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Abstract

Computational prediction of protein functional sites can be a critical first step for analysis of large or complex proteins.
Contemporary methods often require several homologous sequences and/or a known protein structure, but these resources
are not available for many proteins. Leucine-rich repeats (LRRs) are ligand interaction domains found in numerous proteins
across all taxonomic kingdoms, including immune system receptors in plants and animals. We devised Repeat Conservation
Mapping (RCM), a computational method that predicts functional sites of LRR domains. RCM utilizes two or more homologous
sequences and a generic representation of the LRR structure to identify conserved or diversified patches of amino acids on the
predicted surface of the LRR. RCM was validated using solved LRR+ligand structures from multiple taxa, identifying ligand
interaction sites. RCM was then used for de novo dissection of two plant microbe-associated molecular pattern (MAMP)
receptors, EF-TU RECEPTOR (EFR) and FLAGELLIN-SENSING 2 (FLS2). In vivo testing of Arabidopsis thaliana EFR and FLS2
receptors mutagenized at sites identified by RCM demonstrated previously unknown functional sites. The RCM predictions for
EFR, FLS2 and a third plant LRR protein, PGIP, compared favorably to predictions from ODA (optimal docking area), Consurf,
and PAML (positive selection) analyses, but RCM also made valid functional site predictions not available from these other
bioinformatic approaches. RCM analyses can be conducted with any LRR-containing proteins at www.plantpath.wisc.edu/
RCM, and the approach should be modifiable for use with other types of repeat protein domains.
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Introduction

The conservative nature of evolution causes selection of stable

structures that nevertheless are modifiable for operation in varied

processes. Proteins carrying repetitive domains such as leucine rich

repeats (LRRs), ankyrin repeats or tetratricopeptide repeats are

one common solution to these evolutionary demands [1–3]. A

single class of repeat domain can interact with a wide array of

chemically distinct ligands, yet each particular repeat protein

shows high specificity for particular ligands. Consensus amino acid

motifs have been identified for these repeat domains [1–5]. The

consensus amino acids within a particular type of repeat provide

a regular, stable scaffold to the domain, while non-consensus

residues within the repeat allow variability in function [1]. The

characteristic structure formed by a particular type of repetitive

motif is identifiable by comparison of multiple solved protein

structures, and can be used to predict the overall configuration of

other protein domains sharing that repetitive motif. However,

methods to query the variable portions of these repeat domains, to

identify and understand the sites that control specialized functions,

are less well developed.

LRR domains are a protein-ligand interaction domain found

in many types of prokaryotic, eukaryotic, and viral proteins,

including ubiquitin ligases, hormone receptors, enzyme inhibitors,

and immune receptors in plants and animals [1,6–12]. As anno-

tated by Pfam, more than 500 different proteins encoded by the

human genome contain LRRs, and there are over 1000 types of

LRR-containing proteins in individual plants such as Arabidopsis

thaliana or rice [4]. The ubiquity of this domain may be due to its

ability to interact with a wide range of substrates including

proteins, nucleic acids, lipids, and small molecule hormones. It is

particularly compelling that in jawless vertebrate adaptive immune

systems, antibodies are produced by shuffling hypervariable LRR

repeats [13,14]. The resultant receptors recognize a wide range of

substrates with high affinity. Any single LRR domain can poten-

tially interact with several different molecules, either simulta-

neously or asynchronously.

There are multiple sub-families of LRR domain types, each

with slightly different consensus amino acid motifs, but all share

the tendency to form a solenoid structure with approximately 20–

30 amino acids per repeat where each repeat forms one turn of

the helix (Figure 1A; an example of an LRR consensus motif is
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xxLxxLxxLxxLxLxxNxLxGxIP). The solenoid is curved so that a

convex and a concave face are created. The concave face is largely

composed of b-strands, and often forms the ligand binding site for

LRR domains [15]. Deviations from the repeat consensus can

result in intervening segments that interrupt adjacent solenoid

regions, providing structural flexibility to the LRR. An LRR

domain may be relatively brief (e.g. two or three repeats), or quite

long (30 repeats or more). The consensus residues (mostly leucine

or other hydrophobic amino acids) are usually buried in the core

of the solenoid, while residues at the variable positions are

predominantly solvent exposed (Figure 1A). The LRR structure

efficiently creates a large surface-to-volume ratio protein domain

that tolerates a wide variety of surface compositions, encoded in a

condensed genomic space [16].

LRRs play a central role in the receptors that mediate two

major branches of the plant immune system [17]. Many plant cell

surface receptors for microbe- or pathogen-associated molecular

pattern (MAMP/PAMP) molecules, which confer recognition of

conserved microbial molecular motifs, contain LRRs as the bulk

of their extracellular domain and a protein kinase intracellular

domain [18–20]. The transmembrane LRR-kinase family of

receptors is expansive in plants (over 200 different protein types

in Arabidopsis, over 400 in rice [21]), and their functions extend well

beyond immunity to include prominent roles in plant growth and

development pathways [22,23]. Plant MAMP receptors carry

clear structural and functional analogies to (but apparent evolu-

tionary independence from) animal MAMP receptors, the Toll-

like receptors (TLRs), which also contain LRR domains [24].

LRRs are also central to recognition specificity in the large, diverse

family of plant intracellular nucleotide binding (NB)-LRR proteins

known as resistance (or ‘‘R’’) proteins. These R proteins initiate

strong defense responses upon recognition of specific pathogen

effector molecules or upon recognition of a host protein alteration

caused by a specific pathogen effector [11]. Plant R proteins are

structurally similar to animal nucleotide-binding leucine-rich re-

peat (NLR) proteins that play significant recognition roles in the

mammalian immune response [25–28].

Two plant LRR-kinase MAMP receptors that have been a

particular focal point for research are ELONGATION FACTOR

TU (EF-Tu) RECEPTOR (EFR) and the flagellin receptor

FLAGELLIN-SENSING 2 (FLS2) [29–33]. FLS2 orthologs can

be found in a wide range of monocotyledonous and dicotyledon-

ous plant species, whereas EFR appears to be limited to the

mustard family Brassicaceae. FLS2 can be activated by flagellin or

by synthetic peptides that represent the highly conserved minimal

recognition domain of flagellin, such as the 22 amino-acid flg22

peptide [29]. Similarly, EFR responds to conserved peptides from

the recognized domain of bacterial EF-Tu, such as the elf18

peptide [32]. There is evidence that the LRR domains of these

proteins directly interact with MAMP ligands [32,34–36], but the

large size of their LRR domains (22 repeats for EFR, 28 for FLS2)

leaves open the possibility that these LRRs also mediate inter-

action with other ligands, co-receptor proteins and/or cofactors.

FLS2, EFR and other MAMP receptors can be significant barriers

to microbial infection [32,37–42]. Intriguingly, transgenic tomato

plants expressing Arabidopsis EFR are more resistant to the plant

pathogenic bacteria Ralstonia solanacearum and Xanthomonas campestris

pv. vesicatoria, implying that many of the mechanisms for down-

stream defense signaling from MAMP receptors are conserved

across diverse plant species [38,43].

Protein functional site prediction is already possible using a

number of computational methods, each of which has certain

advantages and limitations. Functional sites are often detectable as

the sets of amino acids that have been most conserved or diver-

sified among a set of homologous proteins [44–46]. Some com-

putational methods require only primary sequences to look for

conserved codons or amino acids within a sequence alignment,

such as database searching for protein motifs (e.g., [47]) or align-

ment with homologous sequences (e.g., CLUSTAL). In contrast,

positive/purifying selection analysis (e.g., Ka/Ks or dN/dS ratio;

[46]) looks for amino acids that have undergone selection, either

purifying or diversifying (positive), based on identification of

Figure 1. LRR structure and an outline of conservation
mapping procedure. (A) Left: a representative LRR domain (left), P.
vulgaris PGIP2, which forms the regular spiral pattern typical of LRRs.
Right: a single 24 amino acid repeat of the LRR, surrounded by circles
designating the residues of the LRR consensus amino acid sequence
(xxLxxLxxLxxLxLxxNxLxGxIP). Note that the consensus residue side
chains (orange) form the core of the protein, whereas the variable
residues (green) are solvent-exposed. (B) Schematic representation of
the conservation mapping procedure, using the example of PGIP1-4.
See Methods and Text S1 for a detailed description of the procedure.
doi:10.1371/journal.pone.0021614.g001
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non-neutral, selected substitutions at the nucleotide level among a

group of homologous sequences. However, the above methods do

not identify functional groupings of residues that are nearby in the

folded protein but dispersed in the primary amino acid sequence.

Some studies of positive selection on LRRs have manually approx-

imated structural proximity to improve their power (e.g., [48]).

Other computational approaches, such as Consurf [49], optimal

docking area (ODA) [50], and conserved functional group (CFG)

analysis [45], do use protein structural information obtained

experimentally (X-ray or NMR) or by homology modeling. CFG

and Consurf search homologous input sequences for conserved

groupings of amino acids on the surface of the folded protein.

ODA models desolvation energy, i.e. it searches for continuous

surface patches that undergo favorable energy change when

buried during a modeled protein-protein association; a low ODA

value indicates a location that is predicted to interact with a ligand

or another protein. These latter programs offer valuable para-

digms but are limited to proteins with a crystal structure or a

reliable homology model, and CFG and Consurf have constraints

related to handling of hydrophobic and/or repeat motif residues

that limit their efficacy for analysis of LRR domains.

In hundreds of important proteins, LRR domains contain the

ligand specificity region or other functional sites, and there is

significant interest in identification and manipulation of these sites.

In the present study we developed the Repeat Conservation

Mapping (RCM) program that predicts functional sites in LRR

domains by identifying, among a group of homologous LRR-

containing proteins, the patches of predicted spatially adjacent

residues on the surface of the LRR that exhibit the greatest

conservation or greatest divergence. The RCM method utilizes

linear amino acid sequences as input, along with existing

generalized LRR structure principles, to predict likely adjacency

of residues in the LRR. It then identifies regional conservation

scores for predicted surface residues based on conservation of that

residue and its proximal surface amino acids. We validate the

method using previously solved co-crystal structures for LRR with

ligand, and through discovery and in vivo validation of previously

unknown functional sites of the plant EFR and FLS2 MAMP

receptors, for which structures are not currently available. The

RCM program can be run using the publicly accessible web server

at http://www.plantpath.wisc.edu/RCM, and the source code is

openly available via a GNU general public license.

Methods

Repeat Conservation Mapping program
RCM analyses can be conducted at a publicly accessible web

interface served from a Linux-based virtual machine. The RCM

web site runs a set of linked php files that draw upon PHP, Perl,

HTML, Python and C scripts, including local implementations of

functions from ClustalW2 [51,52], LRRScan [53] and MATLAB

(The Mathworks, Inc., Natick, MA). The code is available under

GNU general public license v3; local installation is not

recommended for most end-users.

Figure 1B and the following briefly describe the method. The

linear amino acid sequences of two or more LRR domains are

aligned and compared, and a conservation score is determined for

each amino acid position. Characteristic properties of LRR do-

mains are then used to generate a generic super-helical structural

model of the LRR domain being queried, which places amino

acids in their likely relative locations to each other in a folded

protein. A sliding window analysis then determines a center-

weighted conservation score for all possible groups of adjacent

amino acids that are predicted to reside on the surface of the helix.

Typically a 565 matrix of 25 amino acids, spanning 5 LRR

repeats, is queried to derive each regional conservation score. A

colored heat-map of the result directs investigator attention to the

most conserved (or most divergent) regions. Alternative score-

weighting systems for the sliding window analysis are available to

users; adjustment of these values significantly impacts the resulting

conservation map. The default weighting values achieve a useful

balance between the excessive smoothing (loss of resolution) that

occurs with less center-weighting, and the loss of site identification

(similarity to the initially calculated individual residue conservation

scores) that occurs with greater center-weighting. Readers are

referred to a more detailed step-by-step description of conservation

mapping in Text S1.

Comparisons to other methods
For positive selection analysis, sequence alignment and phy-

logenetic trees were constructed using MEGA 4.0 [54]; informa-

tion from these trees were used to calculate positive selection using

the CODEML module in PAML [46]. Optimal docking analysis

(ODA) was implemented as described in [55]. The current web

module of Consurf was used [49].

Homology Modeling
The FLS2 homology model was obtained using the structure of

PGIP2 from Phaseolus vulgaris as a template (PDB ID 1OGQ)

[56]. Both proteins (as well as EFR) belong to the plant

extracellular LRR protein subfamily [1] characterized by the

same consensus sequence in the LRR domain, i.e. xxLxLxxNxLt/

sGxIPxxLxxLxxL. Furthermore, the LRR domain is capped at the

N-terminus and at the C-terminus by two small cysteine-rich

domains, which are also evolutionarily conserved among PGIP

and the RLK receptors FLS2 and EFR [57]. However, PGIP2

contains 10 LRRs matching the above consensus while FLS2 is

characterized by 28 complete repeats, hence four separate

alignments were manually prepared and used for homology

modeling. The N-terminal and first 9 LRR repeats of PGIP2 were

manually aligned to the N-terminal and first 9 LRR repeats of

FLS2. The PGIP LRR domain was separately aligned to FLS2

repeats 7–15 and 13–21. A final alignment encompassed FLS2

repeats 20–28 plus the C-terminal flanking region. These align-

ments were used, together with the relevant PGIP2 coordinates, to

obtain four independent partial models using Modeller, version

9.1 [58]. Twenty models were obtained from each alignment and

the lowest energy models were selected according to the Modeller

objective function. The four partial models obtained by this

strategy are partially overlapping with two or three LRRs in

common between consecutive ones. This allowed superposition

of the models in their overlapping regions and merging of

coordinates to obtain a single full-length model using the SSM

algorithm as implemented in the program COOT [59]. This

model was further energy minimized within Modeller to obtain a

final model that encompasses residues 1 to 744 of FLS2. The

geometrical quality of the model was very good as judged with

PROCHECK [60] with 98.1% of residues lying in allowed regions

of the Ramachandran plot, 1.2% in generously allowed regions

and only 0.6% (4 residues) in the non allowed regions. The EFR

LRR domain was aligned to FLS2 using ClustalW and the

alignment was manually adjusted, when necessary, to match the

plant extracellular LRR consensus sequence. An EFR homology

model, encompassing residues 1–576, was calculated and energy

minimized within Modeller using the FLS2 homology model as a

template. The final model has a very good geometry with 96.8%

residues in allowed regions of the Ramachandran plot, 2.4% in

Repeat Conservation Mapping
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generously allowed regions and 0.8% (four residues) in non-

allowed regions.

EFR and FLS2 Constructs
The protein coding sequence of Arabidopsis thaliana EFR up to

but not including the stop codon, along with native promoter

sequence (1091 bp upstream of the start codon = 1074 bp

upstream of the transcription start site), was amplified from Col-

0 accession genomic DNA using the primers (CACCGGGT-

TTTTGTTTATTCAAAGATGGG and CATAGTATGCATG-

TCCGTATTTAACATCC) and cloned into pENTR/D-TOPO

(Invitrogen). Mutations to EFR were made in this construct via

PCR as in [35], using mutagenic primers and a high-fidelity DNA

polymerase (typically Pfu Ultra II (Stratagene)), followed by DpnI

treatment to digest template and transformation of the linear

product into E. coli. Mutations were verified by DNA sequencing.

Site-directed randomizing mutagenesis was performed as de-

scribed in [35] using mutagenic ,30 nt PCR primers in which

only one codon was mutagenized using the degenerate codon

NNB. Similarly, double-alanine mutants were created with a

mutagenic primer of ,30 nt with two selected codons mutated to

alanine. To clone BrEFR1, primers (CACCATGAAGCCGT-

TTCTTTCAATTGCTCTACTCATG and CATTGTATGCA-

TGTCCGCGCTTAACATCC) were designed to amplify the full-

length best hit of Arabidopsis EFR, minus stop codon for fusion to

C-terminal tag, for insertion into pENTR/D-TOPO. To clone

EFR from other species, genomic DNA was extracted and the EFR

LRR-encoding domain was amplified using primers based on the

EFR sequences of Arabidopsis and Brassica rapa. Restriction enzyme

sites (SbfI and FseI) flanking the LRR domain were engineered by

site-directed mutagenesis into the Arabidopsis EFR promoter+cod-

ing region in the pENTR/D-TOPO vector. The Arabidopsis EFR

LRR-encoding domain was then cut out of the vector. The LRR-

encoding domains of the Brassicaceae EFR genes were amplified

using species-specific primers with the restriction enzyme sites at

the 59-ends and cloned into TOPO vectors, then cut out of the

TOPO vectors and ligated into the Arabidopsis EFR gene lacking

the LRR domain. Sequences in pENTR/D-TOPO were moved,

by LR Clonase II reaction (Invitrogen), into the Gateway vector

pGWB13 (if using native EFR promoter) or pGWB14 (if using

CaMV 35S promoter), fusing the EFR amino acid sequence to a

C-terminal HA tag [61]. Constructs were then moved into

Agrobacerium tumefaciens GV3101 by electroporation and used to

transform homozygous Arabidopsis efr2 plants (SALK 068675c)

using the floral dip method or for transient expression in Nicotiana

benthamiana via Agrobacterium infiltration. Site-directed randomizing

mutagenesis of FLS2 was as described in [35]. Constructs were

transformed into homozygous fls2-101 plants. All new DNA and

derived amino acid sequences are deposited at Genbank under

accession numbers JN002095-JN002103.

Receptor function assays
Seedling growth inhibition assays were performed as described

[35], with appropriate selection for transgenic seedlings prior to

use. ROS assays were performed on leaf discs taken from 4- to 8-

week old transgenic Arabidopsis or from 4- to 6-week old N.

benthamiana leaves infiltrated two days prior with A. tumefaciens

containing an EFR, FLS2 or corresponding empty vector con-

struct. Leaf discs were floated on 1% DMSO overnight and then

treated with 1 mM peptide (or no peptide in the case of mock) in

the presence of 1 mg/mL luminol and 1 mg/mL horseradish

peroxidase. Luminescence was measured on a Synergy HT

Microplate Reader (Bio-Tek) for 30 minutes following addition

of peptide [32,62,63]. For callose deposition assays, seedlings were

grown for 5 days on 0.56MS agar and then transferred to liquid

0.56 MS (500 ml per well in 24-well plate) with elf18 or flg22

peptide at the indicated concentrations. After 24 hours in liquid,

seedlings were fixed with 2% formaldehyde/5% acetic acid/60%

ethanol (FAA), cleared overnight in 95% ethanol, stained with

0.01% aniline blue and viewed under an epifluorescence micro-

scope to visualize callose deposits [62,63]. For receptor protein

detection, six to eight 3-week old seedlings were ground in 26SDS

buffer (2 mL buffer per g tissue), boiled, and centrifuged to remove

particulates. 50 ml per sample was separated by SDS-PAGE,

blotted onto a PVDF membrane, and detected using an anti-HA

antibody conjugated to horseradish peroxidase (Roche), made

visible using the ECL Plus Kit (Amersham).

Results

Rationale and description of LRR conservation mapping
approach

LRRs have a regular structure in which a single repeat forms

one turn within the overall super-helical structure. Across

numerous solved LRR structures, the LRR consensus residues

form the buried core of this configuration (e.g., Figure 1A) [1].

Because of the regularity of these LRR structures, two assumptions

can be made for conservation mapping: 1) consensus residues are

not on the protein surface; and 2) the repetitive structure of LRRs

allows prediction of relative amino acid positions in the tertiary

structure without requiring a crystal structure or a detailed

homology model of the protein in question. Assumption 1 allows

elimination of the highly conserved but functionally less revealing

consensus residues from the analysis; assumption 2 allows pre-

diction and assessment of spatially adjacent groups of surface

residues that are not adjacent in the primary amino acid sequence.

Following this rationale, we devised and implemented Repeat

Conservation Mapping (RCM), a set of algorithms to identify

predicted functional sites of LRR domains. RCM accomplishes

this by identifying the extent of conservation of different amino

acid patches on the predicted surface of LRR domains (see also

program description in Text S1).

As an example, the lower-right element of Figure 1B shows

RCM output for an extensively studied plant LRR domain-

containing protein, POLYGALACTURONASE INHIBITOR

PROTEIN (PGIP). PGIP was the first LRR-containing plant

protein to have its structure solved [56]. In bean (Phaseolis vulgaris),

there are four PGIPs, designated PGIP1-4, which have varied but

overlapping specificities for different polygalacturonases (PGs)

[64]. The RCM map for these four paralogs highlights several

divergent and conserved patches (Figure 1B). Interestingly, the

three positions in PvPGIP2 that, when mutated to alanine, have a

significant negative impact on inhibitor activity [55], are all

located in divergent patches identified by conservation mapping,

perhaps indicating that these residues are also responsible for

differences in receptor specificity. Indeed, a single amino acid that

can switch specificity between PGIP1 and PGIP2 is also found in

this divergent region [65].

Validation: Conservation mapping highlights functionally
significant regions of LRR domains

RCM highlights, among a group of homologous proteins,

regions that are highly conserved or highly divergent on the

surface of the LRR domain. To verify that RCM identifies

significant functional sites, we utilized RCM to analyze all proteins

in PDB that, as of October 2010, had a structure for an LRR

domain interacting with another protein or a ligand, and for

which at least one functional homolog could be identified. Two

Repeat Conservation Mapping
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examples, RIBONUCLEASE INHIBITOR (RI), and TRANS-

PORT INHIBITOR-RESPONSIVE 1 (TIR1) are discussed here;

the maps and analyses of the other nine protein groups are

provided as Figure S1. For all of these RCM analyses, proteins

were compared to at least three high-scoring homologs identified

through BLAST and/or literature searches. An amino acid was

considered to be interacting with ligand if identified in the article(s)

accompanying the crystal structure(s) [66–76].

RI is one of the most extensively studied LRR-containing

proteins, with many reported crystal structures and mutagenesis

studies (for a review, see [77]). RI prevents ribonucleases (RNases)

from acting by binding to their catalytic domains with femtomo-

lar affinities. There are two solved structures of RI bound to

ribonucleases, human RI complexed with angiogenin, and porcine

RI complexed with RNaseA. Binding of angiogenin also induced

homodimerization of RI. These two RIs, along with RI from rat

and mouse, were used to generate the conservation map in

Figure 2A. Residues involved in any of the three interactions (hRI-

angiogenin, sRI-RNAse A, hRI-hRI) are highlighted in Figure 2A

with asterisks. Although many ligand contact sites could be seen in

the crystal structure, kinetic analyes of mutants in these regions

demonstrated that mutation of the locations identified by RCM as

most conserved, that is, the residues in the b-strand, b-turn region

of LRRs 10, 12, and 14–16, have the largest impact on ligand

binding [77].

TIR1 is an auxin receptor in Arabidopsis and other plants; it

ubiquitinates target proteins when it binds auxin hormones in a

pocket formed by the LRR domain of the protein and the cofactor

inositol-6 phosphate (InsP6). To investigate recognition of auxin by

these receptors, we constructed a conservation map of Arabidopsis

TIR1 with its five paralogs. In this case, the five Arabidopsis

paralogs (AUXIN SIGNALNG F-BOX (AFB) 1–5) have all been

implicated in auxin signaling [78–81]. Again, RCM successfully

highlighted two patches on the surface of the LRR (Figure 2B):

one where TIR1 binds auxin, and a second site where TIR1 binds

auxin as well as the cofactor InsP6 [68]. For comparison, it can be

valuable to see the individual residue conservation scores for the

RI and TIR1 protein sets (Figure S2), which are obtained after

alignment of primary amino acid sequences, but before sliding-

window calculation of regional conservation scores that are shown

in Figure 2. Visual inspection of the RCM maps for the other

validation proteins (Figure S1) again indicates successful identifi-

cation by RCM of sites involved in LRR+ligand interactions, in

follicle stimulating hormone receptor, glycoprotein 1b alpha,

Skp2, Slit, and TLR3. Poor success was obtained for TLR1,

TLR2, TLR4 and TLR6. However, the ligand specificity is not

known for many of the homolog sequences that were used, and

they may not have been appropriate proteins to compare via

RCM (see Discussion).

Continuing with the above validation, combined data were

analyzed for all conservation maps generated for the above

proteins with known LRR+ligand structures. The regional

conservation scores for residue positions known to be involved in

LRR+ligand interactions were significantly higher than the set of

all other residue scores in each RCM map generated (Student’s T-

test, p-value 0.005 or less). We also ranked the scores for each map

into deciles and then determined the distribution of regional

conservation scores, and individual residue conservation scores, for

known LRR+ligand contact positions. Despite the presence of

many potentially misleading TLR comparisons in the dataset, the

distribution of scores for LRR+ligand interaction residues is

weighted towards the highest ten percent of the RCM scores on

their respective maps (Figure 3). Importantly, the proportion of

scores in this decile increases when weighted pairwise comparisons

Figure 2. Validation of RCM by mapping LRR domains for
which there are solved crystal structures with ligand. For all
maps, each row represents a single repeat of the LRR, with each colored
box representing a solvent exposed (non-consensus) amino acid
position. Each column corresponds to a position within the LRR
consensus sequence, as denoted at the top of each map. The color in
each box reports the center-weighted regional conservation score for
the 565 set of boxes that centers on that box (see text for details); dark
red indicates the most conserved regions and blue indicates the most
divergent regions (see scale bar in Fig. 1). Bold black vertical lines
delineate the five residues in each row that comprise the b-strand, b-
turn region (the convex face of the LRR domain). White asterisks were
added after RCM and indicate amino acid positions that are LRR-ligand
contact points in solved crystal structures. (A) RCM output for
Ribonuclease inhibitor (RI) from human, rat, mouse and pig ribonucle-
ase inhibitor (RI) LRRs. (B) RCM output for TIR1 and AFB1-5 (auxin
receptors) from Arabidopsis.
doi:10.1371/journal.pone.0021614.g002

Repeat Conservation Mapping
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are utilized (see Step 4 in Methods), and the proportion increases

further when regional conservation scores are used (from 18% to

20% to 25% of interacting residues, respectively; Figure 3). 45% of

all interacting residues appeared in the top 20% of RCM scores in

this analysis. The remaining high-scoring sites identified by RCM

may be involved in other functional processes that are not detected

in the available LRR+ligand crystal structures, such as interaction

with other ligands, cofactors or co-receptor proteins (see Dis-

cussion). Comparison of homologous proteins with diversified

functions is also addressed below.

Mutations of AtEFR at conserved locations identified by
RCM often disrupt receptor function

RCM was used as a de novo discovery tool in experiments on

EFR, the EF-Tu receptor of plants, for which there is no known

structure or ligand binding site. To identify an EFR homolog for

comparison, the derived amino acid sequence of Arabidopsis EFR

was used with BLASTP to query all publicly available sequences

from the Brassica Genome Gateway as of April 2009, and two

high-scoring matches from Brassica rapa were identified. One of

these sequences was cloned and then transiently expressed in

Nicotiana benthamiana leaf mesophyll tissues, which do not otherwise

respond to the EF-Tu-based elf18 peptide [32]. The defense

mechanisms initiated by EFR or FLS2 include production of

reactive oxygen species, release of other directly antimicrobial

compounds, and production of callose and lignin as part of a cell

wall strengthening response that limits pathogen penetration [82].

Plant seedlings undergoing chronic defense activation display

inhibition of growth after multiple days of exposure to a recog-

nized MAMP; this is a sensitive and widely used assay for FLS2 or

EFR activation [31,32]. The cloned Brassica rapa EFR homolog,

designated BrEFR1, conferred recognition of 1 uM elf18 in an

ROS assay (Figure S3). BrEFR1 subsequently was shown to

complement an Arabidopsis efr2 mutant, rescuing the ability of the

plants to respond to elf18 in ROS and seedling growth inhibition

assays (Figure S3 and data not shown).

RCM was used to create a conservation map of AtEFR with

BrEFR1 (Figure 4A). The map highlights several small patches of

conservation on the surface of EFR, the highest scoring (most

conserved) of which appear on the concave face of the receptor.

The convex face also contains patches of conservation (the third

and fourth columns of Figure 4A). There is a large patch of

divergence in LRRs 3 through 10.

Hypothesizing that the ortholog map predicts functionally

significant locations, we constructed a series of double-alanine

mutants within EFR along the predicted concave face (also known

as the b-strand, b-turn region [1]). For each construct, we changed

two of the five variable residues within a single repeat’s b-strand,

b-turn region to alanine. Alleles were made that mutate sites

of conservation, or as controls, sites lacking conservation. The

double-alanine mutants were tested in stable transgenic Arabidopsis

efr2 plants. Of the fourteen constructs tested in a seedling growth

inhibition assay, four of them had no detectable response to

peptide, and four constructs had a response that was weaker than a

wild-type response (Figure 5). Seven of these mutants were in

conserved locations on the RCM map made from the EFR

orthologs, including each of the four conserved patches of the b-

strand, b-turn region (Figures 4, 5). The other two alleles with

mutations in conserved locations did not detectably alter function.

Importantly, only one of the five mutants in any of the poorly

conserved regions resulted in a discernible difference in receptor

function, with response slightly less than a wild-type receptor

(Figures 4, 5). These results were further supported by ROS assays

in N. benthamiana (not shown) and ROS and callose assays in

Arabidopsis (Figure S4). All of the EFR double-alanine mutant

proteins, whether functional or not, were still present at functional

levels in plants, as detected by Western blot (Figure S5).

Conservation mapping of EFR and its paralogs reveals a
divergent b-strand, b-turn region

Use of paralogs rather than orthologs was further examined.

The four Arabidopsis paralogs most similar to EFR were identified

by BLAST using the Arabidopsis EFR LRR sequence to query the

Arabidopsis genome. An RCM map of EFR and these paralogs was

then generated (Figure 4B). Some areas are generally conserved

across these paralogs, in particular along one ‘shoulder’ of the

convex face of the LRR that is also conserved among EFR

orthologs. However, a large portion of the concave face of

the LRR region is highly divergent in this paralog map. We

hypothesized that the divergent b-strand, b-turn region is

responsible for recognizing distinct ligands in these receptors,

since 1) the concave face of LRR regions are most often implicated

in ligand binding [15]; and 2) knock-out of EFR results in a plant

completely insensitive to elf18 [32], implying that these EFR

paralogs are not capable of EF-Tu recognition. Based on this map,

we performed site-directed randomizing mutagenesis on EFR to

create libraries of concave face mutations at amino acid positions

that are highly divergent (predicted to impact function), or

conserved (also predicted to impact function), or neither highly

conserved nor highly divergent (not predicted to impact function).

Each allele library contains different mutations at a single position.

These libraries were introduced into Arabidopsis efr2 plants that

were then tested for response to 100 nM elf18 in a seedling growth

inhibition assay. Most libraries were significantly impacted in their

ability to recognize 100 nM elf18 (as compared to a wild-type

receptor response) regardless of level of conservation, but all

libraries still had several functional clones (Figure 6). The most

significantly impacted library (LRR 2.3 (Asn 103)) was also

identified in the double-alanine mutagenesis and is conserved in

both RCM analyses performed (Figure 4). Overall, mutagenesis of

Figure 3. Residues involved in intramolecular interactions
receive high scores in conservation mapping. For each map in
Figures 2 and S1 (eleven protein families), all scores were arranged in
descending order and then divided into deciles. Then, across all maps,
the number of occurrences of residue positions marked by asterisks
(LRR+ligand contact points) were tallied for each decile. Histogram
shows the frequency with which three different types of scores fell into
a particular decile. Score types are raw average pairwise BLOSUM65
score (grey), weighted average pairwise BLOSUM65 scores (see ‘‘Step 4’’
in Methods) prior to adjustment based on nearby amino acids (white),
and regional conservation score that serves as final RCM output (black).
Note that a subset of these protein comparisons involved homologs
with unclear and possibly divergent rather than fully overlapping
functions, in which case LRR-ligand contact points might be predicted
to score as divergent rather than as conserved (see text).
doi:10.1371/journal.pone.0021614.g003
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regions conserved among EFR orthologs often broke function

while mutagenesis of regions divergent among EFR paralogs had a

less severe impact.

Conservation mapping highlights an additional region of
functional significance in AtFLS2

RCM was further tested as a discovery tool through work with a

second protein, FLS2. FLS2 has been deeply studied but there is

no solved structure or definitively determined extracellular ligand

binding site [33]. To identify additional important regions of the

FLS2 LRR we created various RCM maps of AtFLS2, for

example in comparison to eight Brassicaceae orthologs from plants

that respond to flg22 (Figure 7A; see also [35]). Within the b-

strand/b-turn region there were two main areas of conservation.

One of these was located at LRRs 9–13, in agreement with

previous findings that this is an important region for flg22 binding

and recognition [35]. Another conserved area was persistently

observed at LRRs 22–26. To investigate their role in flg22

perception, five solvent-exposed residues in this region were

mutagenized by site-directed randomizing mutagenesis. These

libraries were used to transform mutant Arabidopsis fls2-101 plants

that were then tested for response to flg22 peptide in a seedling

growth inhibition assay. Alteration of Y629 significantly impacted

flg22 responsiveness, and alteration of S633 also caused a

detectable depletion of FLS2 activity (Figure 7B).

RCM using many or few EFR and FLS2 orthologs, from
closely or distantly related species

Changes in RCM output for a given protein, in response to

varied types of input, was further examined after isolation of

additional EFR orthologs from other Brassicaceae. EFR homologs

were isolated by PCR from plant accessions that exhibited a

response to elf18. A function in EF-Tu sensing was confirmed for

nine homologous LRR domains (one each from Brassica aucheri,

Brassica rapa, Brassica napus, Eruca sativa, Biscutella auriculata and two

EFR sequences each from Enarthrocarpus arcuatus and Erysimum

raulinii), using ROS assays for responsiveness to elf18 after

transient expression in N. benthamiana leaves (data not shown).

These confirmed homologs and the EFR sequence from Arabidopsis

thaliana Col-0 were analyzed by RCM. The resulting map

(Figure 8A) is notably similar to the map generated with only

two EFR sequences (Figure 4). However, the map generated with

ten sequences more clearly delineates the most consistently

conserved clusters, which included the concave face regions

confirmed to be required for EFR function (Figures 4, 5, 6).

Additional RCM maps were generated using smaller subsets of

these EFR proteins based on the overall relatedness of different

Brassicaceae species [83]. One analysis used EFR sequences from

two of the most distantly related species of our sample set, E. sativa

and E. raulinii (Figure 8B), while another analysis used two different

EFR sequences obtained from a single E. raulinii plant (Figure 8C).

Figure 4. Conservation mapping of EFR. RCM maps of LRR domains (as described in Figure 2) depicting: (A) Conservation of AtEFR and a
Brassica rapa homolog shown to have EFR activity. (B) Conservation mapping of AtEFR and its four most closely related Arabidopsis EFR paralogs,
which fail to confer elf18 recognition in an Arabidopsis efr2 mutant. The pairs of X symbols mark sites of double-alanine mutations, and O symbols
mark sites of site-directed randomizing mutagenesis. The asterisks mark predicted sites of N-glycosylation as reported in [89]. Both (A) and (B) show
the same set of X, O and * symbols. Based on data from Figures 5 and 6 and [89], symbols are white if the mutation disrupts EFR function, black if it
does not, and grey for a partial/intermediate impact (less responsive than 95% of positive controls transformed with wild-type EFR but more
responsive than 95% of empty-vector efr2 negative controls; or statistically different from both wild-type and empty vector controls).
doi:10.1371/journal.pone.0021614.g004
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A similar exercise was performed using FLS2 sequences from

seven closely or distantly related Brassicaceae species (Figure S6).

The maps of functionally similar LRRs from very closely related

sequences (Figures 8 and S6) emphasize amino acid clusters

containing less common amino acid residues that score highly in

Blosum matrices, whether or not they reside at functional sites.

The maps made from seven or ten functionally confirmed

sequences more reliably emphasize evolutionary conservation of

residue clusters. These latter maps also offer better resolution of

conserved and diversified areas, but maps made from just two

sequences from more distantly related species were sufficient to

highlight the main features also present on the maps made from

larger numbers of proteins (Figures 8 and S6, see also Figure 4). As

with the map of Arabidopsis EFR and its paralogs, these ortholog

maps also highlight regions outside of the concave face that have

been conserved, presumably due to their functional significance.

Comparison of conservation mapping to other
computational methods

Other methods that predict important amino acid residues

within a protein, beyond the BLAST or Pfam-like methods that

identify conserved motifs in the primary sequence, include

positive/purifying selection analysis [46], optimal docking area

(ODA) calculation [55], and Consurf [49]. Because these three

approaches employ different criteria for identifying functionally

significant residues, we searched for important residues of EFR,

FLS2 and PGIP using these three methods and compared their

results to those generated by RCM (Figures 9 and S7). When a

method required multiple sequences as input, we used the same

sequences for each analysis (the Brassicaceae orthologs described

above for EFR and FLS2, or the Fabaceae PGIP sequences from

[55]). Homology models of EFR and FLS2 were created using the

crystal structure of PGIP as template [56]. To allow comparison,

the RCM results of Figure 4A are also presented on a homology

model of EFR (Figure 9D).

As previously reported, integration of positive selection analysis

and ODA identified several residues on the surface of PGIP that

were important for specificity toward different PG’s [55].

Unsurprisingly, most surface residues of EFR and FLS2, when

compared to functional Brassicacea orthologs, were under

purifying selection (2log(v).0). Only two residues of the LRR

of EFR showed evidence of positive selection, neither of which is

predicted to be on the concave face of the receptor (although

both are on the surface of the protein) (Figure 9A). Similarly, two

residues of the LRR of FLS2 are under positive selection,

predicted to be on the side of the LRR and solvent-exposed

(Figure S7).

Using ODA, a patch of potential ligand binding residues for

EFR was identified on the b-strand, b-turn region of LRRs 17–18

(Figure 9B), overlapping with a region strongly identified by RCM.

Two patches of predicted binding sites were detected for FLS2: a

patch three to five surface residues wide in LRRs 1–5 occurring

partially on the convex face and partially on the side of the LRR;

and a patch primarily in the b-strand region of LRRs 10–15

(Figure S7). This second patch was previously shown to be

important for flg22 recognition [35]. Consurf analysis of EFR

highlighted many conserved areas; the most highly conserved

residues were found in the second and third columns of the surface

of the repeats as shown in Figure 4, and in the b-strand b-turn

region (Figure 9C). Because the similarity of the Brassicacea FLS2

sequences is high (greater than 80%), Consurf ranked almost all

residues as either highly conserved or highly divergent (Figure S7).

Figure 5. Functional testing of double-alanine mutagenesis
alleles of EFR reveals that function-blocking mutations map to
sites that RCM scores as conserved sites. A series of EFR alleles
that each encode two alanine mutations within the b-strand/b-turn
region of a single repeat (locations shown in Figure 4) were introduced
into efr2 plants and transgenic T1 seedlings were tested for their ability
to respond to 100 nM elf18 in a seedling growth inhibition assay. Y-axis:
Average weight of seedlings (+/2 standard error), as compared to a no-
peptide control for each line, for at least three replicate experiments
with at least eight transgenic seedlings per genotype per treatment.
Controls are weight (mean +/2 standard error) of efr2 seedlings
transformed with wild-type EFR (WT, lower grey band) or empty vector
(EV, upper grey band), as determined within the same experiments. X-
axis: The average RCM regional conservation score for the two positions
mutated in any given construct (x-axis bar ends for each symbol are at
the RCM scores for the two positions mutated in each construct).
doi:10.1371/journal.pone.0021614.g005

Figure 6. Site-directed, randomizing mutagenesis of EFR sites
that are divergent in EFR paralogs reveals many partial-impact
LRR sites. Seedling growth inhibition assays for EFR function were
performed as in Figure 5 except that seedlings were treated with 1 uM
elf18. A minimum of 65 T1 seedlings were tested for each allele library.
Plants were classified as elf18-sensitive if their response was in the
range of 95% of positive controls transformed with wild-type EFR, as
elf18-insensitive if response was in the range of 95% of negative
controls transformed with empty vector, or as partially sensitive if they
fell within both ranges. WT: wild-type; EV: empty vector; allele number
codes reflect the repeat number and the b-strand/b-turn position of the
mutagenized amino acid (for example, 2.3 is the third x position of
LxxLxLxxN in the second repeat), and parentheses enclose the amino
acid number and letter.
doi:10.1371/journal.pone.0021614.g006
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To investigate overlap between RCM output and outputs from

the other computational methods, we looked for a correlation

between our scoring method and positive selection analysis, ODA,

and Consurf analysis (Figure 10). No strong correlation between

any of the three computational methods and RCM was observed

(R2,0.80). However, all methods could identify important func-

tional residues. T-tests for differences between the set of scores for

residues tested by mutation in which function was disrupted

(Figure 10, black symbols), in comparison to the scores for residues

for which function was retained after mutation (Figure 10, white

symbols), revealed significant differences (p,0.05) for RCM,

ODA, Consurf and positive selection analyses. However, of all the

methods, RCM had the most significant difference (p,.0001). The

ability of RCM to perform at least as well as other contemporary,

well-accepted computational methods, in conjunction with its need

for only two homologous sequences and no homology model,

highlights the utility of this method.

Discussion

The RCM method identifies regions on the predicted surface of

LRR domains that have been conserved over the course of

evolution. Conserved regions on the surface of folded proteins

often correspond to key functional sites such as ligand binding sites

or enzyme catalytic sites [44,45]. In many cases where solved

LRR+ligand crystal structures and appropriate homologs were

available, RCM correctly identified the ligand binding regions

of LRR domains. RCM also enabled discovery of previously un-

known functional sites on the surface of EFR and FLS2. A strong

trend was observed when RCM was used to direct mutational

studies: significant impacts on function were frequently observed

for mutations in regions that RCM predicted as conserved, while

impacts were rare for mutations in non-conserved regions. This

demonstrates the utility of RCM for de novo prediction of functional

sites.

The RCM analyses of proteins for which there are LRR+ligand

crystal structures demonstrated that conservation mapping can

work for orthologs or paralogs, as long as they share similar

functions. For example, creating a conservation map of RI or-

thologs highlighted functionally important regions previously

demonstrated to be important for common function among these

proteins. Mapping TIR1 and its Arabidopsis AFB1-5 paralogs, as

well as PGIP1-4, demonstrated the utility of RCM for compar-

isons of functionally related paralogs. TIR1 functional sites again

mapped to conserved regions of the protein. Irregularities in an

LRR domain must be considered when generating and interpret-

ing the results of RCM maps. Still, RCM performed well over

irregular loop regions. In TIR1, for example, a loop region in the

second LRR is involved in binding auxin, and RCM correctly

identified this region as a functional site.

In contrast to comparison of orthologs, functionally important

sites of PGIP could be seen in divergent regions highlighted by the

program, as might be expected since PGIPs display varied

specificity and inhibition mechanisms towards different polygalac-

turonases [84,85]. This reinforces the point that careful choice of

input sequences is crucial to gaining meaningful output data. It

will be interesting in the future to map plant NB-LRR proteins

that exhibit direct recognition of changing pathogen ligands,

where the most divergent LRR sites might be predicted to be the

sites of ligand recognition, and to compare these results to those

obtained using Ka/Ks (positive selection) analyses (e.g., [86,87]).

Although it was encouraging that 45% of all interaction residues

from LRR+ligand structures appeared in the top 20% of RCM

scores, some interaction residues received low conservation scores

Figure 7. Site-directed, randomizing mutagenesis of five FLS2
residues in a region predicted by RCM to be functional
identifies functional sites. (A) RCM map of eight Brassicaceae FLS2
orthologs. (B) Response to flg22 in T1 seedlings carrying FLS2 mutagenized
at sites predicted by RCM. Each library represents a pool of fls2-101
seedlings, each with one FLS2 construct carrying a random mutation at the
position indicated. WT: wild-type; EV: empty vector; allele numbers as in
Figure 6, and parentheses enclose the amino acid number and letter
(indexed both by amino acid number and LRR position). Seedlings were
scored as sensitive, insensitive, or partially sensitive to 1 uM flg22 in a
seedling growth inhibition assay by comparison to 95% confidence
intervals for data from fls2-101 plants transformed with a wild-type FLS2 or
empty vector control, assayed on the same day. At least 65 plants per library
were tested over 3–4 independent experiments, and the results are pooled.
doi:10.1371/journal.pone.0021614.g007
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in RCM, indicating that these positions are not conserved. These

amino acids could be responsible for differences in specificity of the

compared proteins rather than any shared activity. Even in cases

where two related proteins have extremely similar functions, some

variable residues are to be expected at functional sites as these

could be responsible for fine-tuning of receptor function, such as

through ligand interaction kinetics. As a separate issue, there were

many residues that scored highly in RCM that did not interact

with ligand in the available crystal structure. While these could be

false positives, many of them are likely responsible for functions

not detectable in the crystal structure (i.e., interaction with

molecules not present in the crystal structure). The regions

highlighted by RCM but not matching known LRR+ligand

interaction sites are intriguing targets for future study.

In LRR domains, disruption of single solvent-exposed residues

very frequently does not disrupt function (e.g., [35,88]). We were

pleased to find seven different double-alanine mutants of EFR that

were each severely disrupted in function when compared to a wild-

type receptor. These mutants were in four distinct conserved

regions on the surface of EFR, one of which overlaps with a region

identified by [36] as important for EFR function. A full-length

protein can be detected for these different EFR LRR mutation

alleles (Figure S5), but that leaves many other possible activities

that could be disrupted. Some of these patches may fold together

to form a shared ligand-binding domain, but alternatively, three of

the four sites may be involved in other processes such as receptor

dimerization, interaction with co-receptors, or protein localization.

Experiments are in progress to investigate the functions that are

disrupted when these different regions are mutated. One

prediction is that different function-blocking mutations in the

same region (such as in the concave face of LRRs 11–12, or LRRs

16–17) will cause the same type of functional disruption.

Interestingly, although seven of the nine double-alanine mutants

made in conserved EFR regions disrupted function, two of the

mutants behaved in a manner identical to wild-type. This demon-

strates that not all residues in a conserved region are essential for

function. It is important to note that the score placed at any

residue position is a regional conservation score for a 565 window,

and may be elevated due to the presence of multiple conserved

residues surrounding a relatively less conserved center residue.

Examination of the single-residue conservation scores (as in Figure

S2) may help to identify the most significant residues in a

conserved region. Alternatively, the conserved regions not func-

tionally disrupted by mutations may be functionally important in

ways that would be not detected using the ligand that we utilized.

As a third option, it is also possible that RCM detects a certain

amount of ‘noise’ that represents relatively unselected stochastic

conservation.

Prediction of functionally significant EFR sites was originally

performed with only two sequences. When we identified a further

seven functional orthologs of EFR and created a conservation map

with these additional sequences, the same sites were identified,

probably with more precision. Use of two sequences could be

misleading when the two sequences are very similar (see also the

FLS2 maps of Figure S6). Additional sequences may be a means of

increasing the power or reliability of RCM, but even a pairwise

comparison can be informative.

We chose to focus on the b-strand, b-turn region of EFR

because of the propensity of ligand binding sites to occur in this

region [15]. However, in a few cases crystal structures have

identified important residues outside the concave face of the

protein, such as in the case of TLR3. The regions outside the

concave face that were highlighted by the present conservation

mapping effort may also be important for receptor function. For

example, [89] recently identified a site of glycosylation, N143, on

the convex face of the LRR of EFR that, when mutated, results in

a severely impaired receptor. This residue occurs in the fourth

repeat within the large conserved patch identified in both the

ortholog and paralog conservation maps of EFR (Figure 4).

We were surprised that the most divergent region RCM

identified among related but functionally distinct EFR paralogs,

centered on the concave face of the fifth through ninth repeats,

contained residues with an intermediate rather than a strong

impact elf18 perception (Figure 4B and Figure 6). We infer that

these paralogs are functionally distinct from EFR because none of

the four paralogs confer elf18 recognition when they remain wild-

type in an efr2 mutant. This failure to see a strong impact on EFR

function, when testing many of the site-directed random mutations

of single residues in this most divergent region, may have occurred

because the divergent sites we tested are more important for the

gain of function of one or more of the other paralogs while being

relatively unimportant for the responsiveness of EFR to EF-Tu. It

Figure 8. Conservation mapping using different EFR ortholog sets. (A) RCM map for ten Brassicaceae EFR orthologs. All sequences were
confirmed as functional orthologs. (B) RCM map of two EFR orthologs, from distantly related Eruca sativa and Erysimum raulinii. (C) RCM map of two
EFR orthologs, both from Erysimum raulinii. Maps are as described in Figure 2.
doi:10.1371/journal.pone.0021614.g008
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is equally possible that these divergent regions carry many residues

that each make only modest contributions to elf18 recognition,

with tolerance for alternative amino acid side chains. Alternatively,

as was discussed for the double-alanine mutations, insignificant

residues within functional regions may have been chosen for

testing in our non-exhaustive mutational screen, or it may be

unselected chance that the LRRs of EFR and its paralogs have

diverged in this area. If these regions are under no substantial

selective pressure one might expect that they would show

intermediate coloration in the RCM image rather than deep

blue. The deep blue sites on the map of Figure 4B are in fact quite

diverse; the set of five EFR paralogs carried at least three different

amino acids at most of the mutated positions, and in many cases

five. As a separate matter, in the future it will be interesting to test

the large conserved region that occurs on the convex face of the

LRR region, especially since this region is conserved among both

orthologs and paralogs of EFR.

Repeat conservation mapping offers advantages over other

methods that could be used to identify functional regions. RCM

only requires two homologous sequences to compare, whereas

positive selection analysis and Consurf are best done with at least

seven sequences [46,49]. Most methods that utilize information

about the spatial proximity of residues in a folded protein, such as

ODA, CFG and Consurf, require a solved crystal structure or a

homology model. However, LRR domains can be very challeng-

ing to crystallize, and generation of a valid homology model is also

highly challenging. The validation experiments conducted with

RCM suggest that use of a generic LRR structural model with

removal of consensus residues is sufficient to successfully predict

areas of conservation or divergence.

There were significant instances of overlap in the functional

regions predicted by ODA and RCM. However, the two methods

rely on very different concepts and they also identified non-

overlapping regions in response to the same input data. This

included functionally confirmed regions such as the LRR11 region

of EFR and the LRR 23 region of FLS2 that ODA did not

identify. Consurf was not highly informative when used with our

homology-modeled FLS2 or EFR (Figures 9 and S7), possibly

because of the proximity of many LRR consensus sequence

residues near the LRR surface. The CFG program, while

previously shown by us to be useful for some parts of LRRs

[35], is not optimal because it removes hydrophobic residues from

consideration even if they are on the protein surface. CFG also

takes into account residues that are in the consensus of many

LRRs, such as the N and P residues that are largely buried and

highly conserved for structural reasons rather than driving

functional differences between LRRs. By assessing variable-posi-

tion rather than consensus-position residues of the LRR, RCM

may benefit from a focus on the residues that are most likely to

Figure 9. Analysis of EFR and orthologs by other computa-
tional methods. Results displayed on a homology model for (A) PAML
positive/purifying selection analysis, (B) ODA analysis, (C) Consurf, and

(D) RCM. For (A), residues undergoing positive selection (PP..95 for at
least one model) are highlighted in yellow. In (B), ODA exclusively
utilized the homology model to make its functional predictions. For
Consurf (C), derived amino acid sequence data for ten orthologous LRR
domains from diverse Brassicaceae species were used (see text). To
allow comparison, (D) presents the RCM data of Figure 4A on a
homology model. Color scale ranges from ‘‘not predicted to be a
binding site/not conserved’’ (blue) to ‘‘predicted to be a binding site/
highly conserved’’ (red). All maps are shown in two views with 180u
rotation between right and left columns; concave and convex faces of
the LRR are indicated in (A). See Figure S7 for analysis of FLS2 using the
same methods, and [55] for ODA and positive selection analyses of
PGIP.
doi:10.1371/journal.pone.0021614.g009
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impact function for reasons other than overall protein structure

and integrity.

Future improvements to RCM are anticipated. Output of

results onto a generic 3D LRR model as a pdb file may be useful,

for viewing and manipulation in PyMOL, Swiss-PdbViewer or

similar programs. The LRR repeat models developed in an RCM

run currently require hand-curation, but greater automation of

LRR matrix building is anticipated, for instance through use of

HMMER (http://hmmer.janelia.org) to build consensus logos of

the proteins being compared. RCM at this stage is limited to use

with LRR domains, but because RCM utilizes typical repeat

domain structures rather than precise spatial data, the method is

likely to be adaptable to other repeat proteins that have a known

repetitive structure. This includes armadillo, tetratricopeptide, and

ankyrin repeats. Adaptation of conservation mapping to ankyrin

repeats could be particularly insightful, as these domains are the

focus of artificial evolution towards novel ligands [90].

The repeat conservation mapping approach is a predictive

method that can be utilized to identify key similarities and

differences among groups of homologous LRR-containing pro-

teins. The RCM program predicts functional sites in LRR

domains, which may facilitate basic structure-function studies or

in vitro protein evolution toward modified functions for these

widespread and biologically significant domains. The current

implementation is functional for LRRs, but it should be modifiable

for use with other repeat-containing protein domains.
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