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Abstract

Chlamydia pneumoniae (CP) is an important human pathogen that causes atypical pneumonia and is associated with various
chronic inflammatory disorders. Caspase-1 is a key component of the ‘inflammasome’, and is required to cleave pro-IL-1b to
bioactive IL-1b. Here we demonstrate for the first time a critical requirement for IL-1b in response to CP infection. Caspase-
12/2 mice exhibit delayed cytokine production, defective clearance of pulmonary bacteria and higher mortality in response
to CP infection. Alveolar macrophages harbored increased bacterial numbers due to reduced iNOS levels in Caspase-12/2

mice. Pharmacological blockade of the IL-1 receptor in CP infected wild-type mice phenocopies Caspase-1-deficient mice,
and administration of recombinant IL-1b rescues CP infected Caspase-12/2 mice from mortality, indicating that IL-1b
secretion is crucial for host immune defense against CP lung infection. In vitro investigation reveals that CP-induced IL-1b
secretion by macrophages requires TLR2/MyD88 and NLRP3/ASC/Caspase-1 signaling. Entry into the cell by CP and new
protein synthesis by CP are required for inflammasome activation. Neither ROS nor cathepsin was required for CP infection
induced inflammasome activation. Interestingly, Caspase-1 activation during CP infection occurs with mitochondrial
dysfunction indicating a possible mechanism involving the mitochondria for CP-induced inflammasome activation.
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Introduction

Chlamydia pneumoniae (CP) is a widely prevalent [1] intracellular

Gram-negative pathogen that causes upper respiratory infections

and contributes to the development of chronic inflammatory

conditions such as asthma [2], atherosclerosis [3], arthritis [4], and

chronic obstructive pulmonary lung disease (COPD) [5].

In a mouse model of CP lung infection, effective host defense

requires signaling through TLR/MyD88 [6] and NOD/Rip2 [7].

Toll-like receptor (TLR) 2 and TLR4 both use MyD88 to

recognize CP [8], although TLR2 plays the larger role in host

responses to CP infection [9]. MyD88 is also required for IL-1b
signaling and CP infection has been shown to elicit strong IL-1b
secretion in a number of experimental models [10,11,12]. In

addition, alveolar macrophages and peripheral blood mononucle-

ar cells obtained from COPD patients after CP infection secrete

significantly higher amounts of IL-1b and lower amounts of IL-

1R-antagonist, suggesting that IL-1b potentially mediates the

pathogenesis of CP infection in COPD [13].

Secretion of IL-1b, a potent pyrogen that elicits a strong pro-

inflammatory response [14], is tightly controlled by a diverse class of

cytosolic complexes known as inflammasomes [15]. The NOD-like

Receptor (NLR) family member NLRP3 forms cytosolic oligomers

with apoptosis-associated speck like protein (ASC) in dendritic cells

[16] and macrophages [17], triggering autocatalytic activation of

caspase-1 [18]. Caspase-1, in turn, cleaves pro-IL-1b, producing

mature IL-1b. Under normal circumstances, NLRP3 undergoes

bipartite activation [15]. The first signal, often NF-kB activation,

induces pro-IL-1b and NLRP3 expression. The second signal, any

one of a variety of unrelated entities—particulate matter [19],

crystals [20], aggregated b-amyloid [21], extracellular ATP [22,23]

and microbial toxins [24]—activates NLRP3. Exactly how these

diverse cytosolic danger signals trigger the same inflammasome still

remains unresolved and is the subject to intense research currently.

Here we show that caspase-1 dependent IL-1b secretion is

critical for host defense in a mouse model of C. pneumoniae lung

infection. Delayed cytokine production and reduced iNOS levels

results in delayed bacterial clearance and increased mortality in

caspase12/2 mice. Furthermore, administration of recombinant

IL-1b to caspase-12/2 mice rescues the phenotype, while

administration of the IL-1RA to wild type mice phenocopies

caspase-12/2 mice. CP infection induced IL-1b production was

dependent on TLR2/MyD88 signaling and required activation of

the NLRP3/ASC/Caspase-1 inflammasome.
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Results

Caspase-1 and IL-1b are critical for host innate immune
defense against pulmonary CP infection

To determine the role of Caspase-1 (Casp1) in host defense

against CP, we infected Casp12/2 mice intratracheally with

1.56106 inclusion forming units (IFU) of CP. At this infectious

dose, Casp12/2 mice exhibit significantly greater mortality

(Figure 1A), pulmonary bacterial titers (Figure 1B) and inflamma-

tory lung damage (12 days post-infection) compared to wild-type

C57BL/6 (WT) mice (Figure 1C). Examination of the broncho-

alveolar lavage fluid (BALF) and lung homogenates from CP

infected Casp12/2 mice revealed significantly greater leukocyte

recruitment, particularly of macrophages and lymphocytes, at days

12 post infection compared to WT mice (Figure 1D). Given that

innate immune defenses limit CP replication and colonization and

that Casp1 is required for processing of pro-IL-1b [25], we

hypothesized that cytokine production would differ in Casp12/2

and WT mice. IL-1b was undetectable in the BALF (at all time

points) and in homogenates (days 5 and 12) in Casp12/2 mice

(Figure 1E). IL-1b was detected only at the earliest time in the

BALF of WT mice. Of note, IL-1b was detected by ELISA on day

1 in Casp12/2 lungs. This is most likely pro-IL-1b released as a

result of cell lysis during tissue homogenization.

Early on at days 1 and 3 post-infection, we observed a

significant delay in IFN-c and IL-6 production in CP infected

Casp12/2 mice compared to WT animals, but these cytokines

were significantly elevated on days 5 and continued trending

higher on day 12 (Figure 1E). Notably, CP infected Casp12/2 and

WT mice exhibited no significant differences in IL-12p40

secretion at any time point examined (Figure 1E). Taken together,

these results indicate that Casp1 plays a key role in initiation of

early inflammatory responses that lead to bacterial clearance in the

lungs and survival from infection.

We next sought to determine the predominant lung cell type

infected by CP in Casp12/2 mice. Since CP is an obligate

intracellular pathogen, we analyzed lung cells by intracellular flow

cytometry after infection by CP in Casp12/2 mice vs. WT mice. CP

was predominantly found in alveolar macrophages (AM) and, to a

lesser degree, in neutrophils and dendritic cells (DC) on day 12

(Figure 2A–B). Specificity of staining for CP is shown using isotype

control (Figure S1). There were relatively more AM in infected

Casp12/2 mice than their wild-type counterparts (Figure 2C),

suggesting that AM could be a reservoir of bacterial replication

after pulmonary infection in Casp12/2 mice.

We next wished to determine if AM isolated from CP infected

Casp12/2 mice exhibited an immune defect compared to cells

from infected WT mice. Indeed, we found that, unlike WT AM,

Casp12/2 AM did not induce iNOS following CP infection at day

2 (Figure 2D). Nitric oxide (NO) produced by macrophages after

cell activation by IFN-c hampers the growth of CP [26], and these

findings are consistent with the delayed IFN-c production

observed in Casp12/2 mice (Figure 1C), supporting a model

whereby IL-1b secretion by AM induces early IFN-c that, in turn,

activates AM at the infection site to induce iNOS and clear CP.

To verify that Casp1 activation exerted its protective role via

activating IL-1b secretion (as opposed to IL-18), wild-type mice

were injected daily with either IL-1 receptor antagonist (IL-1RA)

or a control vehicle. Like Casp12/2 mice, treatment of WT mice

with IL-1RA on days -1, 0 and 1 relative to CP infection caused a

significant increase in mortality (Figure 3A) and in bacterial load

(Figure 3B) in the lung (at day 5, p,0.001) compared to vehicle

control. Treatment timing was crucial, as early treatment (days 21

to 1 or days 21 to 4) with IL-1RA, but not later dosing with IL-

1RA (days 2 to 4), resulted in impaired bacterial clearance at day 5

(Figure 3B), suggesting that the immunoprotective effects of IL-1b
occur early during lung infection with CP.

To further verify the role of IL-1b signaling in host defense

against CP infection, we performed a complementary experiment

where CP infected Casp12/2 mice were injected with either

recombinant IL-1b (rIL-1b) or a control vehicle. Early rIL-1b
treatment during infection (i.e. days 0, 1, and 2 post-infection)

rescued Casp12/2 mice, restored survival (Figure 3C) and reduced

lung bacterial load (Figure 3D). Yet, mice treated later (days 2, 3

and 4 post-infection) showed significantly increased bacterial

counts (p,0.05) relative to early-treated mice (Figure 3D),

indicating that IL-1b secretion is critical for initial host immune

responses that limit bacterial proliferation in the lung.

Macrophage TLR2/MyD88 and NLRP3/ASC/Caspase-1 are
required for IL-1b secretion in response to CP

As AM are one of the major CP-harboring cells in lung, we

sought to elucidate the mechanism of CP induced IL-1b
production and secretion by macrophages in vitro. Western analysis

clearly indicated that CP infection of macrophages induced

activation of caspase-1 and secretion of cleaved IL-1b (Figure

S2). To determine which signaling pathway played a role in CP

induced pro-IL-1b production, we infected MyD88-, TRIF- or

RIP2-deficient BMDM with CP for 24 hours and then measured

IL-1b secretion. MyD88, but neither TRIF nor RIP2 signaling,

was required for IL-1b secretion in response to CP (Figure 4A–B).

Further investigation revealed that pathogen sensing by TLR2/

MyD88 is of central importance to induction of both IL-1b and

TNFa secretion by BMDM during CP infection (Figure 4C–D). At

8 hours and, more so, at 24 hours post-infection, cultured BMDM

infected with CP secreted IL-1b in a Casp1-dependent manner

(Figure 5A and 5C). On the contrary, neither 8 hr nor 24 hr

treatment of BMDM with UV-killed CP (UVCP) stimulated IL-1b
secretion (Figure 5A and 5C), indicating that active CP infection is

required to induce IL-1b secretion. Casp12/2 BMDM demon-

strated wild-type phagocytic capability (Figure S3A) and TNFa
production (Figure 5B and 5D). Additionally, bacterial replication

in Casp12/2 BMDM was normal (Figure S3B). Though UVCP

was unable to induce IL-1b secretion by BMDM, we hypothesized

that UVCP induced pro-IL-1b production. To test this, we treated

BMDM with UVCP and then exposed them to a high

extracellular concentration of ATP (5 mM), a stimulus known to

activate Casp1 and IL-1b release via the NLRP3 inflammasome.

Interestingly, BMDM treated with UVCP for 6 hours and then

exposed to ATP for 2 additional hours induced IL-1b secretion

(Figure 5C). ATP treatment also increased IL-1b secretion in

BMDM after a 6 hours (but not 24 hours) infection with live CP

(Figure 5A and 5C); but BMDM treated with UVCP for 24 hours

and then challenged with ATP did not secrete IL-1b (Figure 5A).

Consistently, UVCP- and LPS-induced pro-IL-1b was decreased

at 18 h and 24 h (Figure S4), suggesting that pro-IL-1b is

degraded if Casp1 is not activated within a narrow time window.

Since the NLRP3 inflammasome activates Casp1 in response to

a wide array of stimuli, we hypothesized that CP may also induces

IL-1b secretion via NLRP3. Nlrp32/2 and Asc2/2 BMDM

infected with live CP secreted dramatically less IL-1b (Figure 5E).

Nevertheless, Nlrp32/2 and Asc2/2 BMDM retained their ability

to secrete TNFa at WT levels (Figure 5F). This indicates that CP

infection of macrophages induces IL-1b secretion via the NLRP3/

ASC inflammasome.

Role of IL-1b in C. pneumoniae Infection
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Figure 1. Casp1 plays a critical protective role during CP lung infection. (A) Casp12/2 mice or WT were infected intratracheally with 1.56106

inclusion forming units (IFU) of CP (n = 10). The Kaplan-Meier survival curve is shown. Statistical significance was determined by Fisher’s exact test. (B)
Bacterial burden in infected (16106 IFU/mouse) WT and Casp12/2 lung homogenates was also quantified. Data shown are representative of three
independent experiments. (C) Lungs were harvested 12 days after infection (16106 IFU/mouse), fixed in 10% buffered formalin, embedded in paraffin,
sectioned, stained with hematoxylin and eosin (H&E, representative images shown) and scored for tissue damage. (D) BALF was harvested at days 1,
3, 5 and 12 following CP infection (16106 IFU/mouse) and the number of macrophages (MAC), polymorphonuclear cells (PMN) and lymphocytes

Role of IL-1b in C. pneumoniae Infection
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NLRP3 activation by CP requires cellular entry and new
protein synthesis and is independent of ROS production

To further understand the mechanism by which live CP

activates the NLRP3 inflammasome in macrophages, we tested

whether CP cell entry is required for IL-1b secretion. In the

presence of cytochalasin D, an inhibitor of actin polymerization

and phagocytosis, CP-induced IL-1b secretion (but not TNFa
secretion) by BMDM was significantly reduced in a dose

dependent manner, suggesting that NLRP3 activation requires

bacterial uptake by the host cell (Figure 6A). Cytochalasin D did

not affect LPS + ATP induced IL-1b production (data not shown).

We next examined whether phagosomal cathepsin B activity

plays a role in IL-1b secretion in response to CP infection. An

inhibitor of cathepsins B and L, N-Acetyl-Leu-Leu-Met-al (Ac-

LLM), did not alter IL-1b secretion induced by CP, but did reduce

alum induced IL-1b secretion from LPS-primed BMDM

(Figure 6B). Therefore, Cathepsin B activity likely does not play

a significant role in CP-induced inflammasome activation.

To test whether ROS play a role in inflammasome activation

during CP infection, we treated CP infected BMDM with the

antioxidant N-acetyl-L-cysteine (NAC). Although we observed that

NAC attenuates CP induced IL-1b secretion, we also found that

this antioxidant reduces TNFa production (Figure 6C). A

concomitant reduction of both IL-1b and TNFa secretion was

also observed when LPS-primed BMDM were pre-treated with

NAC before ATP addition (Figure 6D). Indeed, others have also

observed NF-kB inhibition by antioxidants [27]; therefore, we

believe this non-specific effect precludes using NAC to reach any

conclusions about ROS in CP- induced NLRP3 activation.

In an effort to clarify if ROS plays any role in CP- induced IL-

1b production, we measured directly the amount of ROS

produced during live CP infection and during treatment with

UVCP. Remarkably, UVCP displayed a ROS generation profile

nearly identical to that of live CP in macrophages (Figure 6E) and

that the ROS generation was completely dependent on the

NADPH phagocyte oxidase pathway, as macrophages defective in

this pathway (gp91phox2/2) did not make ROS in response to CP

infection (Figure 6E) [28]. Finally, we assessed the ability of CP

infection to induce IL-1b secretion in gp91phox2/2 BMDM. Not

surprisingly, given the previous data, gp91phox2/2 BMDM were

unaltered in their ability to secrete lL-1b in response to CP

infection (Figure 6F). Additionally, LPS plus ATP induced IL-1b
secretion was also not affected. Since live CP but not UVCP

treatment induces IL-1b secretion but both induce same amount

of ROS, and the lack of phagocytic ROS in gp91phox2/2 BMM did

not alter IL-1b secretion, we conclude that ROS generated during

CP infection are not required for NLRP3 inflammasome

activation.

To shed more light on exactly how CP activates NLRP3, we

next set out to determine the role of bacterial protein synthesis in

CP-induced IL-1b secretion. Treatment of CP infected BMDM

with the antimicrobial chloramphenicol, an inhibitor of the

bacterial ribosome, led to nearly complete inhibition of IL-1b
secretion, without affecting TNFa production (Figure 6G). As

expected, CP inclusion formation and size were dose dependently

inhibited by chloramphenicol treatment (Figure S5A–B). This

result indicates that de novo protein synthesis by CP is necessary for

Casp1 activation in infected BMDM. The addition of chloram-

phenicol at a similar concentration did not affect LPS + ATP

induced IL-1b secretion (data not shown).

CP infection in macrophages induces mitochondrial
dysfunction

Two recent reports indicated that the mitochondrial dysfunction

might be an important link in NLRP3 activation, while the exact

mechanism how the mitochondria plays a role in this activation

must await additional mechanistic studies [29,30]. Since both

ROS and cathepsin did not appear to play a role in CP infection

induced inflammasome activation, we decided to look at the role

of mitochondria. We determined the effect of CP infection on

inner mitochondrial membrane potential (DYm), a readout of

mitochondrial function. Infection with live CP, but not UVCP

treatment, resulted in a significant decrease in DYm (Figure 7A) as

measured by a tetramethyl rhodamine methyl ester (TMRM)

incorporation assay in BMDM, implicating a potential role of the

mitochondria in NLRP3 inflammasome activation and IL-1b
release. Utilizing Casp12/2 BMDM, we found that CP induced

mitochondrial depolarization independent of Casp1 (Figure 7A),

suggesting that this observation is independent of pyroptosis,

which by definition is Casp1-dependent. In an effort to further

characterize the mitochondrial dysfunction induced by CP

infection, we analyzed the rate of O2 consumption in macrophag-

es. Impressively, either CP infection or the addition of ATP

drastically reduced the rate of oxygen consumption in these cells,

indicating a severe mitochondrial dysfunction under these

conditions (Figure 7B). Furthermore, we determined whether

mitochondrial depolarization was observed in vivo following CP

infection. CP infection significantly decreased TMRM incorpora-

tion in AM but not non-metabolic labeling of mitochondria (Mito

tracker) (Figure 7C). In addition to in vitro data, mitochondrial

dysfunction was observed in vivo following CP infection. Thus it

seems probable that CP infection induced inflammasome activa-

tion involves mitochondrial dysfunction and that this dysfunction

is independent of caspase-1 activity.

Discussion

We show here that Casp1-dependent IL-1b secretion is critically

required for host defense against CP lung infection. Casp12/2 mice

displayed delayed pulmonary bacterial clearance leading to

increased mortality compared to WT mice. Macrophages play a

key role in this process, as they respond to CP via the NLRP3

inflammasome. Casp12/2 mice showed delayed IFN-c production

and defective iNOS activation in Casp12/2 AM, consistent with

reports demonstrating a critical role of IFN-c and iNOS in

clearing CP infection [26].

In our model of CP lung infection, IL-1b plays a critical role in

orchestrating a successful host defense against infection. In

addition to Casp-12/2 mice, blockade of IL-1b signaling using

the IL-1RA resulted in increased mortality to a CP infection.

Indeed, early IL-1b signaling proved to be critical as rIL-1b given

to caspase-12/2 was able to rescue these mice from a lethal CP

infection, but only when given at the earliest time points. These

data also highlight that it is unlikely that IL-18 plays a significant

role during CP infection.

IL-1b has been known to be an important initiator of acute

phase inflammatory responses to infections [31] and more

(LYM), as well as the total cell number, was determined (n = 5,9). (E) Cytokine (IL-1b, IFN-c, IL-6, and IL-12p40) levels in both BALF and lung
homogenates were determined using ELISA. Data for all experiments shown represent at least two independent experiments. Note on statistical
significance: * p,0.05, ** p,0.01, *** p,0.001 (Student’s t test used unless otherwise noted).
doi:10.1371/journal.pone.0021477.g001

Role of IL-1b in C. pneumoniae Infection
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Figure 2. Casp12/2 alveolar macrophages do not produce iNOS in response to CP infection. (A and B) Compared to WT, Casp12/2

phagocytes contain more Chlamydia and macrophages are the principal CP harboring cell type. Single-cell suspensions from CP infected lungs of WT
and Casp12/2 were prepared 12 days following infection. Cells were then stained for characteristic leukocyte markers and stained for intracellular CP
with a FITC conjugated anti-Chlamydia monoclonal antibody (mAb), and analyzed by flow cytometry to determine which cell types contain CP.
Representative flow cytometry data plots of CD45+ cells, F4/80+ cells (CD11c+ gated), and Ly6G+ (CD11b+ gated) cells are shown. (C) Also shown are
the proportions of total lung leukocytes that contain CP in WT and Casp12/2 mice and the absolute numbers of leukocytes in CP infected lungs from
WT and Casp12/2 mice. (D) iNOS expression in alveolar macrophages (CD11c+, F4/80+) 2 days post-infection. Representative histograms are shown

Role of IL-1b in C. pneumoniae Infection
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recently, found to play an critical role in establishing a Th17

response [32]. In our model, we found that in caspase-12/2 mice

IFN-c production was significantly delayed, resulting in poor

bacterial clearance. It has been well established that IFN-c is

required for proper clearance of CP in mice [33,34]. We also

found that iNOS was not induced in alveolar macrophages in

caspase-12/2 mice at day 2. While alveolar macrophages are a

major site of CP replication, they also play a critical role in

bacterial clearance. Importantly, iNOS is critically important for

CP clearance and can be induced by both IFN-c and IL-1b [26],

[35]. Therefore, the defective iNOS induction in alveolar

macrophages early during infection (day 2) most likely plays a

significant role in the defective bacterial clearance.

IL-1b was found to be critically important for several other

bacterial infections, including S. aureus, B. anthracis, and M.

tuberculosis. Miller et al. found that mice lacking IL-1b developed

large skin lesions due to a reduction in neutrophil recruitment

during a cutaneous S. aureus infection [36]. In another study,

Moayeri et al. found similar results indicating the requirement of

IL-1b for proper neutrophil recruitment against B. anthracis

infection [37]. Finally, IL-1b2/2 mice showed greatly increased

mortality to M tuberculosis infection [38]. Interestingly, these mice

did not have any defects in nitrite production or IFN-c or cellular

recruitment, thus the mechanism by which IL-1b acts is unknown

in this model. Taken together and including our data, it is clear

that IL-1b can play a critical role in the host defense against a

bacterial infection.

In our study we found that CP infection induced IL-1b
processing through TLR2/MyD88 signaling and activation of

the NLRP3 inflammasome. This process required live bacteria, as

UVCP did not induce IL-1b secretion without additional stimuli

such as ATP. Additionally, entry into the cells was required for

inflammasome activation as was active protein synthesis in the

bacteria. CP does possess a type III secretion system and it is

possible that it might be involved in NALP3 inflammasome

activation. However, as there is no genetic manipulation available

yet for CP and the type III secretion inhibitors proposed to be

specific against CP [39] have many off target and non-specific

inhibitory effects, the direct role of type III secretion in NALP3

activation can not be assessed currently.

Similar to our findings, He et al. recently reported that CP

required TLR2 and the NLRP3/ASC inflammasome for IL-1b

and the mean fluorescence intensity (MFI) is indicated. Data for all experiments shown represent at least two independent experiments. Note on
statistical significance: * p,0.05 (Student’s t test used unless otherwise noted).
doi:10.1371/journal.pone.0021477.g002

Figure 3. IL-1 signaling is crucial for host survival and bacterial clearance during CP lung infection. (A and B) WT mice were daily given
an IL-1RA (500 mg, i.p.) or vehicle control and then infected with CP (1.56106 IFU/mouse). The Kaplan-Meier survival curve is shown. Bacterial burden
in lung homogenates was determined for IL-1RA and vehicle control treated mice 5 days post infection with 16106 IFU (n = 8). (C and D) Casp12/2

mice were treated with rIL-1b (8 ng, i.p.) daily for 3 days or vehicle control and then infected with CP (1.56106 IFU/mouse) (n = 5). The Kaplan-Meier
survival curve is shown. Bacterial burden in lung homogenates of rIL-1b and vehicle control treated mice 5 days after infection with 16106 IFU (n = 6–
12). Data for all experiments shown represent at least two independent experiments. Note on statistical significance: one-way ANOVA with Tukey’s
post-hoc test - * p,0.05, ** p,0.01, *** p,0.001.
doi:10.1371/journal.pone.0021477.g003
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production [40]. However, unlike our study, they were unable to

determine a role for IL-1b in the model they used. These

investigators used IL-1R deficient mice, and these mice showed

little difference if any on the course of infection. We demonstrate

for the first time the critical role of IL-1b in host defenses against

CP lung infection. While we used caspase-12/2 mice, which would

affect both IL-1b and IL-18 production, our reconstitution

experiment with IL-1b in caspase-12/2 mice, plus the use of the

IL-1RA in WT mice, clearly showed that IL-18 is dispensable in

the host response to CP infection. A source of the differences

between our results and those by He et al. could be due to different

models used, including different CP strains used in these two

studies (A03 strain by He et al. as opposed to CM-1 strain used in

our study), and a much higher dose of CP (26107) used by He et al.

versus (16106) used in our study. CP strain-specific differences

likely led to the much milder lung infection seen in the study by He

et al. and perhaps this accounts for the large differences found

between our study and theirs regarding infection course and

mortality following murine CP infection.

It is currently not clear how CP infection activates the NLRP3

inflammasome. A wide range of cytosolic danger signals have been

shown to lead to activation of the NLRP3 inflammasome. It is

believed that three broad physiological changes—reactive oxygen

species (ROS) generation, potassium cation (K+) efflux, or

lysosomal leakage—activate the NLRP3 inflammasome [41],

while direct mechanistic studies as to how they activate NLRP3

are yet to be provided. Furthermore, these three proposed models

of NLRP3 activation are not even reconciled with one another and

no model that offers a unifying paradigm exists. Our data indicates

that ROS is not involved in activating the NLRP3 inflammasome

during CP infection. Even though UVCP and CP induced similar

amounts of ROS in macrophages, UVCP does not elicit IL-1b
secretion while live CP does. Moreover, our results call in to

question results from studies that use the antioxidant N-acetyl

cysteine (NAC). Though this agent was found to reduce IL-1b
secretion, it also caused a concomitant reduction in TNF-a
production, indicating that NAC likely affects pro-IL-1b produc-

tion via NF-kB. Lastly, in agreement with previous studies [42], we

report here that macrophages deficient in NADPH oxidase

activity, and thus in phagocytic ROS production (gp91phox2/2),

exhibit normal IL-1b production in response to NLRP3 stimuli,

refuting the role of ROS in NLRP3 activation. However these

data only determined the role for cellular derived ROS, not

mitochondrial derived ROS. Recent publications have found an

important role for mitochondrial ROS in NLRP3 activation,

indicating an important role for this organelle [29,30].

The lysosome rupture model also does not seem to be

mechanism of CP infection induced NLRP3 inflammasome

activation, as the cathepsin inhibitor that we used had no effect

on CP-induced IL-1b production. This observation is different

than those reported by He et al. who observed that cathepsin

activity and lysosomal acidification both play a role in CP-induced

IL-1b secretion. However, the inhibitors used in that study, CA-

074Me (a cathepsin B and L inhibitor) and bafilomycin A

(a lysosomal acidification inhibitor), both have off-target effects (as

do most pharmacological inhibitors) [43,44]. Additionally, CP is a

small infectious elementary body (EB); 300–600 nm diameter

compared to other intracellular bacteria, and so internalization of

the EB is unlikely to exceed the capacity of the phagolysosome. As

part of the CP life cycle, infectious EB converts to the vegetative

reticulate body (RB), which forms inclusion bodies in the host cell

phagosome (6.0–7.4 mm diameter). Though these inclusions might

be large enough to cause vesicle rupture, Chlamydia are known to

actively inhibit the process of phagolysosomal fusion [45]. So even

if CP-containing phagosomes ruptured, lysosomal enzymes would

ostensibly not be present. Also, we found that CP is able to induce

Figure 4. TLR2/MyD88 is indispensable for CP–induced IL-1b and TNFa production by macrophages. (A–B) WT, MyD882/2, Trif2/2, and
Rip22/2 BMDM were treated with live C. pneumoniae (MOI 2.5, 5, 10), LPS (1 mg/ml), PGN, poly I:C, muramyl dipeptide (MDP), and CpG DNA and as
indicated, a proportion of the cells were also treated with 5 mM ATP for the final 2 h of culture. The culture supernatants were assessed for IL-1b and
TNFa production by ELISA. (C–D) WT, Tlr22/2, Tlr42/2, and Tlr92/2 BMDM were treated with live C. pneumoniae (MOI 2.5, 5, 10), LPS (1 mg/ml), PGN,
and CpG DNA and as indicated, a proportion of the cells were also treated with 5 mM ATP for the final 2 h of culture. The culture supernatants were
assessed for IL-1b and TNFa production by ELISA. Data for all experiments shown represent at least three independent experiments.
doi:10.1371/journal.pone.0021477.g004
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IL-1b secretion in the presence of a specific cathepsin B inhibitor,

Ac-LLM, further arguing against lysosomal degradation as the

means by which CP activates the NLRP3 inflammasome.

Two recent papers have identified mitochondrial dysfunction as

being involved in the activation of the NLPR3 inflammasome,

especially in relation to autophagy. Zhou et al. found that both

ROS generation and inflammasome activation are suppressed

when mitochondrial activity is dysregulated by inhibition of the

voltage-dependent anion channel [30]. Nakahira et al. also found

that mitochondrial dysfunction played a role in inflammasome

activation, and that mitochondrial DNA might play a role in this

[29]. To this end we investigated the effect of CP infection on

mitochondrial function. Our results indicated that both CP

infection and the commonly used inflammasome activator LPS

plus ATP resulted in mitochondrial dysfunction as measured by a

reduction in mitochondrial membrane potential and reduced O2

consumption. Identifying mitochondria as a player in NLRP3

inflammasome induction could help explain the many differing

pathways that result in NLRP3 activation. Both ROS and

cathepsins released from the lysosome can affect mitochondrial

membrane potential, as can K+ levels in the cell [46], [47,48] [49].

With the addition of a bacterial infection to this mix, the role that

mitochondria might play in inflammasome activation remains an

important subject and may hold the key to allow us to understand

the mechanism of NLRP3 activation.

Materials and Methods

Ethics Statement
All experiments were performed according to the guidelines and

approved protocols (IACUC #2097) of the Cedars-Sinai Medical

Center Institutional Animal Care and Use Committee and were

housed under specific pathogen free conditions. Cedars-Sinai

Medical Center is fully accredited by the Association for

Assessment and Accreditation of Laboratory Animal Care

(AAALAC International) and abides by all applicable laws

governing the use of laboratory animals. Laboratory animals are

maintained in accordance with the applicable portions of the

Animal Welfare Act and the guidelines prescribed in the DHHS

publication, Guide for the Care and Use of Laboratory Animals.

Figure 5. Macrophage NLRP3/ASC/Caspase-1 inflammasome are required for IL-1b secretion in response to CP. (A, B, C, and D) IL-1b
and TNFa concentrations were measured in the culture supernatants of WT and Casp12/2 BMDM treated for 24 h or 8 h with CP
(MOI 2.5, 5, 10), UVCP (MOI 2.5, 5, 10), lipopolysaccharide (LPS, 1 mg/ml) or peptidoglycan (PGN, 10 mg/ml). As indicated, a proportion
of cells were also treated with 5 mM ATP for the final 2 h of culture. (E and F) IL-1b and TNFa concentrations in the culture supernatants of WT, Asc2/2,
and Nlrp32/2 BMDM were measured 24 hours after treatment with UVCP (MOI 2.5, 5, 10), live CP (MOI 2.5, 5, 10), LPS or PGN. As indicated, a proportion of
cells were also treated with 5 mM ATP for the final 2 h of culture. Data shown are representative of at least three independent experiments. Note on
statistical significance: * p,0.05, ** p,0.01, *** p,0.001 (Student’s t test used unless otherwise noted).
doi:10.1371/journal.pone.0021477.g005

Role of IL-1b in C. pneumoniae Infection

PLoS ONE | www.plosone.org 8 June 2011 | Volume 6 | Issue 6 | e21477



Figure 6. Phagocytosis and bacterial de novo protein synthesis are necessary to activate the NLRP3 inflammasome in CP infected
macrophages. (A) IL-1b (black bars) and TNFa (gray bars) secretion by CP infected (MOI 10, 24 h) BMDM in the presence or absence of cytochalasin
D was quantified using ELISA. (B) CP activation of the NLRP3 inflammasome in macrophages is cathepsin independent. Using ELISA, IL-1b
concentration in culture supernatants of CP infected (MOI 10, 24 h) BMDM was determined in the presence of increasing amounts of Ac-LLM. Also,
LPS-primed (1 mg/ml, 8 h) BMDM treated with Alum (130 mg/ml, final 2 h of culture) were given increasing amounts of Ac-LLM. (C and D) Antioxidant
(N-acetylcysteine, NAC) treatment does not specifically inhibit IL-1b secretion. ELISA was used to determine IL-1b and TNFa concentration in the
culture supernatants of CP (MOI 10, 24 h) infected BMDM and LPS-primed (8 h), ATP treated (5 mM, final 2 h culture) BMDM in the presence of
increasing doses of NAC. (E) A fluorometric assay was used to quantitate ROS production by BMDM in response to UVCP or live CP. (F) gp91phox

defected BMDM were treated with live CP (MOI 2.5, 5, 10, 24 h), or alternatively, 6 h after LPS priming BMDM were then treated with ATP (5 mM) and
cultured for an additional 2 h. Culture supernatant was then collected and IL-1b concentration was measured by ELISA. (G) ELISA was used to
determine IL-1b and TNFa concentration in the culture supernatants of CP (MOI 10, 24 h) infected BMDM in the presence of increasing doses of
chloramphenicol. Data shown are representative of two or more independent experiments. Note on statistical significance: * p,0.05, ** p,0.01,
*** p,0.001 (Student’s t test used unless otherwise noted).
doi:10.1371/journal.pone.0021477.g006
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Mice
Casp12/2 mice [50] were kindly provided by Dr. Richard

Flavell (Yale Univ, New Haven, CT). Nlrp32/2 mice and Asc2/2

mice [23] were generously provided by Dr. Katherine Fitzgerald

(University of Massachusetts Medical School, Worcester, MA).

C57BL/6, gp91phox2/2 and Trif2/2 mice were obtained from

Jackson Labs. MyD882/2, Rip22/2, Tlr22/2, Tlr42/2, and

Tlr92/2 (Naiki et al., 2005; Shimada et al., 2009) mice were

maintained according to Cedars-Sinai Medical Center Institution-

al Animal Care and Use Committee guidelines. All mice were used

at 8-12 weeks of age. Casp12/2 and MyD882/2 mice were

backcrossed for eight generations, Tlr92/2 and Rip22/2 mice

were backcrossed for 10 generations, Tlr22/2 and Tlr42/2 mice

were backcrossed for 16 generations, Gp91phox2/2 mice were

backcrossed for 13 generation, and Nlrp32/2 and Asc2/2 mice

were backcrossed for 9 generations with C57BL/6 mice. Trif2/2

mice were generated on C57BL6 mice and once were backcrossed

at Jackson laboratory.

Reagents
LPS from E. coli (InvivoGen, San Diego, CA), recombinant IL-1

receptor antagonist (IL-1RA) (Kineret, Amgen), recombinant IL-

1b (eBioscience, San Diego, CA), N-Acetyl-L-leucyl-L-leucyl-L-

methional (Tocris Bioscience, Ellisville, MO), Mito tracker green

(Invitrogen, Carlsbad, CA), adenosine 50-triphosphate, chloram-

phenicol, cytochalasin D, staurosporine, and peptidoglycan from

S. aureus and N-Acetyl-L-cysteine (Sigma, St. Louis, MO) were

purchased commercially.

Infection and Bacterial Quantification
Lung homogenates from C. pneumoniae (CM-1, ATCC, Manassa,

VA) infected mice were propagated in HEp2 cells and counted as

previously described [7].

Histopathological analysis
Lungs were fixed in formalin buffer, paraffin-embedded, and

hematoxylin and eosin (H&E)-stained sections were scored by a

trained pathologist blinded to the genotypes as previously

described [7].

Detection of cytokines
The cytokine concentrations in the BALF, lung homogenates or

culture supernatant were determined using by OptiEIA Mouse IL-

6 ELISA Set (BD Biosciences, San Jose, CA, USA) and Mouse

IFNc ELISA, Mouse IL-12p40 ELISA, Mouse IL-1b ELISA and

Mouse TNFa ELISA (eBioscience). The assays were performed as

described in manufacturers’ protocols.

Measurement of mitochondrial membrane potential
(Dym)

Cells were stained with the cationic dye TMRM (AnaSpec,

Fremont, CA, USA) as described in the manufacturer’s protocol.

Cells were loaded with 200 nm TMRM for 30 min, washed three

times with PBS and fluorescence was measured using a

SpectraMaX M2 Microplate Reader (Molecular Devices Corp.,

Sunnyvale, CA, USA) or by fluorescence microscopy (Nikon

Eclipse T2000).

Measurement of ROS production
Cells were incubated in phenol red-free RPMI1640 medium

containing 10 mM 6-carboxy-2’,7’-dichlorodihydrofluorescein di-

acetate (Molecular Probes, Eugene, OR) for 30 min and then

infected with CP. The loading buffer was removed, washed and

fluorescent intensity was measured using a microplate reader.

Measurement of mitochondrial oxygen consumption
Oxygen consumption rates (OCR) were measured using an

XF24 Extracellular Flux Analyzer (Seahorse Bioscience). For the

XF24 assay, cells were equilibrated with DMEM lacking

bicarbonate at 37uC for 1 hour in an incubator lacking CO2.

Mixing, waiting, and measurement times were 0.5, 2, and 3 min,

respectively (an extra 0.5 min was added after each injection).

Oligomycin, blocks phosphorylation of ADP to ATP, thus

preventing mitochondrial respiration, and providing a basal level

of O2 consumption during the assay. FCCP is an uncoupling agent

and provide maximal O2 consumption under a given condition.

Rotenone is a respiration inhibitor that blocks at mitochondrial

respiratory complex 1. These were used to show the specificity of

the reaction.

Immunoblot
BMDM were stimulated for indicated time, supernatants were

collected and proteins were precipitated by methanol-chloroform

extraction, and cell lysates were collected. Immunoblot analysis

was done with described antibodies; anti mouse caspase-1 p10 (sc-

514; Santa Cruz Biotechnology), anti-mouse IL-1b (AF-401-NA;

R&D Systems), anti-GAPDH (6C5; Santa Cruz Biotechnology).

Tissue damage scoring
Tissue damage was assigned as arbitrary score of 0 (normal =

no inflammation), 1 (minimal = perivascular, peribronchial, or

patchy interstitial inflammation involving less than 10% of lung

volume), 2 (mild = perivascular, peribronchial, or patchy

interstitial inflammation involving 10–20% of lung volume), 3

(moderate = perivascular, peribronchial, patchy interstitial, or

diffuse inflammation involving 20–50% of lung volume), and 4

(severe = diffuse inflammation involving more than 50% of lung

volume).

Flow cytometric analysis
Isolated single cells were stained with anti-F4/80 mAb (clone

BM8), anti-CD11c mAb (clone HL3). For intracellular iNOS

staining, cells were permeabilized using Cytofix/Cytoperm kit (BD

Biosciences) and stained with conjugated anti-mouse iNOS mAb

(clone 6/iNOS/NOS Type II, BD Bioscienses). The lymphocytic

makeup of the lungs after infection was analyzed by flow

Figure 7. CP infection induces mitochondrial dysfunction. (A) WT and Casp12/2 BMDM were treated with UVCP (MOI 2.5, 5, 10), or live C.
pneumoniae (MOI 2.5, 5, 10) and then examined for TMRM incorporation. (B) Oxygen consumption rate (OCR) was measured in macrophages (MCL)
infected with CP (MOI 10, 16 h) or treated with ATP (5 mM, 1 h) by using an XF24 Extracellular Flux Analyzer. After incubation in basal media, 1 mM
oligomycin, 1 mM carbonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP), and 1 mM rotenone were each sequentially injected as indicated, and
the response was monitored. (C) BALF was collected 24 h post CP infection in WT mice. Cells were stained with anti-F4/80 mAb and labeled with
TMRM and Mito tracker green for 30 min. Mitochondrial membrane potential in alveolar macrophage (F4/80+, SSC-hi) were analyzed by flow
cytometry. Statistical significance was determined by Student’s t test in comparison to mock control (n = 4). Data shown are representative of three or
more independent experiments. Statistical significance was determined by Student’s t test in comparison to non-treated cells (* p,0.05, ** p,0.01,
*** p,0.001).
doi:10.1371/journal.pone.0021477.g007
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cytometry of lung homogenates. Briefly, lymphocytes were isolated

by digesting the lung tissue at 37uC for 1 h in HANKS buffer

containing 100 mg/ml Blendzyme (Roche Diagnostics, Indianap-

olis, IN, USA) and 50 units/ml DNase I (Roche Diagnostics) and

filtering through a 70 mm cell strainer (BD Biosciences). Erythro-

cytes were depleted by lysis buffer before staining. Isolated single

cells were stained with following specific mAbs: CD16/32 (clone

93), Ly6G (clone 1A8), CD11b (clone M1/70), F4/80 (clone

BM8), CD11c (clone HL3), CD45 (clone 30-F11), CD4 (clone

RM4-5), CD8 (clone 53-6.7), NK1.1 (clone PK136) and B220

(clone RA3-6B2) purchased from eBioscience as direct conjugates

to either FITC, PE or PECy5. Cells were identified based on

expression of following antigens: pulmonary macrophages (F4/

80+ and CD11c+), DC (F4/802 and CD11c+), Neutrophils

(Ly6G+ and CD11b+), T cells (CD3+), NK cells (NK1.1+), B cells

(B220+ and CD19+). For intracellular Chlamydia staining, cells

were permeabilized using Cytofix/Cytoperm kit (BD Biosciences)

and stained with FITC-conjugated anti-Chlamydia LPS mAb

(Accurate Chemical and Scientific Corporation, Westbury, NY,

USA). Flow cytometric analysis was performed using a CyAnTM

flow cytometer (Beckman Coulter) and the data was analyzed

using Summit (Dako, Carpinteria, CA, USA) software.

Preparation of bone marrow–derived macrophages
(BMDM)

Femora and tibiae of mice were aspirated with RPMI1640

media. Bone marrow cells were cultured in RPMI1640 medium

containing 10% FBS and 15% L929 cell conditioned medium.

BMDM were harvested at day 7 and infected with CP by

centrifugation at 5006g for 30 min.

Statistics
Data are reported as mean values6S.D. Statistical significance

was evaluated by Student’s t test. In the case of survival study,

statistical significance was evaluated by Fisher’s exact test. For

multiple comparison test, statistical significance was evaluated by

one way ANOVA with Tukey’s post-hoc test.

Supporting Information

Figure S1 Control staining of intracellular Chlamydia
in lung cells (Figure 2A). FITC-conjugated mouse IgG1 was

used as isotype control.

(TIF)

Figure S2 Live CP but not UVCP, induces inflamma-
some in macrophages. Western blot analysis of IL-1b and

caspase-1 in cell lysates and supernatants from BMDC treated

with CP, UVCP for 24 h and LPS (10 ng/ml) or LPS+ATP

(5 mM) for 8+2 hrs (respectively).

(TIF)

Figure S3 Casp1 deficiency does not affect macrophage
phagocytic activity or C. pneumoniae infectivity. (A)

Casp12/2 macrophages are as effective as WT macrophages in

internalizing CP. BMDMs were infected with labeled CP (solid line

histogram, MOI 2.5, 5, 10, and 20) or vehicle control (gray-filled

histogram). The mean fluorescence intensity (MFI) and percentage

of labeled C. pneumoniae internalized cells are indicated. (B) WT

and Casp12/2 BMDMs were infected with CP (MOI 10). Cell

lysates were harvested at indicated time points and viable bacteria

were quantified by infecting HEp2 cells followed by inclusion

staining and counting.

(TIF)

Figure S4 Induced Pro-IL-1b is downregulated without
NLPR3 stimuli. BMDM were exposed to UVCP (MOI 10) or

treated with LPS (1 ı̀g/ml) for the indicated times. Immunoblot-

ting was used to analyze intracellular pro-IL-1b.

(TIF)

Figure S5 Chloramphenicol prevents C. pneumoniae
inclusion formation dose dependently. (A) Representative

images of CP inclusion formation (green) with increasing doses of

chloramphenicol in Hep2 cells. Hep2 cells were infected with CP

(MOI 5). After entry into the cells, the media was supplemented

with different doses of chloramphenicol. CP inclusions were

observed 68 hours after infection using the Pathfinder Chlamydia

culture testing system (Biorad, CA). (B) Number and size of CP

inclusions with increasing doses of chloramphenicol in Hep2 cells.

(TIF)
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