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Abstract

Cortical and hippocampal gamma oscillations have been implicated in many behavioral tasks. The hippocampus is required
for spatial navigation where animals run at varying speeds. Hence we tested the hypothesis that the gamma rhythm could
encode the running speed of mice. We found that the amplitude of slow (20–45 Hz) and fast (45–120 Hz) gamma rhythms
in the hippocampal local field potential (LFP) increased with running speed. The speed-dependence of gamma amplitude
was restricted to a narrow range of theta phases where gamma amplitude was maximal, called the preferred theta phase of
gamma. The preferred phase of slow gamma precessed to lower values with increasing running speed. While maximal fast
and slow gamma occurred at coincident phases of theta at low speeds, they became progressively more theta-phase
separated with increasing speed. These results demonstrate a novel influence of speed on the amplitude and timing of the
hippocampal gamma rhythm which could contribute to learning of temporal sequences and navigation.
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Introduction

Gamma rhythmic (,20–120 Hz) modulation of neural activity

has been demonstrated in the cortex [1,2,3,4,5,6,7,8,9] and

hippocampus [10,11,12,13,14,15]. Gamma oscillations are

thought to increase synchronization of neural activity to mediate

a variety of cognitive functions including attention [4], learning

[14], temporal binding and awareness [9,16]. Gamma oscillations

in the hippocampal LFP of rats are also modulated by theta

oscillations, and they occur in two distinct bands, the lower

frequency slow gamma (30–55 Hz) and the higher frequency fast

gamma (55–120 Hz). The slow and fast gamma oscillations in

CA1 are synchronous with slow gamma in CA3 and fast gamma in

the entorhinal cortex respectively [15]. Gamma rhythm also

separates into the slow and fast bands in the human sensorymotor

cortex [3] and the rodent olfactory bulb [7].

Gamma oscillations in CA1 are larger in mice than in rats [11].

Thus, mouse hippocampal gamma provides a reliable way of

studying its modulation by behavior. In behaving mice, the

hippocampal gamma rhythm and its coupling to theta are

influenced by parvalbumin containing interneurons [17], inter-

neuron-interneuron gap junctions [11,18], and acetylcholine [19],

thereby implicating complex interactions between cellular prop-

erties, the excitatory and inhibitory neuronal networks and

neuromodulators. The contribution of gamma oscillations to

navigation is unknown.

During spatial navigation hippocampal pyramidal neurons, or

place cells, fire at elevated rates in restricted regions of space [20],

thereby providing information about the subject’s position through

a rate code [21]. The pyramidal neurons’ activity also provides

information about a rat’s position through a temporal code known

as theta phase precession such that the phase of the LFP theta

rhythm where a pyramidal neuron spikes systematically precesses

to lower values as a function of the position of the rat

[22,23,24,25,26,27].

In order to navigate, it is not only necessary to know the

current position but also to predict the future position. A

necessary condition to achieve this is to know the current speed,

in addition to knowing position and head direction information.

Firing rates of place cells contain information about position and

head direction [28]. In addition, place cells’ firing rates [28,29],

and hippocampal interneuron firing rates [30] also increase with

speed. However, since position and speed are orthogonal

variables, using firing rates to encode both position and speed

could be confounding. We hypothesize that hippocampal high

frequency oscillations could provide an independent and fast code

for running speed.

Here we show that the amplitude of the gamma rhythm is

strongly modulated by running speed. Unlike previously reported

abrupt changes in gamma with task variables, we report a

gradual increase in gamma amplitude with running speed that

differentially influences slow and fast gamma rhythms. Further,

we demonstrate a theta-phase precession like phenomenon

where the preferred theta-phase of the slow gamma rhythm

precesses to lower values with increasing running speed of the

mouse.
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Results

We measured 214 LFPs along with spiking activity, from the

dorsal hippocampal area CA1 in 63 sessions from twelve mice

using tetrodes. The mice ran on a 1.5 m long linear track to obtain

rewards at the two ends of the track (see Methods S1). The only

selection criteria for using the data were that the tetrode was in the

hippocampus while the mouse ran on the linear track. For the

analysis of spiking activity, only those (160) tetrodes with at least

500 spikes on the track were used to ensure reliable quantification.

As is common, it was difficult to detect a clear boundary between

the fast and slow gamma bands based on the spectral power of the

LFP in the gamma range alone (figure 1a, the same data were used

for all subsequent example figures). This could result from noise

masking a potential boundary between the gamma sub-bands. To

overcome this difficulty, we assumed that the noise would remain

relatively unchanged between the stop and run epochs, and

computed the percentage change in spectral power at each

frequency during run relative to the corresponding power during

immobility. This procedure not only showed a clear increase in

power in the gamma range during locomotion, it also revealed the

change in gamma power was bimodal, clearly separating in two

sub-bands within the gamma range (figure 1b, see methods): slow

gamma (20–45 Hz) and fast gamma (45–120 Hz). The boundary

between the two gamma bands was defined as the frequency

(45 Hz) at which there was the smallest change in gamma power

between run and stop. This split in the gamma band is similar to

studies in rats [10,13,15], but the entire gamma band is ,10 Hz

lower in our data in mice.

Having detected the boundary between the two gamma bands,

all subsequent analyses were done using the raw LFP, without any

subtraction. The instantaneous amplitudes of the LFP were

calculated separately for the slow (20–45 Hz) and fast (45–

120 Hz) gamma bands, in order to obtain greater temporal

precision in our estimates of gamma dynamics (figure 1c, Methods

S1). The amplitude of both slow and fast gamma rhythms

increased by 1561.5%, p = 5.3e-24 and 3161.0% p = 1.2e-65

(median6s.e.m., Wilcoxon rank sum test, here and in all data)

during run compared to immobility respectively (figure 1d,

supplement S1). Thus, there was a significant increase in the

amplitude of slow and fast gamma rhythms during locomotion

compared to immobility.

To compare data obtained from different electrodes and mice,

the gamma band amplitudes were measured in z-scored units (see

methods). Not only did the gamma amplitude increase during

locomotion, this increase was proportional to running speed

(figure 2). While the slow gamma amplitude increased linearly with

running speed (figure 2a, c), fast gamma amplitude depended on

the logarithm of running speed (figure 2b, d, supplement S2). We

denote the slow and fast gamma amplitudes by AS and AF

respectively, and running speed by S. The dependence of slow and

fast gamma on speed can be modeled by:

dAS

dS
~a and

dAF

dS
~

b

S

with a = 0.01760.0012 s/cm and b= 0.1760.0057. In other

words, since slow gamma amplitude is a linear function of speed,

the derivative of slow gamma amplitude with respect to speed is

independent of speed. Similarly, since the fast gamma amplitude

increases as the logarithm of running speed, the derivative of fast

gamma amplitude with respect to speed is inversely proportional

to speed. The small magnitude of standard errors in a and b
compared to their mean is indicative of a remarkably consistent fit

across datasets. These functions were also very good fits to the

data, as confirmed by the analysis of residual errors (less than 5%)

of linear and logarithmic fits (supplement S3). Thus, the

amplitudes of fast and slow gamma rhythms were differentially,

gradually, stochastically but reliably modulated by running speed.

The amplitude of the gamma rhythm is modulated by the phase

of a lower frequency LFP theta rhythm in rats [10,13,14,15], mice

[31,32] and humans [8]. Hence, we investigated the speed-

dependence of cross-frequency coupling between the phase of low

frequency rhythms and the amplitude of higher frequency rhythms

(figure 2e, see Methods S1). Briefly, cross-frequency coupling was

computed using a modulation index based on Shannon informa-

tion such that a uniform phase distribution would yield a

modulation index of zero. Consistent with theta-gamma coupling

reported in rats [10,13,14,15] we found significant theta-gamma

coupling in mice. In fact, of all the low (2–20 Hz) and high (15–

300 Hz) frequencies tested, the strongest cross-frequency phase-

amplitude coupling was found between the phase of the theta

rhythm (6–12 Hz) and the amplitudes of the slow and fast gamma

rhythms. In addition, theta-gamma coupling was significantly

larger for fast compared to slow gamma (figure 2e, Supplement

S4). The cross-frequency coupling increased linearly with speed for

slow gamma but logarithmically for fast gamma (Supplement S4),

as with the amplitudes.

To understand the fine temporal structure of theta-gamma

coupling, we computed the joint influence of theta phase and

speed on slow (figure 2f) and fast (figure 2g) gamma amplitudes.

The trough of theta was designated as phase 0u or 360u. The

multiunit firing was maximal around the trough of theta

(358u63.7u, see methods). The phase of theta where gamma

amplitude was maximal was called its preferred theta phase (see

methods). Both slow and fast gamma had their preferred theta

phases in the descending part of theta (figure 2f, g, Supplement

S6). Further, only the gamma amplitude around the preferred

theta phase showed modulation with speed (figure 2h, i). The slow

gamma amplitude around its preferred theta phase showed a

4462.9% linear increase with speed, whereas slow gamma

amplitude 180u away from the preferred phase, corresponding

to the anti-preferred phase, showed little speed-dependent increase

(2.661.1%). Similarly, fast gamma amplitude around its preferred

phase showed a 3261.0%, logarithmic increase with speed,

whereas fast gamma amplitude 180u away from its preferred phase

increased by only 6.561.0%. These results were confirmed

independently by comparing the slopes of the dependence of

gamma amplitude on speed at their preferred theta phase or 180u
away from their preferred theta phase for slow (figure 2j) and fast

(figure 2k) gamma respectively.

These findings show that the influence of speed on gamma

amplitude was restricted to a narrow range of preferred theta

phases. In addition, the preferred theta phase of slow gamma

seemed to change with running speed (figure 2f). To demonstrate

this visually, it is necessary to suppress the speed-dependent

change in gamma amplitude. Dividing the gamma amplitude at all

theta phases for a given speed by the gamma amplitude averaged

across all the phases in that speed bin achieved this suppression

and revealed not only that the depth of modulation of slow gamma

amplitude by theta phase was 158% larger at higher speeds, but

also that the preferred theta phase of slow gamma was phase-

advanced by 63u at high compared to low speeds (figure 3a). This

is similar to precession of spike phase as a function of position

[22,23,24,25,26,27], that is accompanied by increasing firing rate

[24,33] and membrane potential depolarization [27], that is

characterized by the hippocampal spatio-temporal receptive field

[24,26].

Speed Controls Gamma Amplitude and Its Theta-Phase
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The gradual precession of slow gamma preferred theta phase

with speed can be analogously characterized by a so-called

velo-temporal receptive field (VTRF figure 3b, Supplement S5).

The VTRF averaged across the ensemble of data showed

robust precession of slow gamma preferred theta phase with

speed (figure 3c). Although slow gamma amplitude increased

linearly with speed, slow gamma preferred theta phase

precessed approximately logarithmically with speed. Unlike

slow gamma, fast gamma preferred phase showed only a small

amount of precession for the example data set (figure 3e), as

well as when averaged across the ensemble of data (figure 3f,

supplement S5).

Figure 1. Hippocampal gamma rhythm splits into two bands, fast and slow, whose magnitude increases during locomotion. A)
Power spectrum of a dorsal hippocampal LFP during locomotion (red) and immobility (black) in one example session. Shaded areas indicate 95%
confidence intervals. B) Change in spectral power during run compared to stop as a function of frequency in the gamma band. Data are averaged
across the ensemble of 214 LFP traces. Shaded regions correspond to s.e.m. here and in subsequent figures. Inset shows the change in power for the
example data set from fig. 1a. The increase in power is significantly lower at 45 Hz than in the surrounding frequency band, thereby demarcating a
clear border between slow (20–45 Hz) and fast (45–120 Hz) gamma bands. C) Running speed of a mouse as a function of time (black), and
corresponding amplitude of slow (red) and fast (blue) gamma rhythms. Insets show slow and fast gamma amplitudes at higher temporal resolution
for high (,1.) and low (,2.) speeds. Both fast and slow gamma amplitudes are larger during run than stop. D) Slow (red) and fast (blue) gamma
amplitudes were 1561.5% (p = 5.3e-24) (mean6s.e.m., Wilcoxon Ranksum test here and in subsequent figures), and 3161.0% (p = 1.2e-65) larger
during run than stop, with fast gamma amplitude showing a greater increase than slow gamma (p = 1.5e-13).
doi:10.1371/journal.pone.0021408.g001

Speed Controls Gamma Amplitude and Its Theta-Phase
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Across the ensemble of data, the preferred theta phase of slow

gamma precessed by 61u62.7u between low and high speeds,

whereas the preferred theta phase of fast gamma precessed by only

16u61.8u (figure 4a, Supplement S7). Thus, while slow and fast

gamma rhythms preferred similar phases of theta at low speeds,

the two rhythms became increasingly phase-separated with

increasing running speed (figure 4a–c). This was further

demonstrated by computing the slopes of the slow (and fast)

gamma preferred theta phase versus the logarithm of speed. Slopes

of gamma preferred theta phase versus speed were negative for

both slow (22361.4) and fast (23.060.78) gamma, with slow

gamma showing significantly greater change with speed than fast

gamma (p = 9.14e-34, figure 4b). As a result, the slow and fast

gamma preferred theta phases were similar at low speeds, but at

the highest speed the slow gamma preferred theta phase occurred

37u62.1u ahead of the fast gamma preferred phase (figure 4c,

Supplement S8). Under laboratory conditions, mice did not attain

speeds beyond 50 cm/s. In the wild, mice can attain much higher

Figure 2. Joint influence of running speed and theta phase on gamma amplitude. A) Each red dot depicts the amplitude of slow gamma in
a window of 250 ms around each LFP theta peak as a function of running speed. The value of the slow gamma amplitude was averaged within a
given speed bin (,7 cm/s wide, with 80% overlap between neighboring bins) (red squares). Black line shows the best linear fit. B) Same as A for fast
gamma (blue dots and squares) with logarithmic fit. (See Methods S1 for methods and Supplement S1, Supplement S2 for details). C) Ensemble
averaged data showing linear increases in slow gamma amplitude with speed. D) Same as C with logarithmic speed-dependence for fast gamma. E)
Each vertical panel shows the cross-frequency coupling between the amplitude of a fast (15–300 Hz) signal (y-axis) and the phase of a slow (2–20 Hz)
signal, whose frequency is shown on the x-axis). Separate panels show coupling at different running speeds (top) for the example data in figures 2A,B.
Colorbar to the right indicates modulation index (see Methods S1). Significant cross-frequency coupling is found only between the phase of the theta
(6–12 Hz) oscillation and the gamma amplitude (20–120 Hz). Fast-gamma-theta coupling is greater than slow-gamma-theta coupling (bottom panel)
at all speeds. The coupling increases logarithmically and linearly with speed for fast and slow gamma respectively (see Supplement S2). F) Slow
gamma amplitude changes with running speed and theta phase for the example data set in figure 2A,B. G) Similarly for fast gamma. H) Slow gamma
amplitude at the preferred phase (at 23662.2u) of theta, averaged across all data, is linearly correlated with running speed (solid line, R2 = 0.9060.018,
median6s.e.m.), but slow gamma amplitude around the theta trough changed minimally (dotted line). I) Similarly, fast gamma amplitude around the
peak (26061.8u) of theta increased logarithmically with speed (solid line, R2 = 0.9460.016), but fast gamma amplitude around the theta trough
changed minimally (dotted line). J) Distribution of the slope of slow gamma amplitude around the theta peak as a function of running speed (solid
line) across the ensemble of data, showing that it was significantly positive (0.01760.0012, p = 1.9e-40) and far greater than the slope around the
theta-trough (dotted line, 0.0006760.00032, p = 4.3e-4). K) Similar results were true for the slope of fast gamma amplitude as a function of the
logarithm of running speed around the theta peak (solid line, 0.1760.0057, p = 4.1e-68) and the theta trough (0.01360.0040, p = 0.0054).
doi:10.1371/journal.pone.0021408.g002

Speed Controls Gamma Amplitude and Its Theta-Phase
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speeds. Extrapolation of the traces in figure 4a suggests that at

these naturally attainable higher speeds, slow and fast gamma can

achieve a greater degree of theta-phase separation.

Consistent with previous studies [15,31,34], the probability of

spiking of the hippocampal neural ensemble, as measured by

multi-unit activity, was significantly influenced by the phase of

both fast and slow gamma rhythms recorded on the same tetrode

(figure 4d, see Methods S1). Additionally, the phase of the large

amplitude slow gamma rhythm had a significantly (78.01%,

p = 1.9e-14) greater influence on spiking probability than the

phase of fast gamma (figure 4d, e, see Methods S1). Further, spikes

preferred nearly the opposite phases of slow and fast gamma

rhythms [15] (figure 4d, f) with maximal spiking probability

occurring at 240u65.6u of slow gamma (p = 1.7e-7, Rayleigh test)

and 80u65.7u degrees of fast gamma (p = 2.9e-6, Rayleigh test).

Discussion

These results demonstrate a gradual, large, differential and

significant modulation of the amplitude and timing of hippocam-

pal slow and fast gamma oscillations with running speed.

Virtually all of our data show that slow gamma amplitude

increases linearly with speed whereas fast gamma amplitude shows

a logarithmic dependence on speed (figure 2c, d, Supplements S2,

S3). This differential modulation could arise due to mechanisms

within MEC and CA3, which are hypothesized to generate the fast

and slow gamma respectively [10,15], or due to the differential

nature of excitatory-inhibitory networks and dendritic properties

within the distal versus the proximal parts of CA1 where these

inputs terminate respectively. Further, cholinergic levels may

increase with speed which could differentially enhance gamma

oscillations. Speed-dependent changes in gamma rhythm could

not be an artifact of speed-dependent change in spiking probability

because the multi-unit activity showed far greater phase locking to

slow gamma than fast gamma, even though the fast gamma band

has more similar frequency content to spikes, thereby increasing

the chances of spike bleed over. Further, spikes prefer nearly the

opposite phases of slow and fast gamma.

Speed modulation of gamma was restricted to a narrow range of

preferred theta phases. The preferred phase of theta, where slow

gamma amplitude was maximal, precessed to lower values with

increasing speed. This precession of the gamma preferred theta

phase was larger for slow than fast gamma. This provides the first

demonstration of a phase-precession like phenomenon within the

hippocampus that is independent of position and depends on

speed. As a result, at low speeds, the highest amplitudes of slow

and fast gamma occurred at similar phases of theta, but with

increasing speed, they became increasingly more phase-separated

such that slow gamma occurred increasingly earlier than fast

gamma within each theta cycle.

Figure 3. Theta-phase precession of gamma amplitude as a function of running speed. A) Slow gamma amplitude as a function of theta
phase for one example dataset (figure 2F) was averaged across all the theta cycles at low (dashed) and high (solid) speeds. Further, unlike figure 2F,
the amplitude of gamma at each phase of theta was divided by the sum of gamma amplitudes across all phases of theta at that speed. This enabled a
comparison of the depth of modulation of gamma amplitude with running speed and theta phase, independent of changes in gamma amplitude
with running speed. The theta phase modulation of gamma amplitude was 158% greater and the preferred phase of theta was 63u lower at high
speeds compared to low speeds B) Same data as A, but as a function of (the logarithm of) a range of running speeds. The hippocampal velo-temporal
receptive field for speed (VTRF) for this example dataset shows a progressive precession of slow gamma preferred phase of theta with speed (white
dotted line). C) VTRF averaged across all the data show a robust increase in the depth of modulation as well as precession (white dotted line) of slow
gamma preferred phase of theta with increasing running speed. D) Same as in A, but for fast gamma showing only a small change in the depth of
modulation of fast gamma amplitude (75%) and preferred theta phase (10.7u) with speed. E) Same as B showing only small changes in fast gamma
VTRF with speed. F) Same as C showing minimal changes in the ensemble averaged fast gamma VTRF with speed.
doi:10.1371/journal.pone.0021408.g003

Speed Controls Gamma Amplitude and Its Theta-Phase
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Further studies are required to determine the biophysical

mechanisms underlying these results. One possibility is that with

increasing speed, stimuli occur at a greater pace, which increases

the firing rates of hippocampal excitatory [28,29] and inhibitory

[30] neurons. This increased spiking activity would facilitate the

generation of gamma oscillations in the recurrent excitatory-

inhibitory circuits [35] which could explain our finding of

gradually increasing gamma amplitude with speed. Since the

firing rates of hippocampal neurons are modulated by the phase of

the theta rhythm, such a mechanism could also explain the

comodulation of gamma amplitude by theta phase and running

speed.

Precession of slow gamma preferred theta phase with running

speed could be explained by a mechanism similar to the rate-to-

phase transformation mechanism proposed to explain theta-phase

precession of spikes as a function of position [24,33,36,37] as

follows. The firing rate [33] and excitability [27] of place cells

increases as a function of the rat’s position within the place field.

The interaction between this ramping excitation and the theta

rhythm could result in theta phase precession of place cell spikes

[22,23,24,25,26,27]. Similarly, slow gamma oscillations could

require a specific balance of excitation and inhibition which occurs

at a specific phase (,270u) of theta at low speeds. The excitation-

inhibition balance would be influenced by both theta rhythm and

running speed. Higher running speeds could result in increased

excitability of neurons which could result in the optimal balance

occurring at earlier phases of theta, resulting in slow gamma

oscillations appearing at earlier phases of theta, i.e. precession of

slow gamma preferred theta phase with speed.

Similar mechanisms could apply to the fast gamma rhythm.

However, fast gamma amplitude showed a weaker dependence on

speed than slow gamma (figure 2). This could arise due to a

smaller speed-dependent increase in firing rates in the entorhinal

cortex [38] than the hippocampus [28,29], or due to local

mechanisms within distal regions of CA1 where the entorhinal

inputs terminate.

Unlike the theta phase precession of spikes as a function of

position, where the spike-phase progressively decreases with

increasing position [22,23,24,25,26,27], the preferred theta-phase

of slow gamma can both increase and decrease with corresponding

change in running speed. These observations are consistent with

the rate-phase transformation model [24,33,36,37] because

position increases only monotonically in the highly directional

place cells on linear tracks, whereas speed can change bidirec-

tionally. Consistent with this model, bidirectional changes in

preferred gamma phase of spikes have been recently observed

[39].

These results can have significant functional consequences. In

order to navigate, it is not only necessary to know the current

location but also the running speed. Position and speed are

Figure 4. Speed dependent separation of slow and fast gamma preferred phases of theta and modulation of spiking by fast and
slow gamma. A) Averaged across the ensemble of data, slow and fast gamma preferred theta phases were nearly coincident (26.061.2u) at low
speeds, but the slow gamma preferred phase precessed by 6162.7u with increasing speed whereas fast gamma preferred phase precessed by only
1661.8u. B) The slope of slow (fast) gamma preferred phase as a function of running speed is shown in red (blue). Maximal speed in each session was
normalized to unity to allow comparison across data. The vast majority (95%) of slow gamma LFP showed speed-dependent phase advancement, but
only 67% of fast gamma LFP showed phase advancement. C) There was only a small difference in the preferred phases of slow and fast gamma at low
speeds (dashed line, 26.061.2u, p = 5.0e-7), but the two rhythms were separated by 3762.1u (p = 1.3e-25) at high speeds (solid line). D) Multi-unit
spike probability as a function of fast (blue) and slow (red) gamma phase was computed separately for 141 data sets and averaged across the entire
ensemble (see Methods S1). E) Scatter plot of fast gamma phase vs. slow gamma modulation index of spiking for 141 data sets. Spike probability was
more strongly modulated by the phase of slow gamma than fast gamma (p = 1.9e-14) F) Scatter plot of the preferred fast (8165.7 degrees) and slow
gamma phases (24265.6 degrees) of spikes.
doi:10.1371/journal.pone.0021408.g004

Speed Controls Gamma Amplitude and Its Theta-Phase
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orthogonal variables that should be represented by independent

parameters. The firing rates of hippocampal neurons are

modulated by both spatial location and by the running speed of

the animal. Hence, the firing rate provides an ambiguous code for

position and speed. Speed-dependent changes in gamma rhythm

can provide an independent parameter to encode speed. Just as

gamma oscillations can arise through excitatory-inhibitory net-

works, gamma-rhythmic modulation of spikes can be readily

decoded by downstream excitatory-inhibitory networks to extract

unambiguous information about speed.

Several studies have shown increased gamma power occurs with

attention or task demands, and it is associated with improvement

on a number of behavioral measures [4,9,14,16]. Increased

gamma power with speed could similarly improve synchrony of

hippocampal spikes that could facilitate induction of synaptic

plasticity and learning of navigational routes and temporal

sequences. It has been suggested that hippocampal activity

predicts or anticipates the upcoming events in a temporal

sequence [37]. Increasing speed would require faster prediction

of future events. If slow and fast gamma arise in CA3 and MEC

respectively [10,15], our results of a speed-dependent increase in

the theta phase separation of slow and fast gamma would suggest

that CA3 activity increasingly anticipates MEC activity by about

40u of theta phase, or at least 15 ms at high speeds.

Several studies have shown that coincident activation of the

entorhinal and CA3 inputs to CA1 results in enhanced activation

of CA1 and induction of long-term potentiation of synapses

[40,41,42,43,44]. Thus, at low speeds, coincident activation of

CA3 and entorhinal inputs at similar theta phases would increase

their efficacy in activating CA1, and facilitate associative synaptic

plasticity between these inputs resulting in improved place

learning. Increasing theta-phase separation between the slow

and fast gamma rhythms at higher speeds would result in

anticipatory learning of sequences of neural events between CA3

and MEC inputs within CA1. Such predictive coding is consistent

with the observation that stimulation of CA3 before the entorhinal

cortex increases the transmission of entorhinal inputs to CA1

neuron’s soma [42] by overcoming fast inhibition. Indeed,

synchronous activation of entorhinal activity during up-down

states results in fast activation of the R-LM interneurons [45]

which reduces the level of depolarization of CA1 pyramidal

neurons [46]. Thus, the speed-dependent increase in the theta-

phase separation of slow and fast-gamma amplitudes could

facilitate a speed-dependent enhancement of the efficacy of

entorhinal activity, or the sensory inputs, in driving CA1 neurons.

In sum, just as the spiking rates of pyramidal neurons and their

preferred theta phases are modulated by spatial position, we show

that the magnitude of slow and fast gamma rhythms and their

preferred theta phases are modulated by running speed. This

suggests that while the firing rate and theta phase of pyramidal

neurons encode position, the amplitude and theta phase of gamma

oscillations can provide an independent estimate of running speed

that could be useful in navigation and learning.

Materials and Methods

Ethics statement
All experiments were conducted in accordance with the

guidelines of, and this study was approved by, the animal welfare

committee of the Max Planck Society (Regierungspräsidium

Karlsruhe, Referat 35, 76247 Karlsruhe), License number

35.9185.81/G-60/02).

Twelve, 4–7 month old, male mice (C57/BL6) were chronically

implanted with a hyperdrive –containing three independently

adjustable tetrodes and a reference electrode– above the right

dorsal CA1. Upon recovery from surgery, tetrodes were adjusted

till sharp-wave ripples and multiple single units were detected. The

LFP were sampled at 2 kHz and recorded from all tetrodes and

the reference electrode with respect to a ground electrode above

the cerebellum. The mouse’s position and head direction were

measured using a CCD camera that tracked the position of two

light emitting diodes attached to the hyperdrive. Position data

were sampled at 50 Hz with a resolution of 0.25 cm. Position, LFP

and spiking data were recorded using the Neuralynx data

acquisition system. These data were processed offline using custom

software written in Matlab. LFP were filtered using symmetric

digital filters and the Hilbert transform was used to obtain the

amplitude and phase of each signal in different frequency bands.

See Methods S1 for further details. To standardize the amplitude

of gamma, the standard deviation of the amplitude of the gamma

band signal when the mice were stationary was computed

(separately for fast and slow gamma bands) for each electrode in

each session. The z-scored amplitude of gamma was obtained by

dividing the amplitude of gamma at all speeds by this standard

deviation. Thus z = 1 corresponds to 6061.8 mV and 5261.6 mV

for slow and fast gamma amplitudes respectively.

Supporting Information

Methods S1 Supplementary materials and methods.

(DOC)

Supplement S1 Data from one electrode each in six different

mice (I–VI, mouse label to the left) demonstrating increased slow

and fast gamma amplitudes during run compared to stop. Each

panel is identical to figure 1C. See figure 1C legend for details.

(DOC)

Supplement S2 Data from the same six mice (I–VI) as in

supplement S2, showing speed-dependent, gradual increases in

slow and fast gamma amplitude with speed. Each panel is identical

to the corresponding panels in figure 2A and 2B. See figure 2A, B

legend for details.

(DOC)

Supplement S3 Slow gamma amplitude increased linearly with

speed whereas fast gamma amplitude increased logarithmically

with speed. The average amplitude of slow gamma in each speed

bin was computed for 30 speed bins (figure 2A, supplement S2). A

linear fit was made to the average amplitude of slow gamma as a

function of speed. The absolute value of the residual error was

averaged across all speed bins and divided by the average slow

gamma amplitude at all speeds to yield the percentage residual

(Solid red line, Supplement S3A). R2 values of the best fit (solid

red line, Supplement S3B) were also computed. Small values of the

percentage residual error (1.9%) and large values of R2

(median = 0.90) indicate that the linear model is a good fit.

However, when the slow gamma amplitude as a function of speed

was fit with a logarithmic curve, the percentage residual error was

significantly larger (2.9%, dashed line, Supplement S3A), and the

R2 value was significantly lower (median = 0.78, dashed red line,

Supplement S3B). A similar procedure was followed to compute

the goodness of fit of a logarithmic relationship between fast

gamma amplitude and speed. In contrast to slow gamma, the

percentage residual error was significantly smaller when using a

logarithmic fit to fast gamma (1.2%, dashed blue line, Supplement

S3C), compared to a linear fit (1.9%, solid blue line, Supplement

S3c). Further, R2 values (median = 0.94, dashed blue line,

Supplement S3d) were significantly higher with a logarithmic fit

for fast gamma than with a linear fit (median = 0.82, solid line,
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Supplement S3D). Additionally, in panel E the x-axis is the

percentage error for a linear fit while the y-axis is for a logarithmic

fit. Red dots represent slow gamma and blue dots represent fast

gamma for each data set (214 data sets). Most of the red dots were

distributed above the diagonal line indicating a better linear fit for

slow gamma. On the other hand, most of the blue dots were

distributed below the diagonal line indicating a better logarithmic

fit for fast gamma. Similar scatter plot was done for R2 values in

panel F showing the same results.

(DOC)

Supplement S4 Ensemble averaged speed-dependent cross-

frequency coupling (CFC) and differential increase of slow and

fast gamma modulation indices. A) This figure is similar to

figure 2E. Speed-dependent CFC similar to figure 2E was

computed for each LFP and averaged across the ensemble of

214 LFPs to obtain this figure. In order to reduce noise, the panel

with lowest speed was subtracted from the subsequent panels,

leaving only the speed-dependent component. Each vertical panel,

for a given speed, shows the cross-frequency coupling between the

amplitude of the fast (15–300 Hz) signal as a function of the phase of

the slow (2–20 Hz) signal. Significant cross-frequency coupling is

visible between the phase of theta (6–12 Hz) and the amplitude of

gamma (20–120 Hz). Consistent with figure 1B, cross-frequency

coupling is distinct in the slow and fast gamma bands (bottom

panel shows inset for slow gamma). B) Modulation index averaged

over slow (red line) and fast (blue line) gamma bands and plotted as

a function of speed, indicating their differential dependence on

speed.

(DOC)

Supplement S5 Theta-phase precession of preferred gamma

phase as a function of running speed. Same as in figure 3 but from

another six different mice (I–VI, same in Supplement S1, mouse

number is to the left of each panel). A) Normalized slow gamma

amplitude as a function of theta phase at the highest (solid) and

lowest (dotted) speeds. B) Similar data as A with slow gamma

amplitude as a function of theta phase and the logarithm of

running speed. C) Same as in A for fast gamma. D) Same as in B

for fast gamma.

(DOC)

Supplement S6 Distribution of preferred theta phase of slow

(red) and fast (blue) gamma at low speeds before realignment. At

low speeds the mean phase of low gamma was (28164.1u) and that

of high gamma was (26964.0u).
(DOC)

Supplement S7 Relationship between the magnitude of speed-

dependent precession of slow and fast gamma preferred phase of

theta. For each LFP the difference in theta preferred phase of slow

gamma at the highest minus the lowest speed was computed. A

similar difference in theta preferred phase was computed for fast

gamma. The speed-dependent change in theta preferred phase of

slow and fast gamma were correlated (r = 0.48) with slow gamma

showing a significantly greater degree of phase precession than fast

gamma.

(DOC)

Supplement S8 A summary of changes in slow and fast gamma

amplitude and timing with running speed and theta rhythm. The

multiunit activity (green dots) is maximal at the trough of theta

(black trace, top and bottom). At low speed (top) the fast gamma

amplitude is maximal (blue) just before the slow gamma reaches

maximal value (red). At high speed (bottom) the amplitude of both

slow and fast gamma, as well as the multiunit firing rate, increase.

Further, maximal slow gamma amplitude appears about 15 ms

before maximum fast gamma amplitude.

(DOC)
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