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Abstract

Anti-NeuN (Neuronal Nuclei) is a monoclonal antibody used extensively to specifically detect post-mitotic neurons. Anti-
NeuN reactivity is predominantly nuclear; by western it detects multiple bands ranging in molecular weight from 45 kDa to
.75 kDa. Expression screening putatively identified R3hdm2 as NeuN; however immunoprecipitation and mass
spectrometry of the two major NeuN species at 45–50 kDa identified both as the RNA binding protein Rbfox3 (a member
of the Fox family of alternative splicing factors), confirming and extending the identification of the 45 kDa band as Rbfox3
by Kim et al. Mapping of the anti-NeuN reactive epitopes in both R3hdm2 and Rbfox3 reveals a common proline- and
glutamine-rich domain that lies at the N-terminus of the Rbfox3 protein. Our data suggests that alternative splicing of the
Rbfox3 pre-mRNA itself leads to the production of four protein isoforms that migrate in the 45–50 kDa range, and that one
of these splicing choices regulates Rbfox3/NeuN sub-cellular steady-state distribution, through the addition or removal of a
short C-terminal extension containing the second half of a bipartite hydrophobic proline-tyrosine nuclear localization signal.
Rbfox3 regulates alternative splicing of the Rbfox2 pre-mRNA, producing a message encoding a dominant negative form of
the Rbfox2 protein. We show here that nuclear Rbfox3 isoforms can also enhance the inclusion of cryptic exons in the
Rbfox2 mRNA, resulting in nonsense-mediated decay of the message, thereby contributing to the negative regulation of
Rbfox2 by Rbfox3 through a novel mechanism.
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Introduction

NeuN (Neuronal Nuclei) is a protein ‘marker’ detected

exclusively in post-mitotic neurons that was initially identified

through an immunologic screen to produce neuron-specific

antibodies. The result of this screen, in which mice immunized

with mouse brain nuclei extracts were used to derive a panel of

monoclonal antibodies (mAbs), was mAb A60 (anti-NeuN), which

recognizes at least two major protein species migrating at

approximately 45–50 kDa, by western of brain extracts [1,2]. In

addition to the 45–50 kDa NeuN doublet, some cell lysate

preparations show additional reactive bands at ,66 kDa, and

between ,70–90 kDa by western. Immunohistochemically, NeuN

is detected only in mature neurons and is absent from neural

progenitors, glia, oligodendrocytes and astrocytes [2]. In general,

NeuN reactivity is predominantly nuclear, although it can also be

detected in the cytoplasm of many neuronal cell types [2,3]. It has

been hypothesized that NeuN may be required for the

maintenance of the post-mitotic state, or during the process of

axonogenesis [4], but these questions have been impossible to

address without the molecular characterization of NeuN.

Despite the widespread use of the anti-NeuN mAb, the identity

of the NeuN protein remained elusive for 17 years. As a result,

almost nothing was known about the function of NeuN protein

beyond a demonstrated ability to bind DNA in vitro [2]. Kim et al.

[5] and work presented here identify NeuN as Rbfox3. The Fox

(feminizing on X) proteins are a highly conserved family of tissue-

specific splicing regulators that each harbor a single RNA-

recognition motif (RRM)-type RNA binding domain. Rbfox1

(A2bp1) is expressed in neurons, skeletal muscle and heart [6–9].

Rbfox2 (Rbm9) is expressed in ovary, whole embryo, and human

embryonic cell lines in addition to neurons and muscle [6,10].

Rbfox3 (Hrnbp3, D11Bwg0517e) message is detected exclusively

in post-mitotic regions of embryonic mouse brain [11]. Fox

proteins have been shown to regulate a large number of brain and

muscle-specific splice choices via binding to the hexanucleotide

UGCAUG, including: exon EIIIB of fibronectin; exon N1 of c-src;

and calcitonin/CGRP [6,8,12].

All Fox family members are subject to alternative splicing; we

show here that the major NeuN products seen by Western are

created by two separate alternative splicing events that create

Rbfox3 protein variants with either nuclear or cytoplasmic steady-

state distribution. We have tested three individual Rbfox3 proteins

in alternative splicing assays and find that all of these Rbfox3

protein isoforms repress inclusion of the alternative RRM exon,

exon 6, of Rbfox2, giving rise to a variant of Rbfox2 without a

functional RRM. An equivalent alternatively spliced exon is also

found in mammalian Rbfox1 and Rbfox3, as well as in the
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Drosophila Fox homolog, and it has recently been demonstrated

that these FoxDRRM isoforms encode proteins that can act as

dominant negative splicing factors [13]. Regulation of this splice

choice represents one mechanism for modulation of Fox protein

function in cells expressing multiple Fox family members [13].

A number of splicing factors, including SC35 and polypyr-

imidine tract binding protein (PTB/Ptbp1), have been shown to

autoregulate their expression by regulating alternative splicing of

their own pre-mRNA to enhance the production of mRNA

isoforms that are subject to nonsense-mediated decay (NMD)

[14,15]. NMD is a surveillance pathway that is triggered in

mammalian cells when an mRNA contains a nonsense codon

more that 50–55 nucleotides upstream of an exon-exon junction

[16]. Our alternative splicing assays also reveal evidence of a

second, novel mechanism of Fox family cross-regulation through

alternative splicing associated nonsense-mediated decay (NMD).

Results

We initially sought to identify NeuN using a lambda phage

library-screening approach. We used anti-NeuN to screen a cDNA

expression library derived from P0 mouse spinal cord poly(A)+

RNA and isolated four independent, overlapping clones encoding

the poorly characterized protein R3hdm2 (KIAA1002). This

protein contains only one known protein motif, an R3H domain,

which has been shown to bind single-stranded nucleic acid [17].

Deletion mapping of the smallest positive clone was used to

narrow the anti-NeuN antibody-binding site (ABS) to a 46 amino

acid domain necessary and sufficient for recognition of GST-

R3hdm2 fusions by western with anti-NeuN (Figure 1A).

While our data demonstrate that anti-NeuN is able to

recognize R3hdm2 in vitro, the full-length clones isolated from

our screen encode proteins of ,110 kDa, clearly much larger

than the classic 45–50 kDa NeuN doublet seen by western.

Furthermore, northern analysis (Figure 1B) shows that R3hdm2

message, while enriched in mouse brain, spinal cord and testes, is

also present in lower levels in other tissues. Thus, while the

R3hdm2 mRNA is most abundant in brain, tissue regulation of

the message cannot by itself account for the exquisite neuronal

specificity of anti-NeuN protein recognition. Given the discrep-

ancies in the molecular weight and expression properties of

R3hdm2 and NeuN, we employed an alternative approach in an

effort to unambiguously identify NeuN.

Identification of the NeuN doublet as Rbfox3 by
immunoprecipitation and mass spectrometry

To directly identify the major 45–50 kDa NeuN doublet, we

immunoprecipited (IPed) NeuN with anti-NeuN mAb, separated

the eluate by SDS-PAGE and subjected excised protein bands to

mass spectrometry (MS). To avoid interference of IgG heavy-

chain, which runs at a similar molecular weight to NeuN on

reducing SDS-PAGE, we crosslinked the anti-NeuN antibody to

protein-A sepharose beads, and ran non-reducing gels. We saw

antibody-dependent enrichment of bands corresponding in size to

the NeuN doublet by silver-stain and western of IPed fractions

(Figure 2A & 2B). While a number of other proteins were also

specifically IPed under these conditions, since the majority of these

bands do not appear to be recognized by anti-NeuN western, they

may represent NeuN-interacting proteins, and were not analyzed

further. However, there were a series of bands ,100–110 kDa in

size that were revealed by western as specifically IPed by anti-

NeuN (Figure 2B) and these are consistent in size with isoforms of

R3hdm2. Conversely, several species between 60 and 80 kDa that

are clearly detected by western were neither depleted from the

extract nor present in the IPed fraction. The experiment shown in

Figures 2A and 2B was performed using a crude nuclear

preparation that was not further purified to remove cellular

membranes; based on the work of Kim et al. [5], we suspect that

the largest of these (if not several of them) is likely to be synapsin 1,

a synaptic vesicle-associated protein which they showed can be

detected using anti-NeuN by western.

Figure 1. R3hdm2 reacts with anti-NeuN antibody. A. The depicted GST-fusion proteins were expressed in bacteria and cell lysates analyzed by
western. The upper western panel (anti-GST) confirms that proteins of the expected sizes were expressed after IPTG induction. ABS = antibody
binding site; FL = full-length R3hdm2; the R3H domain is also shown. The membrane was then stripped and reprobed with anti-NeuN antibody (lower
panel), which indicates that the defined ABS region is both necessary and sufficient for anti-NeuN recognition of R3Hdm2. B. Northern of poly(A)+

RNA isolated from adult mouse tissues and probed for R3hdm2. The level of R3hdm2 expression was normalised to b-actin (lower panel) for each
tissue and calculated relative to the expression level in thymus.
doi:10.1371/journal.pone.0021585.g001
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The bands corresponding to the NeuN doublet at 45–50 kDa

were cut from the silver-stained gel and subsequently digested with

chymotrypsin, followed by tandem MS analysis of the resulting

peptides. The choice to use chymotrypsin rather than the more

routinely used trypsin was made because our lambda-screen

candidate R3hdm2 contains a striking paucity of predicted tryptic

cleavage sites, particularly surrounding the mapped antibody

binding site (ABS). We reasoned that if NeuN was indeed

R3hdm2, or a portion thereof, a tryptic digest could fail to

produce peptides suitable for an identification to be made using

MS. While the MS analysis was successful with chymotrypsin, no

peptides corresponding to R3hdm2 were detected. Instead, six

Figure 2. Immunoprecipitation and mass spectrometry identify Rbfox3 as the target of anti-NeuN. A. Silver stain of proteins
immunoprecipitated from P20 mouse brain crude nuclear extract using anti-NeuN, and separated by non-reducing SDS-PAGE. No antibody, ands
mouse IgG were used as IP controls; the no lysate sample was used to check the integrity of anti-NeuN cross-linking (covalent coupling) to the beads.
Arrows point to the bands analyzed by mass spectrometry. B. Western confirms the specificity of the anti-NeuN immunoprecipitation. The ‘‘classic’’
NeuN doublet species below 50 kDa were efficiently immunoprecipitated, and depleted from the supernatant (supe), while the upper
immunoreactive bands were not. C. Alignment of the mouse Fox protein family. Accession numbers of the sequences shown are; Rbfox1 (Fox-1,
A2bp1, Hrnbp1) NP_067452, Rbfox2 (Fox-2, Rbm9, Fxh) NP_001104299, Rbfox3 (Fox-3, Hrnbp3) NP_001034256. Amino acids that differ in sequence
from Rbfox3 are shown in grey. Lower case italics denote regions of Rbfox3 that may be absent due to alternative splicing. The RRM domain (as
defined by UniProt) is contained within parentheses. Black lines above the sequence mark peptides identified by MS after in-gel digestion with
chymotrypsin (c) or trypsin (t). Boxes surround Rbfox3 residues that match the hPY-NLS consensus. D. Alignment of the anti-NeuN ABS from R3hdm2
with the N-terminus of Rbfox3 and the predicted antibody-binding region of Syn1 from Kim et al. [5]. Amino acids identical to those in Rbfox3 are
shaded grey, boxes outline amino acids that are identical across all three proteins.
doi:10.1371/journal.pone.0021585.g002
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peptides were detected that correspond to Rbfox3 (black lines, c1–

c6, in Figure 2C), a recently characterized member of the Fox

family of alternative splicing regulators. Of these, three peptides

(c1–c3) were derived from portions of the protein that are identical

in the 3 members of the Fox protein family. The remaining three

peptides (c4–c6) correspond only to Rbfox3 and thus allowed for

unequivocal identification of the protein. Peptides c1 and c2 were

seen in the analysis of the lower band only, whereas peptides c3–c6

were detected after digest of both the upper and lower bands of the

NeuN doublet. Thus we provide direct evidence that the upper,

50 kDa band of the NeuN doublet is Rbfox3 in addition to

independently confirming the mass–spectrometric identification of

the 45 kDa band performed by Kim et al. [5].

A further experiment using purified mouse brain nuclear extract

and in-gel tryptic digest of the lower NeuN band revealed four

peptides derived from Rbfox3. Again, two of these (t3 and t4) are

unique to Rbfox3, while the remaining two are common to the

Fox family. The Rbfox3 pre-mRNA is alternatively spliced in a

number of regions resulting in changes to the encoded protein (see

Figure 3C and [13]). From our MS data, we were able to

determine that both of the NeuN doublet bands are indeed Rbfox3,

and both include a cassette exon, exon 8, which encodes the C-

terminal half of the RRM domain. Thus, while we were able to

unambiguously identify both of the immunoprecipitated bands as

Rbfox3 with full-length RRMs, we found no other peptides that

corresponded to alternatively spliced regions. As a consequence,

the MS data did not provide an explanation for the ,5 kDa

difference in molecular weight between the upper and lower NeuN

bands.

The anti-NeuN epitope resides at the extreme N-terminus
of Rbfox3

We next aligned our mapped anti-NeuN epitope from R3hdm2

with the Rbfox3 protein sequence in order to predict the likely

anti-NeuN epitope in Rbfox3. Figure 2D shows that a portion of

the 46 amino acid R3hdm2 ABS is identical in 8 of 15 amino acids

to the N-terminal region of Rbfox3. Of these, 5 residues are also

identical to the region of synapsin 1a predicted to be a weak

epitope for anti-NeuN by Kim et al. [5]. To directly test whether

anti-NeuN recognizes Rbfox3 via this region, we created the

deletion construct Fox3D-myc, which lacks Rbfox3 amino acids 5–

20 (replaced with the sequence GSAP), and the construct F20-

myc, which harbors Rbfox3 amino acids 2–20 immediately C-

terminal of glutathione S-transferase (GST) (Figure 3A). We

transfected these constructs into 293T cells and compared their

detection with anti-NeuN by western to a full-length Rbfox3

(Fox3-myc), the construct R46-myc (a GST-R3hdm2 ABS fusion)

and GST alone. All of the tested constructs contain a myc-tag to

allow detection of the proteins by western using an anti-myc

antibody. Figure 3B shows that the N-terminal 21 amino acids of

Rbfox3 are necessary and sufficient for recognition of the protein

by anti-NeuN. Taking into account the relative amounts of protein

seen with anti-myc staining, anti-NeuN appears to recognize full-

length Fox3-myc slightly better than F20-myc, and F20-myc

slightly better than R46-myc.

Alternative splicing of Rbfox3 pre-mRNA can account for
the pattern of NeuN bands seen by western

The Rbfox3 mRNA exists as multiple splice variants (see

Figure 3C and [13]). We cloned the coding sequence of the three

most common mouse Rbfox3 mRNA variants (variants 1–3 in the

NCBI database) downstream of a flag-tag sequence and expressed

them in HeLa cells. Variant 1 includes a 47 amino acid protein-

coding domain derived from an extended exon 12, and a 14

amino-acid C-terminal protein coding domain derived from exon

15, both of which are created by the use of alternative 39 splice

sites in the respective upstream introns. Variant 2 lacks the

additional exon 12 protein-coding sequence found in variant 1,

but contains the same C-terminal protein-coding sequence as

variant 1. Variant 3 lacks both of these additional protein-coding

domains. The calculated molecular weights of these Rbfox3

Figure 3. The anti-NeuN epitope of Rbfox3 maps to the
extreme N-terminus of the protein. A,B. The proteins depicted in
A were expressed in 293T cells and analyzed by western with anti-myc-
tag (left panel), or anti-NeuN antibodies on duplicate blots. Anti-NeuN
recognises both F20 and R46, and amino acids 5–20 (deleted in Fox3D-
myc) are necessary for recognition of full-length Rbfox3 by anti-NeuN.
C. Three Rbfox3 splice variants were expressed in HeLa cells and
compared to NeuN from mouse brain by western with anti-NeuN.
Variant 1 (v1) corresponds to NP_001034256, v2 to NP_001034257, and
v3 to NP_001020102. Exon numbers are as described in [13]. D. RT-PCR
of total RNA from P19 cells prior to neuronal induction (lanes 1), P19
cells 7 days after neuronal induction with RA (lanes 2), and P10 mouse
brain (lanes 3). For Rbfox3, 3 reverse primers were used to assess
mRNAs that encode the short C-terminus (or -IGTM protein isoforms,
15A-R), the longer, -FTPY isoforms (15-R), or all mRNAs (14-R). A
common forward primer to exon 7 (7-F) was used for all. Gapdh was
used as a loading control.
doi:10.1371/journal.pone.0021585.g003
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variants (without tags) are: variant 1, 40.6 kDa; variant 2,

35.5 kDa; variant 3, 34.1 kDa.

We had previously noticed that the Fox3-myc protein migrated

on SDS-PAGE gels at a molecular weight slightly greater than its

calculated molecular weight. When we analyzed the Rbfox3

protein variants by SDS-PAGE and detection with anti-NeuN,

flag-Fox3v1 ran at a slightly greater molecular weight than the

upper NeuN band from mouse brain, while variants 2 and 3 ran at

similar but not identical positions in the gel, both at a slightly

greater molecular weight than the lower NeuN band (Figure 3C).

If one accounts for both the general Rbfox3 protein migration

discrepancy and the added molecular weight of the flag-tag, the gel

migration behavior of the Rbfox3 protein variants strongly

suggests that the 45 and 50 kDa NeuN bands represent ‘2exon

12’ and ‘+exon 12’ variants respectively. Furthermore, close

inspection of anti-NeuN westerns reveals that the antibody actually

recognizes a ‘‘doublet of doublets’’ ([1,2] and our data not shown),

where both the 45 and 50 kDa ‘bands’ are actually composed of

two individual protein species differing very slightly in molecular

weight. This data suggests that both the 45 and 50 kDa ‘bands’ are

composed of a mixture of Rbfox3 proteins alternatively spliced at

exon 15. Thus, alternative splicing of the Rbfox3 message in exon

12 and exon 15 produces four protein isoforms that can account

for the 45–50 kDa doublet of doublets that are detected with anti-

NeuN. Two other regions of the Rbfox3 coding sequence can also

be alternatively spliced. Exon 6 contains two alternative 39 splice

sites just 3 nt apart, creating proteins +/2 a single glutamine

residue, which were not analyzed in this study. Exon 8, which

encodes 31 amino acids (3.4 kDa) of the RRM domain, is a

cassette exon that can be included or skipped; the MS data

demonstrated that both the 45 and 50 kDa NeuN/Rbfox3 bands

include exon 8, so alternative splicing of this exon cannot account

for the migration difference between these two ‘bands.’

It has been well documented that the NeuN protein is expressed

in P19 embryonic carcinoma cells after neural induction with

retinoic acid, but cannot be detected in uninduced P19 cells [2,5].

We examined Rbfox3 mRNA expression in these two P19

differentiation states by RT-PCR, along with mouse brain tissue

as a control. To carry out this analysis, we used a forward primer

to exon 7 (7F) and three reverse primers, 15AR, 15R and 14R (see

the Rbfox3 pre-mRNA diagram in Figure 3D): the primer to exon

15A (15AR) amplified mRNA variant 3 and other isoforms lacking

the 14 amino acid C-terminal peptide extension; the primer to

exon 15 (15R) amplified message variants 1 and 2 and any other

isoforms encoding the C-terminal extension; finally, the primer to

exon 14 (14R) was used as a control to amplify all Rbfox3 mRNA

isoforms, but gives no information about splicing of the final intron

and thus the C-terminal composition of the protein products. As

shown in Figure 3D, very little Rbfox3 message was detected in

uninduced P19 cells (lanes 1), and the modest amount of product

that was amplified corresponds to Rbfox3 protein with the shorter

C-terminus. There was also a trace amount of product

corresponding to messages lacking exon 8 in these cells. As stated

above, skipping of exon 8 leads to a 31 amino acid deletion within

the RRM domain. EST evidence supports the presence of this

isoform in mouse retina, however, we have no evidence that

Rbfox3DRRM protein, which should retain reactivity with anti-

NeuN, is expressed in detectable levels in any tissues or cell lines

tested so far.

Induction of P19 cells with retinoic-acid results in a large

increase in the abundance of all Rbfox3 message variants as

assayed by RT-PCR (lanes 2). The complement of transcripts seen

in induced P19 cells is very similar to that seen in P10 mouse brain

(lanes 3) in which the majority of transcripts lack exon 12, and

both exon 15 variants are present. Taken together with our MS

and western data, the RT-PCR studies support our finding that

alternative splicing of exons 12 and 15 is the basis of the doublet of

doublets observed by western analysis of mouse brain and induced

P19 cells with anti-NeuN.

Rbfox3 sub-cellular localization is regulated by
alternative splicing

NeuN is reported to be predominantly nuclear, although

cytoplasmic staining has been observed in subsets of neurons

[2,3]. To investigate their sub-cellular localization, we transfected

vectors encoding the Rbfox3 variants 1–3 into HeLa cells and

analyzed them by immunofluorescence with anti-NeuN. We

initially used constructs harboring C-terminal myc-tags and found

that all three Rbfox3 protein variants localized to the cytoplasm, in

contrast to the expected nuclear localization (Figure 4).

Interestingly, the Rbfox1 pre-mRNA can also be alternatively

spliced to produce Rbfox1 protein variants with unique C-termini;

Rbfox1 isoforms that end in the sequence –FAPY are predom-

inantly nuclear at steady-state, whereas isoforms ending in –

TALVP are predominantly cytoplasmic [18]. Recently, it was

noted that the –FAPY C-termini variants of Rbfox1 and 22

match the two-part consensus hydrophobic proline-tyrosine

nuclear localization sequence (hPY-NLS); namely wG/A/

SwwX(11–13)PY and R/H/KX(2–5)PY where w represents a

hydrophobic side chain [19,20]. The C-terminal extension

variants of Rbfox3 also satisfy this two-part NLS signal

(highlighted in Figure 2C); Rbfox3 variants without the C-

terminal extension harbor only the first half of the bipartite NLS

signal. Proteins harboring an hPY-NLS motif interact with a

negatively charged binding interface on the nuclear import factor

Karyopherin ß 2 (Kap ß 2) [19]. Therefore, we reasoned that

adding an acidic myc-tag immediately adjacent to the hPY-NLS in

Rbfox3 may weaken or even abolish its interaction with Kap ß 2,

resulting in altered steady-state sub-cellular distribution of the

proteins.

We repeated our experiment with constructs containing N-

terminal flag-tags (Figure 4). In this instance, Fox3v1 was

predominantly nuclear, while Fox3v2 appeared to be exclusively

nuclear and Fox3v3 appeared to be predominantly cytoplasmic;

Fox3v2 and Fox3v3 differ only by the presence or absence of the 14

amino-acid C-terminal extension respectively, yet show starkly

different steady-state sub-cellular distribution.

All 3 Rbfox3 variants can regulate alternative splicing
The Fox family of RNA binding proteins are known to regulate

alternative splicing of a number of pre-mRNAs [6,8,10,12,21].

Since pre-mRNA splicing occurs in the nucleus, we asked whether

both nuclear and cytoplasmic forms of Rbfox3 could regulate

alternative splicing. N2A and 293T cells were transiently

transfected with N-terminal flag-tagged Rbfox3 constructs and

harvested 24 hours post-transfection. The splicing of endogenous

mRNAs was then assayed by RT-PCR using a FAM-labeled 39

primer. Rbfox3v1 protein has previously been shown to inhibit the

usage of exon 6 in Rbfox2 pre-mRNA (Rbfox3v2 and v3 have not

been tested) [13]. Skipping of this exon creates an in-frame

deletion in the RRM domain and results in production of a

dominant negative isoform of Rbfox2 [13]. Consistent with this

known role of Rbfox3v1, our data in Figure 5A shows that the

addition of exogenous Rbfox3 results in skipping of exon 6 of

Rbfox2. This effect is more pronounced in 293T cells, probably

due to the higher transfection efficiency achieved in these cells

(,82% for 293T versus ,50% for N2A cells). Surprisingly, the

amount of exon 6 skipping is similar regardless of whether cells are
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transfected with the predominantly cytoplasmic Fox3v3 or the

nuclear Rbfox3 variants v1 and v2; exon 6-containing mRNA was

reduced from 92% of total Rbfox2 message for the empty vector

control in 293T cells, to 47%, 48% and 39% for Fox3v1, v2 and

v3 respectively (Figure 5A,C). This observation was confirmed by

titration of the amount of plasmid transfected and subsequent

quantification of Rbfox3 protein expression by fluorescent

western. At similar expression levels of each of the Rbfox3

variants, the degree of Rbfox2 splicing regulation/alteration from

baseline is comparable, as measured by the decrease in the steady-

state amount of the productive +e6 pre-mRNA isoform (Figure

S1). This robust splicing regulatory activity implies that either

cytoplasmic Fox3v3 can influence the splicing of Rbfox2 pre-

mRNA indirectly or, more likely, that Fox3v3 can shuttle between

the nucleus and cytoplasm and regulate splicing directly.

Although all three Rbfox3 variants tested robustly repressed

inclusion of Rbfox2 exon 6 in 293T cells, the nature of the

alternative products detected is different (Figures 5 and S1).

Fox3v1 and v2 transfected 293T cells harbored significant

amounts of a third mRNA species that includes a cryptic exon

derived from intron 6 of the Rbfox2 pre-mRNA that we have

called exon 6*. Exon 6* is 74 nt in human 293T cells, and 71 nt in

mouse N2A cells, but in both cases introduces a premature stop

codon which would result production of a truncated protein or,

more likely, target the mRNA for NMD (see below). This exon 6*-

containing mRNA accounts for 20% and 25% of total Rbfox2

mRNA when Fox3v1 and v2 are transfected, respectively,

compared to only 5% for Fox3v3 and 2% for pcDNA3. In

contrast, in cells transfected with the cytoplasmically localized

Fox3v3, 56% of Rbfox2 mRNA excludes both exon 6 and exon

6*, compared with 33% for Fox3v1, 27% for Fox3v2 and 6% for

pcDNA3. Rbfox3 transfected N2A cells show a similar trend,

although the magnitude of the changes is lower.

Interestingly, expression of the predominantly cytoplasmic C-

terminal myc-tagged Fox3 variants in 293T cells also resulted in

changes to Rbfox2 pre-mRNA splicing which most closely

resembled those induced by Fox3v3 (Figure S1). By again

comparing samples with similar Rbfox3 protein expression levels,

we observed that the cytoplasmic, myc-tagged Fox3v1 and v2

proteins were as effective in causing skipping of Rbfox2 exon 6

(reduction to approximately 50% of total message) as their flag-

tagged nuclear counterparts. However, unlike the flag-tagged

variants, the amount of +e6* containing-mRNA detected

accounted for less than 10% of the total Rbfox2 message. Again,

we are unable to conclude whether these myc-tagged variants are

affecting Rbfox2 splicing indirectly in the cytoplasm, or instead

retain the ability to be imported to the nucleus.

We also analyzed splicing of additional reported targets of Fox

protein-dependent splicing regulation, namely c-src and CaV1.2

[6,22]. Upon overexpression in N2A cells, Rbfox1 and Rbfox2

have been shown to enhance the inclusion of a neuron-specific

exon N1 in endogenous c-src message, and minigene assays have

revealed that this splicing activation is dependent on Fox protein

binding to UGCAUG elements downstream of exon N1 [6].

Rbfox3 has not been assayed as regulator of c-src alternative

splicing. Interestingly, we did not detect a change in N1 exon

inclusion with any of the Rbfox3 protein variants when

overexpressed in N2A cells (293T cells do not exhibit any

measurable inclusion of the N1 exon with or without the Rbfox3

proteins). Thus, either c-src N1 splicing cannot be regulated by

Rbfox3, or the levels of Fox proteins required to regulated c-src

splicing are much higher than those required to regulate Rbfox2

exon 6 splicing, and were insufficient in our experiments.

Overexpression of Rbfox1 and Rbfox2 has been shown to

repress exon 9* but enhance exon 33 splicing in the CaV1.2

voltage-gated calcium channel pre-mRNA [22], and Rbfox3 has

Figure 4. The C-terminus of Rbfox3 specifies sub-cellular location. Rbfox3 variants 1, 2 and 3 harboring C-terminal myc-tags (A), or
N-terminal flag-tags (B) were expressed in HeLa cells and stained with anti-NeuN and DAPI. All C-terminally tagged proteins displayed predominantly
cytoplasmic localization, whereas N-terminally tagged Fox3v1 and v2 displayed the expected nuclear localization. Scale bars indicate 50 mm.
doi:10.1371/journal.pone.0021585.g004
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been shown to enhance exon 33 splicing (but only in a minigene

context) [13]. Again, we did not see any alterations in splicing of

CaV1.2 exons 9* or 33 in our Rbfox3 overexpression experiments.

Thus we can conclude that the c-src and CaV1.2 pre-mRNAs are

either weaker targets of Rbfox3-dependent splicing regulation

than the Rbfox2 pre-mRNA in these cell lines, or not targets at all.

Rbfox3 promotes nonsense-mediated decay of Rbfox2
transcripts

Since NMD requires active translation, treatment of mamma-

lian cells with pharmacological inhibitors of translation results in

the accumulation of transcripts normally targeted for NMD [23].

To further investigate whether Rbfox2 mRNAs including exon 6*

are subject to NMD we treated N2A cells transiently transfected

with our flag-tagged Rbfox3 constructs with the translation

inhibitor emetine. We assayed skipping of exon 10 of polypyr-

imidine tract binding protein 2 (Ptbp2) by RT-PCR as a positive

control for emetine treatment (Figure 6) since the isoform lacking

exon 10 harbors a premature termination codon, and has been

shown to accumulate when the NMD pathway is blocked [24,25].

Emetine treatment alone had no effect on the relative levels of the

different exon 6 Rbfox2 mRNA isoforms present in cells

transfected with the empty pcDNA vector. However, N2A cells

transfected with exogenous Rbfox3 showed a marked increase in

accumulation of Rbfox2 mRNA containing exon 6* after

treatment with emetine. Furthermore, this treatment revealed

yet another mRNA species, this time containing a cryptic exon

derived from Rbfox2 intron 5 that we have called exon 5*

(Figure 6). Emetine treatment increases the abundance of

transcripts containing either of these cryptic exons from 5% to

17% in cells expressing Fox3v1, from 6% to 17% for Fox3v2, and

from 4% to 8% for Fox3v3. Inclusion of either exon 6* or exon 5*

(which is 41 nt) alters the reading frame of the mRNA introducing

two premature termination codons in the downstream exon, exon

7, as depicted in Figure 6D. Thus our data shows that Rbfox3

regulates alternative splicing of Rbfox2 to enhance the production

of mRNA species that are targeted for NMD. This is likely to be a

phylogenetically conserved mechanism of Fox family autoregula-

tion since both of these cryptic exons and their splice sites are

highly conserved amongst mammals, and in birds as shown in

Figure 6E.

Rbfox3 sub-cellular localization is not CRM1/exportin
1-dependent

As shown above, Rbfox3v3 exhibits predominantly cytoplasmic

steady-state sub-cellular localization, but is capable of regulating

Rbfox2 alternative splicing to a similar degree as the nuclear-

localized variants Rbfox3v1 and v2. In a preliminary attempt to

determine if Rbfox3v3 actively shuttles between the nucleus and

cytoplasm, we treated N2A cells transiently transfected with

Rbfox3v3 with leptomycin B (LMB) to inhibit CRM1/exportin 1-

dependent nuclear export [26–28]. Figure 7 shows that while the

positive control Rev-GFP was retained in the nucleus after LMB

treatment, no change was seen in the cytoplasmic localization of

Figure 5. Rbfox3 variants all function to regulate alternative splicing, irrespective of steady-state sub-cellular localization. N2A or
293T cells were transiently transfected with Rbfox3 variants 1, 2 or 3 harboring N-terminal flag-tags, or pcDNA3 vector control. A. Alternative splicing
of endogenous mRNAs encoding Rbfox2, c-src and CaV1.2 (alternative exons 9* and 33) was assayed by RT-PCR. Rbfox2 +e6* represents splicing from
exon 5 to a cryptic exon downstream of exon 6. B. Western with anti-flag was used to confirm Rbfox3 overexpression, and anti-actin was used as a
loading control. C. Quantification of the results shown in A and 2 additional experiments (i.e. n = 3); results are displayed as average +/2 standard
deviation. All Rbfox3 variants promoted skipping of Rbfox2 exon 6, but no change was seen in the splicing of c-src exon N or CaV1.2 exons 9* or 33
upon Rbfox3 overexpression.
doi:10.1371/journal.pone.0021585.g005
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Fox3v3. This implies that either Fox3v3, which lacks a complete

hPY-NLS, (1) is not capable of entering the cell nucleus or (2) can

enter the nucleus, but is exported via a CRM1-independent

mechanism. Interestingly, although immunofluorescence micros-

copy shows that the steady-state localization of Fox3v3 is

predominantly cytoplasmic, a portion of the protein appears to

be present in the nucleus of HeLa and N2A cells (see Figures 4 &

7); this observation, along with the ability of Fox-3v3 to regulate

Rbfox2 exon 6 skipping, suggests that Fox-3v3 likely does shuttle,

but confirmation of this hypothesis will need further study.

Discussion

The target of the neuronal marker antibody anti-NeuN has

recently been identified as the RNA binding protein Rbfox3 [5].

We have confirmed and extended this finding by IP and MS of

both bands of the NeuN 45–50 kDa doublet. Like NeuN, Rbfox3

mRNA is expressed exclusively in post-mitotic neurons in mouse

brain [5,11], and we have shown that Rbfox3 mRNA is barely

detectable in undifferentiated P19 cells, and strongly upregulated

after retinoic acid-induced neuronal differentiation. Furthermore,

we have demonstrated that Rbfox3 protein isoforms expressed

from transfected cDNA vectors correspond in apparent molecular

weight to the major protein species of NeuN from mouse brain.

Specifically, alternative splicing of exon 12 produces Rbfox3

proteins that differ by approximately 5 kDa, accounting for the

observed anti-NeuN doublet by western; a second alternative

splicing event at the C-terminus of Rbfox3 produces protein

isoforms that differ by 1.4 kDa, likely accounting for the ‘doublet

of doublets’ that can often be resolved with a SDS-PAGE gel (and

subsequent western) of sufficient resolution [1,2]. Proteins with

and without this C-terminal extension have calculated pI values of

,8.1 and 6.8 respectively, so this splicing event also likely accounts

for the separation of both the 45 and 50 kDa bands into two major

anti-NeuN immunoreactive spots after isoelectric focusing and

PAGE observed by Lind et al. [1].

Given Rbfox3 is indeed NeuN, why did we fail to detect it in

our original lambda expression screen? Lind et al. [1] argued that

NeuN is a phosphoprotein, and while not necessarily directly

phosphorylated, the anti-NeuN epitope may be phospho-depen-

Figure 6. Rbfox3 variants enhance inclusion of cryptic exons in Rbfox2, leading to nonsense-mediated decay. N2A cells were
transiently transfected with Rbfox3 variants 1, 2 or 3 harboring N-terminal flag-tags, or pcDNA3 vector control, and treated with emetine to inhibit
NMD. A. Alternative splicing of endogenous mRNAs encoding Ptbp2 and Rbfox2 was assayed by RT-PCR. Enhanced exclusion of Ptbp2 exon 10 was
used as a positive control for emetine treatment. Rbfox2 spliced products are described in D. B. Western with anti-flag was used to confirm Rbfox3
overexpression; anti-actin was used as a loading control. C. Quantification of the results shown in A and 2 additional experiments (i.e. n = 3); results
are displayed as average +/2 standard deviation. D. Schematic representation of alternative splicing of the Rbfox2 message around exon 6, indicating
the relative positions of cryptic exons 5* and 6*. The functional outcomes for the resulting spliced mRNA products are depicted below; inclusion of
exon 5* or exon 6* results in the presence of 2 in-frame nonsense codons in exon 7, and destruction of these messages by nonsense-mediated decay.
E. The sequences of mouse Rbfox2 exons 5* and 6* (upper case) and surrounding intronic sequence (lower case) are shown aligned to the
corresponding regions from human and chicken.
doi:10.1371/journal.pone.0021585.g006
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dent, which could prevent recognition in a bacterial system.

However, we mapped the antibody binding site in Rbfox3 to a 20

amino acid region necessary and sufficient for anti-NeuN binding.

The fact that we achieve recognition in the context of an

autologous protein (GST) implies that the anti-NeuN epitope is

linear, and is unlikely to require a particular structural context for

anti-NeuN recognition. While we cannot rule out the possibility

that the NeuN epitope is directly phosphorylated even when

expressed as a fusion with GST, we believe the most likely

explanation for the failure of the expression screen is that the

epitope in Rbfox3 lies at the extreme N-terminus of the protein.

The lambda screen requires that cloned cDNAs be in-frame with

an N-terminal fragment of b-galactosidase; we speculate that the

cDNA copies of Rbfox3 were either too short to contain the NeuN

epitope, or too long, and thus could contain Rbfox3 59 UTR

sequence, which has a number of in-frame stop codons. However,

our screen did identify a potential anti-NeuN cross-reacting

protein, R3hdm2. We suggest that R3hdm2 may also be a

potential contributor to the anti-NeuN signal in some instances

given that overexpressed R3hdm2 can be detected by anti-NeuN

in immunofluoresencent microscopy (not shown) and by western,

and we observed a series of anti-NeuN immunoreactive bands of

the appropriate size to be R3hdm2 that were specifically

immunoprecipitated with anti-NeuN.

Fox family cross-regulation
In this study, we found that Rbfox3, especially the nuclear splice

variants v1 and v2, in addition to promoting skipping of exon 6 of

Rbfox2, can enhance inclusion of two cryptic exons, which we

have called exon 5* and exon 6*. In both instances, this introduces

a premature stop codon in the Rbfox2 mRNA. Inhibition of the

NMD pathway in mammalian cells resulted in further accumu-

lation of these mRNA species indicating that they are targets of

NMD. A close look at previously published data reveals that

Rbfox1 may also have a similar activity on Rbfox2 [13]. The

outcome of this cryptic splicing in vivo would be to downregulate

Rbfox2 expression in Rbfox3 (and Rbfox1) expressing cells.

Alternative exons that induce NMD have been found to be

particularly frequent in genes encoding splicing regulators [24]. A

number of RNA binding proteins, such as Ptbp1 and SC35

directly influence their own pre-mRNA splicing to introduce

premature termination codons and induce NMD of these mRNA

isoforms, contributing to the maintenance of homeostasis of the

levels of splicing regulators within cells [14,15]. In addition,

paralogous members of splicing regulator families have been

shown to cross-regulate the levels of other family members by a

similar mechanism. For example, hnRNP L enhances the

inclusion of a short cassette exon containing a premature

termination codon in its own message, as well as enhancing the

inclusion of an analogous ‘‘poison’’ exon in closely related hnRNP

L-like [29]. Similarly, Ptbp1 promotes exon skipping in its own,

and closely related Ptbp2 messages, again leading to NMD of the

resulting mRNA isoforms [30,31]. In both of these instances, this

cross-regulation contributes to reciprocal expression of these

proteins in varying cell types.

Fox proteins have been previously shown to auto- and cross-

regulate their production and function by enhancing skipping of a

conserved cassette exon resulting in the expression of dominant

negative DRRM proteins [13]. Here we provide the first evidence

that alternative splicing-associated NMD also regulates Fox family

cross-regulation. The existence of two conserved, complementary

mechanisms for achieving cross- (and auto-) regulation of this

family of RNA binding proteins imply that the absolute levels and

balance of family members must be vitally important to cell

function. Furthermore, our elucidation of the mechanism of

regulation of Rbfox3 sub-cellular distribution suggests that

different neuronal subtypes, which display varying ratios of

nuclear/cytoplasmic anti-NeuN signal, express different Rbfox3

protein variants. In contrast to what has been reported for Rbfox1

[18,32], we found that the cytoplasmic Rbfox3 isoform (v3) did not

have diminished splicing regulatory activity. In fact, we observed

functional differences in the splicing regulation by individual Fox

proteins. Consequently, we predict that different neuronal

subtypes will exhibit differences in the alternative splicing of

target pre-mRNAs regulated by Rbfox3 and its family members,

depending on their exact complement of Fox protein isoforms.

The identification of NeuN as Rbfox3 provides one more

fascinating example of a RNA binding protein that is exquisitely

Figure 7. NeuN (Rbfox3) nuclear export is not Crm1/exportin 1-dependent. Rev-GFP fusion protein or Rbfox3 variant 3 with an N-terminal
flag-tag were expressed in N2A cells and (A) left untreated or (B) treated with 10 ng/ml leptomycin B for 4 hrs prior to fixation and staining with anti-
NeuN and DAPI, or just DAPI in the case of Rev-GFP. Leptomycin B treatment caused Rev-GFP to be retained in the nucleus, but caused no change in
the sub-cellular localization of Fox3v3.
doi:10.1371/journal.pone.0021585.g007
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neuron-specific, such as the Nova proteins, and most members of

the Hu family, or neuronally-enriched, such as Ptbp2 (nPTB), and

members of the CELF-Bruno family [33–38]. The recent

development of CLIP, a technique that can specifically identify

in vivo RNA target sites for any particular RNA binding protein,

especially when combined with high-throughput sequencing

methods, can allow one to rapidly move from the identification

of a RNA binding protein to testing specific functional hypotheses

regarding the protein’s biological role in a neuron [39–42].

Indeed, RNA targets of Rbfox2 in embryonic stem cells have

already been identified with such techniques [10]. One interesting

but unanswered question is how do the Rbfox1, Rbfox2 and

Rbfox3 splicing target sets compare? The CLIP technique is

fundamentally dependent on having an antibody able to

specifically IP the protein of interest in complex with bound

RNAs. To that end, we have shown that anti-NeuN robustly and

specifically IPs Rbfox3 (and not Rbfox1 or Rbfox2), and that the

epitope is distant from the RRM, so antibody binding is unlikely to

be occluded by crosslinked RNA. Therefore, a CLIP analysis of

Rbfox3/NeuN should be highly successful.

Materials and Methods

Ethics statement
This study was carried out in strict accordance with the

Australian code of practice for the care and use of animals for

scientific purposes. The protocol was approved by the University

of Adelaide Animal Ethics Committee (Permit Number: S-033-

2008). Mice were killed by decapitation or carbon dioxide

asphyxiation, and all efforts were made to minimize suffering.

Library screen
We generated a cDNA expression library in Lambda Zap

Express (Stratagene) from poly(A)+ RNA isolated from P0 mouse

spinal cords with an estimated complexity of 16106 independent

clones. The library was screened by probing plaque lifts on

nitrocellulose filters with anti-NeuN mAb at a dilution of 1:500.

Secondary and tertiary screens were used to isolate individual

reactive phage; phagemid rescues were performed according to

protocols from Stratagene, and plasmid DNA containing the

reactive cDNAs were sequenced.

Plasmids
R3hdm2 constructs. The R3hdm2 coding sequence was

amplified by PCR from the largest positive library clone, which

encodes a protein identical to UniProt accession Q80TM6 isoform

3 (Q80TM6-3), and inserted into pET-41a+ (Novagen) via SpeI

and HindIII to create plasmid FL. DABS is identical to FL except

that it lacks amino acids 543–589 of Q80TM6-3; the deleted

region was replaced with the amino acid sequence ‘‘GT’’ through

creation of an internal KpnI site by PCR. The ABS construct

encodes amino acids 542–587 of Q80TM6-3 fused to the C-

terminus of GST in pET-41a+. R46-myc was made by PCR

amplification of the GST-ABS fusion from plasmid ABS and

ligation into pCI (Promega) along with linkers to provide a 39 myc-

tag.

Rbfox3 constructs. Rbfox3 coding region was amplified

from mouse brain cDNA by RT-PCR and cloned upstream of a

myc-tag in pCI (Promega) or downstream of a flag-tag in pcDNA3

(Invitrogen). Variant 1 (v1) corresponds to NP_001034256, v2 to

NP_001034257, and v3 to NP_001020102. Fox3D-myc is

identical to Fox3v3-myc except that it lacks amino acids 5–20 of

Fox3v3; the deleted region was replaced with the amino acid

sequence ‘‘GSAP’’ by PCR. F20-myc encodes amino acids 2–21 of

Fox3v3 fused to the C-terminus of GST in pCI; it also contains a

C-terminal myc-tag.

Rev-GFP. HIV-1 Rev positive control for LMB treatment

was plasmid pRev(1.4)-GFP-Rev from [43]. All constructs were

confirmed by sequencing.

Bacterial protein expression
Plasmids were transformed into BL21-CodonPlus (DE3)-RIPL

competent cells (Stratagene), followed by standard IPTG (isopro-

pyl-b-D-thiogalactopyranoside) induction. Bacterial cell pellets

were lysed by boiling in SDS-load buffer prior to analysis by SDS-

PAGE and western.

Immunoprecipitation and mass spectrometry
Mouse brain nuclear extracts were prepared essentially as

described previously [2]. Briefly, fresh brain tissue from C57BL6

mice was minced with a scalpel blade, then homogenized in 0.25%

Triton X-100 in sucrose buffer (0.32 M sucrose, 1 mM MgCl2,

1 mM K-phosphate buffer pH 6.5) with a glass dounce homog-

enizer. Nuclei were pelleted by centrifugation (1,2006 g, 10 min)

and washed twice with sucrose buffer; this was considered the

crude nuclear fraction. In some experiments, nuclei were further

purified by resuspending the crude fraction in 2 M sucrose buffer

and centrifuging through a 2.4 M sucrose cushion (53,0006 g,

1 hour).

Nuclei were lysed in whole-cell extract buffer (WCE; 20 mM

HEPES pH 7.5, 420 mM NaCl, 0.5% Igepal, 25% glycerol,

1.5 mM MgCl2) and incubated on ice for 30 min. The lysate was

then diluted 1 in 5 with 20 mM HEPES pH 7.5, supplemented

with 1 mM CaCl2 and treated with 150 units/ml micrococcal

nuclease (Worthington) for 30 min. at 22uC with gentle mixing.

EGTA was added to 2 mM and the lysate clarified by

centrifugation (16,0006 g, 10 mins). EDTA-free complete prote-

ase inhibitors (Roche), 1 mM Na3VO4 and 5 mM NaF were

maintained throughout.

Anti-NeuN antibody, or mouse IgG antibody control was

conjugated to protein-A sepharose beads (GE Healthcare) with

dimethyl pimelimidate (DMP) as described previously [1] except

that antibody binding was performed in the presence of 1 mg/ml

BSA, and the DMP crosslinking incubation was performed twice

prior to quenching the reaction with Tris-HCl pH 7.5. Cross-

linked beads were washed twice with WCE buffer then

resuspended in 750 ml mouse brain nuclear extract and incubated

at 4uC for 1 hour with continuous rotation. The beads were

pelleted by brief centrifugation and the supernatant fraction

collected for analysis. Beads were then washed in WCE buffer

followed by a total of 4 washes alternating between high and low

salt wash buffers (high; 1 M NaCl, 20 mM HEPES pH 7.5, 0.5%

Igepal, low; 16PBS, 0.5% Tween-20). Beads were rinsed briefly

with Na-phosphate buffer pH 7 and eluted with 16Novex LDS

load buffer (Invitrogen) for 10 min at 70uC. Samples were run on

NuPAGE Novex 4–12% bis-tris gels with MES buffer (Invitrogen)

under non-reducing conditions and either transferred to PVDF for

western or stained with SilverQuest staining kit (Invitrogen).

Silver-stained protein bands were excised from the gel and

destained immediately (within 1 hour). Proteins were digested in-

gel with chymotrypsin or trypsin and the extracted peptides were

chromatographed and analyzed using an HCT Ultra 3D-Ion-

Trap mass spectrometer (Bruker Daltonik GmbH). MS and MS/

MS spectra were subjected to peak detection using DataAnalysis

(version 3.4, Bruker Daltonik GmbH) then imported into BioTools

(version 3.1, Bruker Daltonik GmbH). Here, the MS/MS spectra

were submitted to the in-house Mascot database-searching engine

(version 2.2, Matrix Science).
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Tissue culture and Immunofluorescence
HeLa, 293T and N2A cells were propagated in DMEM

supplemented with 10% fetal calf serum (FCS). For immunoblots,

cells were transfected in 6-well plates with 0.5–1.0 mg DNA using

Fugene 6 (Roche) for 24 hours. Cells were then washed with

16PBS and lysed in WCE buffer with complete protease inhibitors

(Roche), 1 mM Na3VO4, 5 mM NaF and 0.2 mM EDTA. Lysates

were clarified by centrifugation (16,0006 g, 10 mins) and 15 or

20 mg total protein was boiled in SDS load buffer.

For immunofluorescence, cells were grown on glass coverslips

and transfected for 24 hours prior to fixation or treatment with

10 ng/ml LMB (Enzo Life Sciences) for 4 hours. Cells were fixed

with 4% paraformaldehyde in PBS for 10 min, permeabilized with

0.5% Triton X-100 in PBS for 10 min and blocked with 10% FCS

in PBST (16PBS, 0.1% Triton X-100) for 1 hour. Cells were

incubated with anti-NeuN 1:150 in block for 1 hour, washed 3

times with PBST, then incubated with FITC anti-mouse

secondary antibody (Jackson Immunolabs) 1:200 in block. Cells

were washed 3 times with PBST, with 0.5 mg/ml DAPI included

in the second wash and mounted with ProLong Gold (Invitrogen).

Images were acquired on a Zeiss Axioplan 2 using AxioVision

software.

For target splicing assays, 293T cells and N2A cells were

transfected in 12-well plates with 1.0 mg DNA using Fugene HD

(Roche) for 24 hours prior to harvesting as discussed below.

Emetine treatment was performed by adding 100 mg/ml emetine

to the medium 18 hours after cell transfection, and 10 hours prior

to harvesting.

P19 cells (ATCC) were propagated in a-MEM supplemented

with 10% FCS. For differentiation, 16106 cells were transferred to

100 mm bacterial petri dishes in a-MEM supplemented with 5%

FCS and 0.5 mM all-trans retinoic acid (RA, Sigma) for 4 days,

with a medium change at day 2. At day 4, aggregates were treated

with trypsin and DNaseI and plated onto poly-D-lysine coated

tissue culture dishes in a-MEM, 10% FCS without RA and

cultured for a further 3 days.

Western blots
Samples were separated on 12% tris-glycine gels, transferred to

PVDF and immunoblotted using mouse monoclonal anti-GST-tag

1:2000 (Novagen 71097), anti-myc-tag (9B11, Cell Signaling) at

1:1000, anti-HuR (3A2, Santa Cruz) at 1:500, anti-NeuN

(MAB377, Chemicon) at 1:2000 for bacterial samples or 1:500

for eukaryotic samples, anti-flag-tag (Sigma F7425) 1:1000, anti-

actin (Sigma A2066) 1:1000. Detection was performed using

horseradish-peroxidase-conjugated secondary antibodies (Jackson

Immunolabs) and ECL using Western-Lightning-Plus (Perkin

Elmer).

RNA extractions, northern hybridization and RT-PCR
Total RNA was extracted from mouse tissues using a modified

guanidine-acid phenol protocol [44]. Poly(A)+ RNA was subse-

quently purified using Oligo (dT)25 Dynabeads (Invitrogen)

according to the manufacturer’s instructions. 1–2 mg poly(A)+

RNA was resolved in a 1% agarose, 2.2 M formaldehyde gel,

transferred to Hybond-N+ (Amersham), and fixed by UV-cross-

linking. Northern hybridization was performed in Ultrahyb

(Ambion) at 68uC. Antisense RNA probes were transcribed using

Ambion’s Strip-EZ RNA T7 kit, and labeled by incorporation of

[a-32P]-UTP. The R3hdm2 probe template was amplified by PCR

using primers F:gaacgaattcCGAGTGGCTAAAAAGAACTAC-

GACC and R:agaaccaagcttAAATGGGAAAAGGGGAGGG-

CAG, cloned into pcDNA3 via the HindIII and EcoRI sites, and

linearized with EcoRI. The b-actin probe was transcribed from

plasmid pTRI-b-Actin-Mouse (Ambion). The blot was visualized

by Typhoon PhosphorImager and quantified using ImageQuant.

Total RNA was purified from tissue culture cells using the

RNeasy Mini kit system (Qiagen). Total RNA was reverse

transcribed using random hexamers and SuperScript III (Invitro-

gen). Rbfox3 and gapdh products were amplified (28 cycles) using

Taq polymerase (Invitrogen) and visualized in agarose gels with

ethidium bromide. The primers were as follows: Rbfox3 e7-F,

TTTAACGAGCGGGGCTCCAAG; e15A-R, TTCATGGTC-

CGAGAAGGAGACG; e15-R, GGTCTCTTGCTAGTAGGG-

GGTGAAG; e14-R, CATGGTTCCGATGCTGTAGG; Gapdh

F, CGTCCCGTAGACAAAATGGT; R, CACATTGGGGG-

TAGGAACACG.

Endogenous splicing targets were amplified for 22 cycles

(Rbfox2, Ptbp2), or 25 cycles (c-src and CaV1.2) using Taq

polymerase (Invitrogen) and FAM-labeled 39 or 59 primers.

Products were separated on 6% native polyacrylamide-TBE gels,

visualized using a Typhoon Trio scanner and quantified using

NIH ImageJ. Primers for Rbfox2, mouse c-src and CaV1.2 were

as published [13,45,22]. For human c-src the 59 primer used was

CTGTCCTTCAAGAAAGGCGAGC (1 nt change from the

mouse primer). Primers for Ptbp2 were F, CTGGTGGCAATA-

CAGTCCTGTTG; R, TGGTTCCCATCAGCCATCTG. All

PCR products were confirmed by gel extraction and sequencing.

Supporting Information

Figure S1 All myc-tagged and flag-tagged Rbfox3 vari-
ants function to regulate alternative splicing, irrespec-
tive of steady-state sub-cellular localization. 293T cells

were transiently transfected with increasing amounts of Rbfox3

variants 1, 2 or 3 harboring N-terminal flag-tags, or C-terminal

myc-tags in 12-well plates. Empty vector was also added such that

each well received 2 mg of plasmid. A. Upper panel: alternative

splicing of endogenous Rbfox2 mRNA was assayed by RT-PCR.

Lower panel: equal amounts of protein extract were separated by

SDS-PAGE and immunoblotted with anti-NeuN and FITC-

conjugated secondary antibody. The blots were visualized using a

Typhoon Trio scanner and quantified using NIH ImageJ. The two

gels were run back-to-back and processed together to enable

quantification of the relative NeuN amounts; lane 1 was set to 1

and subsequent lanes are displayed as the fold-change from this

value. Numbers in bold italics correspond to the samples used for

quantification in B. B.Quantification of the RT-PCR results

shown in A in bold. Only samples with similar levels of NeuN

protein (2 to 3-fold above the amount in the first lane) are graphed,

along with the controls. All Rbfox3 variants, whether flag- or myc-

tagged, promoted skipping of Rbfox2 exon 6 to a similar degree.

However, the inclusion of cryptic exon e6* was markedly higher

after transfection of Rbfox3 protein variants which display nuclear

steady-state subcellular distribution (namely flag-Fox3v1 and v2).

(TIF)
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