
EZH2 and p27 expression levels. Examples of 4 different cancers (I–IV) stained for EZH2 (upper panels) and p27 (lower panels), respectively. Scale bars,
50 mm.
doi:10.1371/journal.pone.0021651.g005
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Figure 7. Altered gene expression in colon cancer cell lines upon EZH2 depletion. A Venn-Diagram and heatmaps of 139 genes that were
significantly affected at the transcript level by EZH2 depletion in both LoVo and DLD1 cells. Heatmaps were generated using hierarchical clustering.
Cells were either treated with siEZH2pool or sicontr-2. Four biological replicates were analyzed for each sample. Significantly upregulated genes are
indicated in yellow, significantly downregulated genes in blue. B qRT-PCR analyses to assess the expression of five genes that were affected by EZH2
depletion in the transcriptome analysis (see above). Indicated are the results from three independent experiments conducted in DLD1 cells. mRNA
levels are shown relative to sicontr-2-treated cells (arbitrarily set at 1.0). Standard deviations are indicated. Asterisks equal p#0.05, double asterisks
equal p#0.01.
doi:10.1371/journal.pone.0021651.g007

Figure 6. Relation between EZH2 and p27 expression in vitro. A EZH2 and p27 protein expression in colon cancer cell lines, assessed by
immunoblot analyses. Tubulin, loading control. B p27 mRNA expression, measured by qRT-PCR analyses. Data are presented as the fold differences in
gene expression, normalized to a housekeeping gene index. Standard deviations from two reverse transcription replicates are indicated. C
Immunoblot analyses after EZH2 depletion by RNAi. EZH2 and p27 levels are indicated. Tubulin, loading control. D qRT-PCR analyses after EZH2
depletion by RNAi. p27 and EZH2 mRNA levels are indicated relative to sicontr-1-treated cells (arbitrarily set at 1.0). Standard deviations of three
independent experiments are indicated.
doi:10.1371/journal.pone.0021651.g006
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exhibit antiproliferative and/or antiinvasive potential [28–32] and

their downregulation would thus be consistent with a possible

oncogenic effect of EZH2 in colon cancer.

Due to the growth-promoting role of EZH2 in various cancers,

inhibition of EZH2 is currently discussed as an attractive novel

strategy for cancer therapy [1,12]. Indeed, EZH2 inhibition by

siRNAs, or depletion of PRC2 components by the drug 3-

deazaneplanocin A (DZNep), exerted antioncogenic effects, by

blocking cell proliferation and/or inducing apoptosis [2–7,11,

37,38], by counteracting invasion and metastasis [9,10], and by

inhibiting tumor angiogenesis [8].

The finding in our study that EZH2 contributes to the

proliferation of colon cancer cells extends the spectrum of tumor

entities that may therapeutically benefit from EZH2 inhibition to

colon cancer. Considering EZH2 as a potential therapeutic target,

however, must take into account that EZH2 is also expressed in

normal tissues, including the proliferative cell layer of colon

crypts [22]. Importantly, EZH2 has been found to exert crucial

regulatory functions in several tissues, such as controlling the

differentiation of tissue-specific progenitor and stem cells [39–42].

Moreover, the recent observation that EZH2 may act as a tumor

suppressor in certain hematologic disorders [14,15,16] suggests

that EZH2 inhibition could even promote tumorigenesis, in some

tissues. Thus, interfering with EZH2 function as a therapeutic

strategy bears the risk to induce unwanted side effects and is likely

to require highly specific delivery of EZH2 inhibitors to their

target cells.

Materials and Methods

Cells and transfections
HCT116, DLD1, LoVo, WiDr, SW620, HCT15, RKO, T84,

Caco-2, and COLO205 colon carcinoma cell lines were a kind gift

from Dr. M. von Knebel Doeberitz (University of Heidelberg),

SW480 from Dr. S. Wiemann (German Cancer Research Center,

Heidelberg), and HT29 from the cell and tissue culture core

facility of the German Cancer Research Center, Heidelberg. Cells

were maintained in either DMEM (pH 7.2), RPMI, or McCoys

medium, supplemented with 10% FCS, 50 units/ml penicillin, and

50 mg/ml streptomycin sulfate.

Plasmids were transfected by calcium phosphate coprecipitation

[43] into HCT116 cells or by Fugene HD (Roche Diagnostics,

Mannheim, Germany) into DLD1, LoVo, and RKO cells.

Synthetic siRNAs were transfected with Dharmafect (Dharmacon,

Thermo Fisher Scientific, Lafayette, CO, USA) according to the

manufacturer’s protocol. In brief, cells were plated in 6-cm dishes

at 15% to 25% confluency. Dharmafect 4 and siRNAs (final

concentration of 100 nM) were both diluted in Opti-MEM I

reduced serum medium (Invitrogen, Carlsbad, CA, USA) and

mixed in a volume of 400 ml transfection solution.

Plasmids and synthetic siRNAs
siRNAs were either chemically synthesized (Dharmacon) or

expressed as shRNAs from pCEPsh, as previously described [44].

The following EZH2-targeting siRNAs were used: siEZH2-1 59-

GAAUGGAAACAGCGAAGGA-39 (predesigned siRNA from

Dharmacon), siEZH2-2 59-GACUCUGAAUGCAGUUGCU-39

[7], and siEZH2-3 59-GCUGAAGCCUCAAUGUUUA-39 (pre-

designed siRNA from Dharmacon). The siEZH2pool consisted of

all three siRNAs mixed at equimolar concentrations. The follow-

ing control siRNAs were used: sicontr-1 59-CAGUCGCGUUU-

GCGACUGG-39 [45], sicontr-2 59-UAGCGACUAAACACAU-

CAA-39 (predesigned siRNA from Dharmacon, containing at least

four mismatches to all known human genes), and siluc 59-CAU-

CACGUACGCGGAAUAC-39 (targeting Photinus pyralis luciferase

[46]).

RNA extraction, quantitative real-time reverse
transcription polymerase chain reaction (qRT-PCR), and
protein analyses

RNA was isolated as previously described [47] and resuspended

in RNAse free water. RNA concentrations were measured with

NanoDrop ND-1000 (Thermo Fisher Scientific, Wilmington, DE

USA), at 260 nm. Reverse transcription of 1 mg RNA was perfor-

med by using the oligo-dT primer and ProtoScript M-MuLV Taq

RT-PCR Kit (New England Biolabs, Frankfurt, Germany)

according to the manufacturer’s protocol. Expression levels were

determined by real-time PCR with a 7300 Real-Time PCR

System detector (Applied Biosystems, Carlsbad, CA, USA), using

the SYBR green PCR Master Mix (Applied Biosystems), supple-

mented to 500 nM of each forward and reverse primer. EZH2

(NM_004456) expression was determined using the forward prim-

er 59-TTGTTGGCGGAAGCGTGTAAAATC-39 and reverse

primer 59-TCCCTAGTCCCGCGCAATGAGC-39 [48]. For de-

tection of p27Kip1 (NM_004064) expression 59-GCCAGACGGG-

GTTAGCGGAG-39 was used as forward and 59-GAGGCCAG-

GCTTCTTGGGCG-39 as reverse primer. MageD1 (NM_00100

5333) expression was determined with primers 59-GGCTGTC-

CTCTGGGAGGCACT-39 and 59-GGGTTGCTGTTGGGCA-

CTCGT-39, Timp2 (NM_003255) expression with primers 59-

TCTACACGGCCCCCTCCTCG-39 and 59-TGGGGCAGCG-

CGTGATCTTG-39, SDC1 (NM_001006946) expression with pri-

mers 59-CGGCCCTGCCGCAAATTGTG-39 and 59-CCTCCA-

GGCCGGTGGGTTCT-39, Tob1 (NM_005749) expression with

primers 59-TGCAGCCTATGGAGGCCTCAA-39 and 59-CCC-

CTTGGGCCCGTGCATTTT-39, and Dag1 (NM_001165928)

expression with primers 59-GTCGTCGGGCGCTCATTTCGA-

39 and 59-CCAGCCGTGTAGCGCTCACTG-39. GAPDH and

HPRT1 primer sequences and cycling conditions have been

previously described [49]. The sizes of the PCR products were

initially verified by agarose gel electrophoresis and subsequently

checked by melting point analysis after each reaction. Relative

quantification was performed using the comparative Ct (22DDCt)

method [50]. Data are presented as the fold difference in gene

expression normalized to a housekeeping gene index (the

geometric mean of GAPDH and HPRT1 expression levels), and

relative to a calibrator sample. The housekeeping genes were

chosen among several tested housekeeping genes for normalization

of gene expression, since they exhibited equal amplification

efficiencies as our genes of interest. Statistical significance of

differences in measured variables between controls and treated

groups was determined by a two-sided paired t-test using the

Sigma Plot software (Systat Software Inc., San Jose, CA).

Differences were considered significant at p#0.05.

Total protein extracts were prepared 48 to 96 hours after

transfection, as described previously [51]. For cytosolic and

nuclear extract preparation, cells were resuspended in lysis buffer

(10 mM Tris, 10 mM NaCl, 1 mM EDTA, 0.5% NonidetH P-40,

pH 7.4) and incubated on ice. Intact nuclei were pelleted by

centrifugation and the cytosolic extract in the supernatant was

transferred. Nuclei were washed twice with lysis buffer containing

0.05% NonidetH P-40 and the nuclear proteins were extracted as

described for total protein extracts. For Western blot analyses, 20–

30 mg of protein extract were separated by 12.5% SDS-PAGE,

transferred to an Immobilon-P membrane (Millipore, Bedford,

MA, USA), and analyzed by enhanced chemiluminescence (GE

Healthcare, Buckinghamshire, UK). The following antibodies

were used: anti-EZH2 antibody (AC22, Cell Signaling, Danvers,
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MA, USA), anti-p27 antibody (#610242, BD Transduction

Laboratories, Franklin Lakes, NJ, USA), anti-cyclin D1 antibody

(DSC6, Cell Signaling), and anti-alpha-tubulin antibody (CP06,

Calbiochem, Darmstadt, Germany).

Cell count and cell cycle analyses
For cell count analyses, total cell numbers were determined 48–

72 hours after transfection. Total cells per milliliter were

measured, using a Countess Cell Counter (Invitrogen).

For cell cycle analyses, cells were trypsinized 48 hours after

transfection, washed in ice-cold phosphate-buffered saline (PBS),

and fixed in 80% cold ethanol overnight at 220uC. Subsequently,

cells were pelleted, resuspended in PBS containing 1 mg/ml

RNAse A (Roche Diagnostics) and 25 mg/ml propidium iodide

(Sigma-Aldrich, Munich, Germany), and then incubated for

30 min at 37uC. Cell cycle analyses were performed using a

FACSCalibur (BD Biosciences, Heidelberg, Germany) with

CellQuest Pro software provided by the manufacturer. Apoptotic

cells were excluded and quantitation of the percentage of cells in

individual cell cycle phases was performed using FlowJo software

(Tree Star, Ashland, OR), applying the Dean-Jett-Fox model [52].

Statistical significance of differences in measured variables

between controls and treated groups was determined by a two-

sided paired t-test as described above.

Colony formation assay
For colony formation assays, cells were grown on 6 cm dishes

and transfected with individual pCEPsh vectors. Colonies were

fixed and stained with formaldehyde-crystal violet 13–15 days after

transfection and subsequent selection for hygromycin B (Sigma)

resistance.

Tissue Micro Array
A tissue microarray (TMA) containing tissue samples derived

from tubular adenomas (n = 30) and G1 (n = 30), G2 (n = 30), and

G3 (n = 30) colorectal adenocarcinomas was analyzed. All tissue

samples were obtained from the Tissue Bank of the National

Center for Tumor Diseases (NCT) Heidelberg after approval by

the ethics committee of the University of Heidelberg.

For the creation of the TMA, representative tissue blocks were

selected as donor blocks. Sections were cut from each donor block

and stained with Hematoxylin and Eosin. Then, a morphologically

representative region was chosen from each tissue sample. One

cylindrical core tissue specimen per block (diameter 0.6 mm) was

punched from these regions and arrayed into the recipient paraffin

block using a semiautomatic system Tissue Arrayer MTA-1

(AlphaMetrix, Rödermarkt, Germany).

Immunohistochemistry
The TMA slides were dewaxed and rehydrated using xylene and a

series of graded alcohols, followed by heat induced antigen retrieval

using a target retrieval solution (S2031, DakoCytomation, Glostrup,

Denmark) in a pressure cooker for 10 min. Immunohistochemical

staining was performed on an automated staining system (Techmate

500, DakoCytomation) with a mouse anti-EZH2 antibody (1:20,

612667, BD Transduction Laboratories) for 30 min, and an mouse

anti-p27 antibody (1:150, 610242, BD Transduction Laboratories)

for 30 min. An avidin-biotin-complex peroxidase technique using

aminoethylcarbazole for visualisation and Hematoxylin for counter-

staining was applied. According to the manufacturers’ instructions,

the following solutions were used: ChemMate Detection Kit (K5003,

DakoCytomation), ChemMate Buffer Kit (K5006, DakoCytomation)

and, for reduction of non-specific avidin/biotin-related staining, the

Avidin/Biotin Blocking Kit (SP-2001, Vector Laboratories, Burlin-

game, USA). Reactive infiltrating lymphocytes, which express

detectable amounts of EZH2 protein, served as a internal positive

control [53]. As a negative control for the immunohistochemical

staining procedure, the primary antibody was omitted, with all other

experimental conditions kept constant.

For immunohistochemical measurement of EZH2 expression,

the frequency of nuclear staining was evaluated. p27 staining was

determined separately for nuclear and cytoplasmic expression.

Due to insufficient tumour tissue or fixation artefacts, which

interfered with immunohistochemical staining, 23 cases for EZH2-

staining and 18 cases for p27-staining were excluded from further

analyses. The arrays were independently scored by two research-

ers, blinded for tissue annotation. For the few instances of

discrepant scoring, a consensus score was determined. Box plots

were drawn as described in [54]. The association of p27 and

EZH2 expression and histological grading (Adenoma, G1, G2,

G3) was analyzed using a two-stage approach. First the two-sided

Jonckheere-Terpstra test was applied. If a statistically significant

trend was found (i) the Mann-Whitney test was used to compare

between adenomas and carcinomas and (ii) the Jonckheere-

Terpstra test was applied to the subgroup of carcinomas to test for

a trend according to histological grading. To measure the

correlation of p27 and EZH2 expression in colon carcinomas

Spearman’s rank correlation coefficient was calculated. A result

was considered as statistically significant, if the p value was smaller

than or equal to 5%. All statistical analyses were performed within

the R statistical software environment (R version 2.11.1) using the

R package coin, version 1.0-11.

Transcriptome analyses
For gene expression analysis, we used the whole genome

expression microarray SentrixH HumanHT-12 v4 expression bead

chip (IlluminaH, San Diego, CA, USA) encompassing 47,231

features. The experiments were performed at the Genomics and

Proteomics Core Facility of the German Cancer Research Center,

Heidelberg, using concentrations of 50 ng/ml RNA for each

sample and following the protocols recommended by the supplier.

Expression levels were analyzed 48 hours post transfection for

DLD1 cells and 72 hours post transfection for LoVo cells.

Statistical analysis was performed using the statistical computing

environment R [55]. Briefly, the gene expression profiles were

normalized using quantile normalization and differentially ex-

pressed genes were determined using a moderated t-statistic [56].

All p-values were corrected for multiple testing, and genes showing

a false discovery rate [57] p#0.05 were considered as significantly

deregulated. The statistical analysis was performed for each cell

line separately and for further analysis only the genes that were

significantly affected in both cell lines were used. The functional

analyses were generated through the use of IPA (Ingenuity

Systems, www.ingenuity.com).

Supporting Information

Figure S1 Subcellular localization of p27 in colon cancer
cells. Immunoblot analysis of p27 and EZH2 in cytoplasmic and

nuclear extracts prepared from colon cancer cells. Cells were

harvested 48 hours following treatment with control siRNAs

(sicontr-1 and sicontr-2) or siEZH2 pool. Fractionation controls:

Lamin A/C (nuclear protein) and Tubulin (cytoplasmic protein).

(TIF)

Table S1 Transcripts significantly affected upon EZH2
depletion in DLD1 cells.
(XLS)
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Table S2 Transcripts significantly affected upon EZH2
depletion in LoVo cells.

(XLS)

Table S3 Transcripts significantly affected upon EZH2
depletion in both LoVo and DLD1 cells.

(XLS)
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