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Abstract

Gene and SNP annotation are among the first and most important steps in analyzing a genome. As the number of
sequenced genomes continues to grow, a key question is: how does the quality of the assembled sequence affect the
annotations? We compared the gene and SNP annotations for two different Bos taurus genome assemblies built from the
same data but with significant improvements in the later assembly. The same annotation software was used for annotating
both sequences. While some annotation differences are expected even between high-quality assemblies such as these, we
found that a staggering 40% of the genes (.9,500) varied significantly between assemblies, due in part to the availability of
new gene evidence but primarily to genome mis-assembly events and local sequence variations. For instance, although the
later assembly is generally superior, 660 protein coding genes in the earlier assembly are entirely missing from the later
genome’s annotation, and approximately 3,600 (15%) of the genes have complex structural differences between the two
assemblies. In addition, 12–20% of the predicted proteins in both assemblies have relatively large sequence differences
when compared to their RefSeq models, and 6–15% of bovine dbSNP records are unrecoverable in the two assemblies. Our
findings highlight the consequences of genome assembly quality on gene and SNP annotation and argue for continued
improvements in any draft genome sequence. We also found that tracking a gene between different assemblies of the same
genome is surprisingly difficult, due to the numerous changes, both small and large, that occur in some genes. As a side
benefit, our analyses helped us identify many specific loci for improvement in the Bos taurus genome assembly.
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Introduction

Recent years have seen a tremendous increase in the number

and diversity of sequenced genomes. More than 350 eukaryotes

have been sequenced and 400 more are planned (http://www.

ncbi.nlm.nih.gov/genomes/leuks.cgi). Most model organisms so

far have been sequenced under the umbrella of large genome

projects undertaken by large international consortia. A typical

genome project produces a first draft of the genome, together with

annotations and analyses. Subsequent releases then correct or

alleviate assembly problems and update the auxiliary information.

Thus, a genome project traditionally sets up a continuous effort to

update these resources. New sequencing technologies have

dramatically accelerated the pace at which new genomic

sequences are being produced; they can now produce in less than

one week the amount of data originally generated to sequence the

human genome. The short reads produced by new sequencers,

although a major challenge to assembly algorithms, have already

become the standard due to their dramatically lower cost. Several

large genomes have already been assembled from short reads or

from a combination of short and traditional Sanger reads [1–5].

Low cost, large sequencing capacity along with increasingly better

assembly algorithms will soon make it possible for smaller groups,

even individual investigators, to sequence and assemble their

organisms of interest. Virtually all of these projects will produce

‘‘draft’’ genomes, in which the chromosomes are assembled into a

relatively large number of contiguous fragments (contigs) separated

by gaps, and annotation software will then use these contigs,

typically within groups of contigs with known order and gap sizes

(scaffolds) or full chromosomes, as the substrate on which to

identify protein-coding genes.

Once a draft genome sequence is produced, the first and most

crucial step in its analysis is finding the genes. Knowing the correct

location and structure of a gene provides the basis for downstream

studies of gene function. Gene annotation remains a difficult

problem as reflected by the fact that, ten years after sequencing the

human genome, there is still no consensus on the number and

structure of human genes [6–10]. A significant complication arises

when errors in the assembly interfere with the correct annotation,

such as by deleting or scrambling the order of exons, or by altering
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a gene’s sequence. (Note that unless otherwise specified, we use

‘‘genes’’ to refer only to protein-coding genes.) Indeed, even

minute sequence changes such as frameshifts or nucleotide

substitutions can dramatically modify the predicted protein. Here

we focus on how assembly quality affects gene annotation, and

how this in turn appears to scientists using the annotation.

One important genome analysis that is quickly available after

the sequencing of a new diploid genome is a catalog of sequence

variations, in particular single nucleotide polymorphisms (SNPs).

The human HapMap project [11] was the first effort of scientists

and organizations worldwide to collect variations in the genome

sequences of individual humans. These freely available data allow

scientists to search for common patterns of variation or for

patterns associated with specific conditions. This collaborative

model has since been adopted, albeit at a smaller scale, by many

other genome sequencing projects. For instance, more than two

million cattle SNPs have been collected in the dbSNP repository in

GenBank, and the Bovine HapMap has recently reported a

genome-wide characterization of .37,000 SNPs, which in turn

has revealed patterns of variation associated with cattle domesti-

cation, selection and breed formation [12]. Regardless of the

species analyzed, collecting such information requires a tremen-

dous effort that cannot be easily replicated. Mapping SNP

information reliably onto a new version of the genome is crucial

to preserving these efforts, but errors in the assembly can interfere.

In our analysis below, we look at how the Bos taurus assembly

affects the ability to recover the SNP information.

Our group has assembled and released two successive versions of

the cow genome (UMD2 and UMD3; [13]). Both assemblies were

produced with the open source Celera Assembler software (https://

sourceforge.net/projects/wgs-assembler/), modified and augment-

ed with additional algorithms from our group, and both assemblies

used the identical input (Sanger) sequences from the NCBI Trace

Archive. UMD2 contains 2.61 billion bases (Gbp) in 30 chromo-

somes (1–29 and X) and 240 Mbp of unplaced sequence. UMD3,

which was built using an improved algorithm and the identical input

data, contains 2.64 Gbp in 30 chromosomes and 9 Mbp of

unplaced sequence. Both assemblies underwent extensive post-

processing to maximize the amount of sequence that was mapped to

the chromosomes. Additional assembly steps improved the order

and orientation of contigs using paired-end sequence information,

marker mapping, and synteny with the human genome. By all

measures, UMD3 is a higher quality assembly than UMD2, with

fewer gaps, smaller gaps, longer contigs and scaffolds, and more

chromosomal sequence (Table 1). A major factor contributing to

the improvements in UMD3 was more thorough filtering of

contaminated reads and trimming of vector sequences, which

allowed more overlapping reads to be assembled into contigs and

more contigs into scaffolds, and which eliminated false joins that

introduced errors in the assembly’s order and orientation. The two

genomes were deposited in GenBank upon release, and were

annotated de novo using the NCBI eukaryotic genome annotation

pipeline. The annotation procedure was run from scratch for the

later assembly, as opposed to projecting original gene coordinates

onto the new sequence, thus producing an unbiased annotation.

These two genomes and their annotations represent the first

time that two versions of a mammalian genome, based on the

same raw data and differing only in the assembly methods used,

have been annotated separately using the same method. This gives

us a unique opportunity to catalog and quantify the effects of

genome assembly on gene annotation and, by implication, on

downstream analyses.

In comparing the gene and SNP annotations between UMD2

and UMD3, we considered these questions. First, how do changes

in the assembly affect the structure of genes? Second, what effects do

assembly errors have on the predicted protein sequences? And

third, how does assembly quality affect our ability to detect SNPs?

We compared the gene structures to determine commonalities and

differences between transcripts from the two annotations, and then

used sequence comparisons to quantify the effects of assembly

errors on the predicted proteins. Separately, we compared the

mapping rates of more than two million SNPs onto the two

assemblies as a measure of assembly completeness and reliability.

Even though the two assemblies are highly similar, we found

significant differences in gene content and gene structures, making

it difficult to track a particular gene across multiple assemblies.

There were also significant differences in the SNPs that could be

mapped unambiguously. Further, as we show below, many

assembly errors are directly reflected in the annotation, arguing

for the need to continuously improve the sequence beyond the first

assembly. As an added benefit, these analyses have helped identify

specific loci in the Bos taurus genome sequence that can be

improved for the benefit of its users.

Results

We compared the de novo gene annotations between the two Bos

taurus assemblies, to identify both common and assembly-specific

genes and to quantify finer-grained differences in gene structure.

Since we do not differentiate between transcripts and protein-

coding genes in our analyses, we will be using the terms

interchangeably. We separately assessed the impact of assembly

quality on the predicted proteins, using a control set of known and

reliable protein models. We also evaluated the ability to reliably

map SNPs onto a target unfinished genome, for later use in

population studies and in genotype-phenotype analyses.

Comparison of gene annotations
Changes in the content, order and orientation of contigs in an

assembly will necessarily bring about changes in its annotation, the

nature and extent of which cannot be readily estimated. New

transcripts might appear, others can be truncated, extended or

shuffled, and some might disappear entirely. To assess the nature

and extent of such differences, we first compared the gene content

of the two assemblies, mapping each gene set to the other

genome’s sequence. We then compared transcripts between the

two annotation sets based on their exon-intron structure. A

secondary but important goal was to develop methods and tools to

Table 1. Assembly statistics for UMD2 and UMD3.

Measure UMD2 UMD3

Total sequence 2.850 Gbp 2.649 Gbp

In chromosomes (placed) 2.610 Gbp (91%) 2.640 Gbp (99%)

Unplaced 240 Mbp 9 Mbp

Number of contigs 75,775 70,770

Contig N50 88,288 bp 103,785 bp

Number of scaffolds 134,667 39,978

Scaffold N50 7.9 Mp 8.2 Mbp

Number of gaps 59,983 50,156

Gap N50 60,968 bp 34,758 bp

The N50 statistic is the minimum length of a feature (contig, scaffold, gap) such
that using equal or longer features produces half of the bases of the genome-
wide total.
doi:10.1371/journal.pone.0021400.t001

Assembly Quality: Consequences for Gene Annotation
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address the question: given a gene, how has it changed between

the two assemblies? Answering this question is critical for

researchers attempting to track genes from one version of a

genome to the next.

Although most genes were present in both assemblies, the direct

comparison of the two sets of annotations revealed unexpectedly

complex results. At the surface, we found many named genes

(characterized based on close sequence homology to known genes)

appearing in both annotations, but we also found a large number

of new and uncharacterized loci unique to each set. The latter

could largely be attributed to the different evidence used by the

annotation pipeline for the two annotations, a pattern that is likely

to characterize organisms for which the cDNA and protein

resources are constantly changing. Upon closer inspection, even in

cases where the gene name was preserved, the gene structure often

changed substantially. In fact, less than two thirds of the predicted

genes in UMD2 (13,854 out of 23,221) have preserved their exon-

intron structure in UMD3. Below we describe the nature of the

differences we encountered, and the likely role assembly

inaccuracies played in shaping them.

Gene content of the two genomes. When comparing the

gene content between the two assemblies, most annotated

transcripts in one assembly had at least partial sequence matches

on the other assembly. However, for many transcripts there were

significant differences in organization. For consistency, we will

describe the comparison primarily from the perspective of

mapping the UMD2 annotation onto the UMD3 assembly,

because the latter is a more recent and higher-quality version of

the Bos taurus genome.

As expected, only a relatively small number (160) of transcripts

were missing from the newer UMD3 assembly. Most of these code

for hypothetical proteins, and Blast [14] searches showed them to

be of bacterial origin, representing contaminants in the original

sequence data. They were therefore correctly excluded from the

newer assembly. Only two UMD2 genes, CEBPB and RNH1,

represented known genes, and RNH1 had a short partial match on

the UMD3 assembly that could not be detected with the search

parameters. (Conversely, two UMD3 transcripts were missing

from UMD2, both of them annotated as partial and lacking

functional assignment.) In contrast, a relatively large number of

transcripts were fragmented or incomplete, as shown in Figure 1.

There were 878 transcripts from UMD2 for which the primary

alignment on the genome contained less than 90% of the gene.

Although this number improved when secondary alignments were

included, 567 transcripts could still not be fully accounted for.

Thus, while each assembly contains at least parts of nearly every

transcript in the other genome, inconsistencies between the

assemblies cause significant fragmentation of many genes.

Figure 1. Mapping rates of annotated gene sequences between the UMD2 and UMD3 assemblies. Plotted values represent the numbers
of genes in one annotation that have coverage x or larger in the other genome, where coverage refers to the proportion of the transcript covered. All:
all alignments of a transcript are used to compute coverage; best: only the best alignment is used. For example, the red line shows that just over
23,000 genes from UMD2 have at least 50% of their sequence (coverage 0.5) aligned to a corresponding gene in UMD3. The total number of
annotated protein-coding genes is 23,221 for UMD2, and 21,342 for UMD3.
doi:10.1371/journal.pone.0021400.g001
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A simple example is that of the IL22 gene. The gene is complete

in UMD2, with 6 exons between positions 45,880,245 and

45,886,101 on chromosome 5, derived from the spliced alignment

of a RefSeq mRNA (accession NM_001098379). In contrast, the

UMD3 version of the gene (positions 45,721,767–45,727,535 on

the same chromosome) is missing a 200 bp segment from the core

of exon 6 (positions 679–869 in the RefSeq mRNA), which falls

within a gap in the assembly. A more complex example is the

SPOCK1 gene, which is complete in UMD3 but fragmented in

UMD2. SPOCK1 gene annotations were derived from the RefSeq

mRNA NM_001075500. In UMD3, all 12 exons of SPOCK1 are

present, spaced over a 760 Kb region (bases 48,450,300–

49,210,213 on the reverse strand of chromosome 7). In contrast,

the alignment of the gene on UMD2 shows that exon 7 is missing.

A secondary alignment finds the 115-bp exon 7 in the long

(301 kbp) intron between exons 3 and 4 (bases 49,071,505–

49,071,619). We traced the fragmentation of this gene to an

incorrectly translocated contig in UMD2.

Gene structure comparison between the two assem-

blies. To assess the differences at a finer-grained level and to

determine matching transcripts between the two annotation sets,

we compared the exon-intron structures of genes, first mapping

one set onto the other assembly with a spliced alignment method,

and then comparing the coordinates against the local annotation

(see Methods).

When searching for a gene in a new genome, one is tempted to

select the best hit, which is how many annotation systems operate.

In our case, using only the best hit would leave 908 genes in

UMD2 that had no overlap at all with the UMD3 annotation, and

many genes that overlapped only partially. This unexpected result

occurs because some of the annotated genes contain only a partial

transcript due to inversions, translocations, or deletions in one or

both assemblies, as we will illustrate with examples below.

(Figure 2 shows the fraction of each gene that overlapped with,

or was ‘covered’ by, the local annotation.) Most of these genes

were uncharacterized loci, and only 69 were named genes.

The reasons why these genes were missing their potential targets

turned out to be diverse (Figure 3). For example, in the case of

INTS8 the RefSeq model (NM_001102556) has two alignments on

opposite strands of chromosome 14. The two alignments (exons 1–

16, 1002 bp; and exons 17–27, 2080 bp) cover different portions

of the gene and are inverted in UMD3 due to a contig

rearrangement. While the primary alignment does not match

any of the UMD3 annotations, the secondary, shorter alignment is

co-located with the annotation of INTS8. Another example is

ZNF813, which has several complete matches on UMD3, but the

best alignment (positions 58,764,081–58,766,228 on chromosome

18, at 99% identity) and the annotated ZNF813 (positions

60,286,463–60,305,339) do not coincide. In a third case, the two

annotations contain complementary parts of the ENTPD6 gene.

Figure 2. Agreement between gene annotations in the UMD2 and UMD3 assemblies. Plotted values represent the numbers of genes in
one annotation that overlap the other annotation by a fraction x or more of their length, when all (‘all’) and when only the best (‘best’) alignments of
a transcript are included. The total number of annotated protein-coding genes is 23,221 for UMD2, and 21,342 for UMD3.
doi:10.1371/journal.pone.0021400.g002
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Here, errors in both assemblies caused fragmentation of the

RefSeq alignments, with two disjoint segments being included in

the two annotation sets. Therefore, in many cases, even though the

primary alignment does not lead to the desired gene, a secondary

alignment does so. In fact, we recovered almost a third of the

missing genes when we included secondary alignments, and the

overall concordance between the UMD2 and UMD3 annotation

was also improved (Figure 2). UMD2 still contained a significant

number of truly unique genes (660), including 50 named genes,

such as SOX11, BAZ1A, FLNC, BrunoL5, etc. We hypothesize that

most of these resulted from the evolving cDNA and protein

evidence available when annotating the two genomes rather than

from changes in the structure of the assembly. Indeed, only 18 of

these had potential matches among the UMD3 gene sequences,

with only one of the alignments (for a 96 bp gene) complete.

Even though more than 95% of the genes are shared at least

partially between the two annotation sets, specifying a one-to-one

relationship is nearly impossible. Only 73.4% (17,052) of the UMD2

transcripts have a clear one-to-one correspondence to a transcript in

the UMD3 annotation, and that number is reduced to 15,024 (65%)

when all alignments are used. Gene fragmentation and paralogy

within gene families are the primary reasons why one-to-many or

many-to-many matches occur, but different numbers of splice sites,

merged genes, and fused genes also account for some of the

ambiguity. Moreover, only 13,854 (59.7%) have best matches with

identical exon-intron structure in the UMD3 annotation. The rest

of the genes with matches in the UMD3 annotation have an

extension (14%), a truncation (6%), or a more complex rearrange-

ment (16%) among the UMD3 predictions (Table 2). Such

complex rearrangements, found in roughly 3600 genes, appear as

Figure 3. Examples showing how the same gene annotated on two assemblies completely fails to overlap. A) The alignment of the
RefSeq DNA sequence for INTS8 spans the entire gene on UMD2, but is truncated on UMD3. The figure shows how the INTS8 sequence aligns to two
distinct locations on UMD3, a longer, primary alignment containing exons 1–16 and a shorter one containing exons 17–27. The annotation system
chose the shorter alignment (on the left) for the UMD3 annotation, which is thus disjoint from the primary alignment of the UMD2 annotation of
INTS8. B) The gene ENTPD6 is fragmented in both assemblies, and different segments were used by the annotation software in each case. Again, the
primary alignment on UMD3 and the local annotation are distinct. C) The gene ZNF813 has multiple matches on UMD3, but the best match and the
annotated gene are disjoint.
doi:10.1371/journal.pone.0021400.g003
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missing or additional internal exons, different exon boundaries, or

different combinations of exons.

As these results indicate, tracking genes between different

assemblies and annotations is not easy, even for very similar

genomes such as UMD2 and UMD3, which are based on identical

underlying sequence data. Difficulties arise not only from assembly

errors that alter the true structures of genes, but also from the

evolving gene and protein evidence used by the gene annotation

tool. From a user perspective, one immediate consequence is that

changes in the assembly often make it difficult to transfer genes

and their surrounding context information between different

versions of a genome.

While comparative analyses such as these can pinpoint

differences between assemblies, they cannot always help resolve

the differences between assemblies, or even determine which gene

models are correct. Next we look at how the accuracy of the

assembly is directly reflected in the annotation quality.

Effects of genome quality on protein annotation
Perhaps the most compelling way to look at how even small errors

in the assembly affect the quality of its annotation is by analyzing

their effects on the predicted proteins. The NCBI annotation

system, which employs a conservative evidence-based process,

reports a model RefSeq protein for each predicted protein. We were

therefore able to compare the predicted proteins’ conceptual

translations (i.e., direct end-to-end translation from the genomic

annotation, prior to review and curation) to their validated RefSeq

models to characterize differences, and thus to establish unequiv-

ocally the impact of assembly errors on protein integrity.

For each annotated protein-coding gene in each assembly, we

compared protein sequences and classified their differences

(Table 3). For an objective measure of accuracy, we only used

pairs with curated RefSeq models (8,867 for UMD2 and 8,659 for

UMD3). A majority of proteins in each genome were identical or

near-identical with their RefSeq models (81% for UMD2; 89% for

UMD3), and a small number (5% for UMD2 and 2% for UMD3)

were near-identical but were either longer (extensions) or shorter

(truncations) than the RefSeq models. The remaining 14%

(UMD2) and 9% (UMD3) exhibited a wide variety of differences

from RefSeq, including large gaps, internal divergent sequence or

divergent sequence ends, and other more complex differences. As

these results indicate, UMD3 looked consistently better than

UMD2, with more similar sequences and fewer divergent pairs.

One example illustrating how assembly errors affect annotation is

the AQR protein in UMD3. The 1422-aa sequence differs

significantly from its 1484-aa RefSeq model (NP_001091560)

between amino acids 380 and 851, where frameshifts introduce

multiple stop codons. The reason for the discrepancy is an

incorrectly oriented contig in the AQR gene region of UMD3,

containing exons 14 and 15 (Figure 4). In place of these two exons,

the annotated model of AQR seems to have used an alignment to

other sequences with weak similarity to exons 14 and 15, resulting in

the frameshifts. This example illustrates how protein sequence

integrity reflects the quality of the assembly, and as a side benefit, it

illustrates how to correct certain assembly errors.

SNP annotation comparison
To preserve the efforts with collecting and cataloging sequence

variation in a species, SNPs and other types of variations must be

mapped unambiguously when a genome sequence is being

replaced by a newer version. Artifacts in the assembly can

interfere with SNP recovery by altering the site’s sequence

(genome rearrangements), by producing multiple matches (ge-

nome duplications) or by failing to identify a correct chromosomal

location (unplaced sequence).

We analyzed and compared SNP annotations in the two

assemblies to find the extent to which assembly quality affects the

ability to store SNP information loss-free. For this purpose, SNP

annotations in the two assemblies were produced by mapping the

flanking sequences of ,2.2 million cattle SNP variants in dbSNP,

as described in Methods. The vast majority of flanking sequences

for the polymorphisms reported in dbSNP represent genomic

sequences that were extracted directly from assemblies utilized in

their discovery (only 1,299 SNPs are annotated as being derived

from cDNA). Therefore, a de novo SNP mapping process provides a

useful metric for consistency between assemblies for the same

species. Most of the SNPs could be mapped to both genomes using

the search parameters, with 146,186 SNPs found only on UMD3,

and a much smaller number, 4,371, found only on UMD2. Most

of the assembly-specific SNPs, 100,284 of the SNPs unique to

UMD3, could be mapped on the unplaced contig sequences in

UMD2, which were not included in the searched genome. This

result highlights the advantage of UMD3, which has significantly

less unplaced sequence than UMD2.

Approximately 2.08 million SNPs (94%) could be placed in

exactly one location on the UMD3 assembly, compared to only

1.88 million (85%) on UMD2. The difference of ,200,000

mapped sequences is significant and shows that UMD3 is a better

substrate for storing and representing SNPs by having more

sequence placed on chromosomes and less duplicated sequence,

primarily due to its better resolution of haplotype variant

sequences.

Table 2. Best matches for UMD2 transcripts in the UMD3
annotation determined based on compatibility of exon-intron
structures.

Classification # Transcripts

Identical 13,854 (62.2%)

Extensions 3,157 (14.2%)

Truncations 1,329 (6.0%)

Both extensions & truncations 309 (1.4%)

Complex structural differences 3,607 (16.2%)

Total 22,256

Comparisons include a margin V = 20 of error at exon and intron boundaries.
doi:10.1371/journal.pone.0021400.t002

Table 3. Comparison of predicted protein translations to
RefSeq protein sequences.

Classification UMD2 UMD3

Identical 5,307 (59.8%) 5,645 (65.2%)

Near-identical 1,870 (21.1%) 2,026 (23.4%)

Extensions 37 (0.4%) 29 (0.3%)

Truncations 387 (4.3%) 155 (1.8%)

Divergent ends 1,044 (11.8%) 629 (7.3%)

Gapped 69 (0.8%) 81 (0.9%)

Different 129 (1.5%) 82 (0.9%)

Other 24 (0.3%) 12 (0.1%)

Total 8,867 8,659

doi:10.1371/journal.pone.0021400.t003
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Discussion

More than 7,500 genome sequencing projects are ongoing or

have already been completed [15], and the variety of represented

species is staggering. As the sequencing instrument market is

diversifying and new assembly algorithms are being developed,

future genome projects will have to sort through a variety of

options for sequencing and assembly strategies [16]. In the past,

Figure 4. An assembly error at the AQR gene locus in UMD3 creates a significantly altered protein. (A) An incorrectly inverted contig
(red) moves two exons (exons 14 and 15) to the wrong strand, causing the annotation software to miss them. Instead, it used low-quality alignments
on the wrong strand, creating frameshifts in the predicted protein sequence that contained multiple premature stop codons. (B) Sequence alignment
of the predicted AQR protein (conceptual translation) and its RefSeq model.
doi:10.1371/journal.pone.0021400.g004
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large projects to sequence model organisms have benefitted from

considerable resources to produce a complete or near-complete

genome sequence (http://www.genome.gov/10002154). More

recently, almost all new genome projects have adopted second-

generation sequencing technologies, which are far faster and

cheaper but which generate shorter reads and correspondingly

more fragmented assemblies (e.g., [1,2]). The choices each project

makes about read type, sequencing depth, and assembly method

will affect the completeness, contiguity, and base-pair accuracy of

the resulting genome sequence. By far the most widely-used

byproduct of a genome sequencing project is its annotation,

particularly for protein-coding genes. An important question that

has not been adequately addressed, and that we attempt to address

in this study, is: how much does assembly quality affect gene

annotation, and how much will improvements in an assembly

improve the accuracy of its genes?

Protein coding genes represent only 1–3% of a eukaryotic genome,

so it is tempting to assume that errors in an assembly will have little

effect on proteins. In fact, as our analyses show, inaccuracies in a

genome assembly affect a large number of genes, sometimes

dramatically. Local sequence errors can alter proximal sequence

signals used by gene finders to predict genes, or can introduce

frameshifting mutations, while contig inversions and translocations

can lead to segmented and incomplete gene models. Our analysis

shows that even for assemblies that have undergone extensive post-

processing to improve the sequence, the consequences of assembly

errors remain significant, with hundreds of genes left fragmented or

incomplete. The effects are amplified in proteins, where we found

that 12–20% of the sequences in both assemblies are significantly

different from their corresponding RefSeq models. Duplicated

regions and unplaced sequence in an assembly can hamper the

efforts to recover SNPs, with 6–15% of SNPs not uniquely mappable

and therefore unrecoverable in the two assemblies.

Further, improvements in the assembly are directly reflected in

the quality of the annotation. Such improvements are apparent

even for high-quality assemblies such as UMD2 and UMD3.

Indeed, a smaller proportion of the better assembly’s genes (2.8%,

or 599 genes, for UMD3 versus 3.1%, or 727 genes, for UMD2)

are incomplete and/or fragmented when mapped to the other

assembly, due to longer contigs and scaffolds, which lead to better

continuity. Similarly, more of the protein sequences (89.0% versus

81.3%) were similar to their models in UMD3 compared to

UMD2, and there were fewer pairs that were divergent (8.2%

versus 13.3%) or incomplete (2.7% versus 5.1%). Lastly, UMD3

was a better substrate for storing and representing SNPs, with 94%

of SNPs mapped unambiguously on UMD3 versus only 85% on

UMD2, owing to having more sequence placed on chromosomes

and less duplicated sequence. These findings highlight the need to

continue improving assemblies until a genome is truly finished.

One consequence of the practice of releasing and later

improving draft genomes is that gene annotation must be updated

with every release. A practical question is when to perform

incremental updates versus de novo re-annotation. The strategy

employed by many genome projects has been to track genes

between assembly releases, making incremental updates. While

this strategy preserves curation efforts and maintains a more

consistent picture of the gene content, it is nevertheless prone to

perpetuating errors and biases from earlier assemblies. When

either the genome or the available annotation resources have

changed substantially, de novo re-annotation may be more accurate,

despite the added difficulties in tracking genes. In our analysis of

two successive Bos taurus assemblies, created less than one year

apart, relatively large changes in the assembly itself led to

significant changes in the gene content. However, changes in the

gene evidence explained two-thirds of the cases where genes could

not be directly tracked between assemblies. The choice of

annotation strategy, therefore, should consider both the extent of

assembly changes and the amount of new evidence (e.g., new

RNA-seq data sets [17]) for the species being annotated.

Lastly, the problem of annotation evaluation and comparison is

itself difficult, with as many solutions as there have been studies.

Although some groups have developed techniques to capture

differences between tracked annotations [18], there is no standard

method to compare two genomes and their annotations compre-

hensively and objectively. As an ever-greater number of species are

captured with whole genome sequencing, the scientific community

needs systematic methods to measure the accuracy of genome

assembly and annotation and to compare them effectively.

Materials and Methods

Sequences and Gene and SNP annotations
Two versions of the Bos taurus genome produced at the

University of Maryland [13], releases UMD2 (December 2008)

and UMD3 (August 2009), were downloaded from the University

of Maryland web site (http://www.cbcb.umd.edu/research/bos_

taurus_assembly.shtml).

Gene annotations for the two assemblies were produced at

NCBI. The NCBI eukaryotic gene prediction pipeline combines

alignments of RefSeq mRNAs with gene models predicted with

the program Gnomon (http://www.ncbi.nlm.nih.gov/genome/

guide/gnomon.shtml), which in turn uses homology information

together with ab initio Hidden Markov Model (HMM) algorithms

to generate models of protein-coding genes. To produce the

annotations, cow mRNAs, ESTs and proteins as well as other

known eukaryotic protein sequences available at the time (April

2009 for UMD2 and February 2010 for UMD3) in the RefSeq

database [17] were mapped to each of the two assemblies, and

their partial alignments were merged to form basic gene models.

These partial gene models were later used as restraints to the ab

initio gene finding algorithm, which extended them without

modifying the homology-supported portion of the gene. RefSeq

mRNA alignments were chosen over the predicted models

wherever available. Therefore, each transcript in the final

annotation was at least partially supported by experimental

evidence. Additionally, known human non-coding RNAs [18]

were mapped to each genome to produce non-coding gene

models. While the two snapshots of RefSeq, taken almost a year

apart, may themselves cause differences between the annotations

and thus complicate the comparisons, the availability of two

production-quality annotations generated with the same method is

uniquely valuable as a comparison tool. It also provides a realistic

scenario for the differences in annotations a user can expect to see

when assembly and annotation improvements come at large

intervals of time, often marked by significant changes in the

underlying resources. Overall, the annotation process above

produced 24,901 transcripts for UMD2 (23,221 protein-coding),

and 22,761 for UMD3 (21,364 protein-coding). (Gene annotations

are available from our web site, above.) Of these, 8,090 loci in

UMD2 and 16,040 in UMD3 were assigned names based on

homology with known genes, while the rest were unnamed (or

hypothetical) genes. Protein sequences were corrected to remove

frameshifts before publication in GenBank, but conceptual protein

translations, produced directly from the genomic annotation, were

used for our analyses. Our focus was on protein-coding genes, for

which annotation methods are generally more mature and

reliable. Additionally, we used named and coding genes and

proteins to validate the analyses and provide examples.
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To annotate SNPs in the two assemblies, context sequences of cow

dbSNP [19] sequences, consisting of the SNP and available flanking

genomic sequence, usually 250 bp of on each side, were mapped to

each genome (chromosomes 1–29 and X only) with a two-stage

process. First, the fast high-throughput mapping system BLAT [20]

was used to find sequences that align at high similarity, followed by a

Blast [21] search to retrieve additional, lower similarity sequences.

Alignments were filtered at 90% sequence identity and 90% coverage

of the context sequence (‘found’ SNPs). Of those, only SNPs mapping

to a unique location in the reference genome (UMD2 or UMD3) and

that matched the genome at greater than 95% sequence identity over

90% or more of the length of the context sequence were considered in

the comparative analysis (‘mapped’ SNPs).

Spliced alignment
Transcript sequences from one assembly were mapped to the

other assembly using ESTmapper [22], retaining all alignments

longer than 100 bp with 95% or higher sequence identity.

ESTmapper maps large cDNA sequence data sets to a target

genome in two stages: for each query sequence, first it determines

candidate regions on the genome based on shared 20-mers, and

then it applies an optimized version of the sim4 algorithm [23] to

align each query cDNA to each genomic regions. GMAP [24] was

used to complement and validate the alignment set. Two sets of

spliced alignments were constructed: the full alignment set and a

subset of primary alignments, consisting of the best match only for

each transcript (n.b., if identical, multiple best alignments per

transcript were included). The alignments were used to determine

the presence or absence of a transcript in the other genome, and to

find corresponding transcripts in the other annotation set.

Transcript structure comparison
Spliced alignments of one transcript set (UMD2) were

compared with the annotation on the other genome (UMD3) to

determine compatible exon-intron structures and transcript

correspondences between the two annotation sets. (Software for

comparing gene structures is available free of charge from our web

site at ftp://ftp.cbcb.umd.edu/pub/software/gencomp/.) Two

exon-intron structures were compared if they overlapped by at

least 50 bp and, when both transcripts had multiple exons, if they

shared at least one intron. A transcript pair was deemed compatible

if the exon-intron structures were identical along the common

subinterval (a 20-bp margin of error was allowed at the ends of the

exons and introns). Otherwise, the pair was said to have complex

structural differences or rearrangements. Each pair of transcripts

was analyzed to identify extensions, truncations or complex

rearrangements. To determine a best match for each transcript

in the other genome’s annotation, we assigned each candidate

match a priority code in the order: identical gene name and

transcript evidence; identical exon-intron structures; single end

extensions (other end is identical); double end extensions; single

end truncations (other end is identical); double end truncation or

truncation coupled with extension; and complex structural

differences. If multiple candidates with the same priority code

existed for a transcript, ties were broken by the largest number of

common exons. As a final validation step, unique genes in one

annotation were searched against the other annotation using Blast

and retaining only alignments with 95% or higher sequence

identity.

Protein comparison
For each protein in the UMD2 and UMD3 annotations, we

aligned the conceptual translation with the RefSeq model using

Fasta [25]. Protein RefSeq models were downloaded from NCBI

on 10 May 2010. Only records containing reviewed RefSeq entries

(NM accessions) that were in common to the two annotations were

retained; this produced 8,619 RefSeq proteins, which were used in

the annotation of 8,867 genes in UMD2, and 8,659 genes in

UMD3. Aligned proteins were then classified as follows: near-

identical pairs had end-to-end alignments with few differences

($90% sequence identity and ,10 gaps); extensions and truncations

had high sequence similarity (defined as above) and unaligned

overhangs longer than 10 aa in one sequence only; pairs were

divergent if the ends of both sequences could not be aligned; gapped

alignments, resulting from the inclusion or exclusion of exons or

portions of exons, had $90% ‘modified’ sequence identity (defined

as average sequence identity of the aligned residues only,

excluding gaps) with few other differences; lastly, sequences were

considered different if they had significant amino acid differences as

reflected by low percent sequence identity.
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