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Abstract

The honeybee dance ‘‘language’’ is one of the most popular examples of information transfer in the animal world. Today,
more than 60 years after its discovery it still remains unknown how follower bees decode the information contained in the
dance. In order to build a robotic honeybee that allows a deeper investigation of the communication process we have
recorded hundreds of videos of waggle dances. In this paper we analyze the statistics of visually captured high-precision
dance trajectories of European honeybees (Apis mellifera carnica). The trajectories were produced using a novel automatic
tracking system and represent the most detailed honeybee dance motion information available. Although honeybee dances
seem very variable, some properties turned out to be invariant. We use these properties as a minimal set of parameters that
enables us to model the honeybee dance motion. We provide a detailed statistical description of various dance properties
that have not been characterized before and discuss the role of particular dance components in the commmunication
process.
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Introduction

After returning from a valuable food source honeybee foragers

move vigorously, in a highly stereotypical pattern, on the comb

surface. Intriguingly, an increasing number of nestmates can be

observed visiting the feeding site only a few minutes past that event

([1], [2]). Karl von Frisch discovered that the behavior, he called

tail-wagging dance, not only informs foragers about the mere

existence of a food source. At least to us humans, it even

communicates the polar coordinates of a valuable field location

([1]) enabling the colony to direct and coordinate foraging

activities. This is a remarkable example of symbolic information

transfer in the animal world and has attracted much interest from

different scientific domains.

A tail-wagging forager moves on the vertical comb in an

approximate figure of eight. In the central part - the so called

waggle run - it throws its body from side to side in a pendulum like

motion at a frequency of about 13 Hz. Throughout that run the

dancer holds tight to the comb moving forward in a rather straight

line. Each waggle-phase is followed by a return-phase, in which

the dancer circles back to the approximate starting point of the

previous waggle run, alternatingly performed clockwise and

counter-clockwise. Interestingly, dance parameters reflect feeding

site properties. In the waggle phase, the body angle with respect to

gravity approximates the direction to the feeder relative to the

sun’s azimuth. The length and duration of the waggle run

correlate highly with the distance to the target location ([1],[2]). In

addition to direction and distance, the dance communicates the

profitability or quality of the food source with respect to the

current hive’s needs. Foragers tend to dance more lively and

perform longer dances when feeding on a highly profitable source

([3], [2]).

The bees actively pursuing the dancer, commonly called

follower bees, are most likely to be recruited after joining several

dance periods. In that process they tend to remain in close contact

with the dancer and detect a variety of stimuli. Antennal contacts

with the body of the dancer are frequently observable and likely

transmit information about the dancer’s body orientation ([4], [5],

[6]). Wing bursts in the waggle run produce laminar air flows,

three-dimensional fields of short-ranged air particle oscillations

and comb vibrations that might as well deliver meaningful

multisensory input at the receiver side of the communication

([7], [8], [9], [10]). An increased thoracic temperature is

characteristic to dancers and also encodes food quality ([11]).

Recently, a dance-specific scent has been reported ([12]) as yet

another possible signal. Floral odors and regurgitated food samples

are associated cues. However, which of the many stimuli is actually

used for the communication could not yet be clarified.

Moreover, the dance communication involves highly complex

cognitive tasks. A dancer bee extracts and translates field site

properties from the memory formed on her foraging trips - the

dance is no instantaneous or spontaneous response nor a signal for

an immediate action. Follower bees ‘‘read’’ the dance, translate

their sensory input into the remote target location and find the

feeder even with large detours around obstacles like high buildings

or hills. The bee dance community has gathered an amazing

amount of knowledge on navigation, memory and communication

in honeybees ([13]) and we can rely on compelling evidence
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indicating that honeybees actually evaluate and use the informa-

tion encoded in the dance. However, after more than 60 years of

intense research it is still unknown how exactly information is

encoded in the dance and how it is decoded by the followers.

Which of the many stimuli carry information? Can we assign

specific meanings to single stimuli? How do the followers use that

complex mosaic of stimuli they perceive and how are they mapped

to their subsequent behavior in the field? Do bees extract such

abstract concepts as angles to integrate them in and read them

from the dance? Or is the encoding and the decoding process

more of a memory playback and recording, respectively?

To tackle a part of these questions we are developing a robotic

honeybee that can emulate all known stimuli ([14]). Using a robot

we can control every signal individually and observe the effect of

arbitrary stimulus combinations. To this end we track the behavior

of the bees that had contact to the honeybee robot by highly

detailed video recordings in the hive and harmonic radar ([15]) in

the field. Through that work we will be able to identify essential

communication signals and deduce signal media and sensory

modalities.

In order to mimic the dance as realistic as possible we captured

the dance motion via an automatic tracking program from video

recordings of natural dances. This paper covers the analysis of the

resulting trajectory data, i.e. body position and orientation over

time and targets two goals. First, we would like to understand the

general nature of the dance motion, i.e. what are frame properties

like maximum velocities, angular precision and the size of the

dance area. These global parameters define the target properties of

the robot’s mechanics and actuators. Secondly, we would like to

learn from the observations which motion features are invariant

throughout a large set of dances and are therefor likely to be of

significance in the communication process. These key motion

features are then implemented in the honeybee robot in order to

generate realistic waggle dances.

We present a comprehensive list of dance characteristics, discuss

interesting aspects of natural dances and show the trajectories

generated by the final robotic dance model. This analysis gives a

thorough description of the variability of the body motion of

waggle dancers and thus might serve as the base of future analyses

of the dance. The video recordings, the trajectory data, the matlab

code for the model and all results of this analysis will be made

available to the scientific community through a video and

metadata management system on www.beetube.eu ([16]).

Materials and Methods

2.1 Tracking the videos and resulting trajectories
Video recordings (100 fps, VGA resolution) of waggle dances of

European Honeybees (Apis mellifera carnica) were taken using a

Basler A602f grayscale camera. We lit the comb surface with an

array of red light LEDs (peak wavelength at 670 nm). Only

recordings of dances advertising the same (230 m distant) feeder

were used for the present analysis. The videos were then subjected

to a tracking program [17] framewise. The program computed an

automatic position that was checked by a person and corrected if

necessary to produce reliable data. For every video frame the

software stored the orientation and planar position of a bounding

box (see Fig. 1) to a file. Because our video recordings have

different magnification levels we measured the number of pixels of

a unit distance (5 mm, a cell diameter) using a custom program.

The trajectories were then translated to millimeter scale and

rotated by the sun’s azimuth angle and the feeder’s direction in the

field. After that rotation all dances were normalized,i.e. all waggles

‘‘point’’ to 00. Thus, all angular measures of dances of different day

times were made comparable. The total number of waggle runs

entering the analysis is 1009. They were obtained from 108 dances

of 20 individuals.

2.2 Statistical Analysis of the Trajectories
Any tracked dance motion might be divided into a (hidden)

dance model component and secondary, non-dance behaviors (e.g.

evasive maneuvers, trophallaxis). We assume that the observed

dance motion is a mixture of the dance motion and other motion

that is superimposed or interspersed depending on external and

internal stimuli. Thus, for the robotic dance it makes sense to make

use of a model rather than playing back previously tracked dances.

By analyzing many dance trajectories we expect that the influence

of non-dance behaviour will cancel out statistically. To assess a

minimal set of parameters with which to model a realistic dance

we first made a list of numerous candidate properties of the

trajectory data. We then discarded parameters showing high

variance. Some of the remaining parameters were redundant. The

parameter with lower variance was selected for the dance model.

The trajectory data allows a vast variety of statistical queries. To

retain order, we divide the parameters in sections ‘‘Global Dance

Parameters’’, ‘‘Waggle Parameters’’, ‘‘Return Parameters’’ and

‘‘Intra-Waggle Parameters’’. Table 1 enumerates the most

important properties we extracted and classifies them into the

forementioned categories. A complete list can be found in

Appendix S1.

2.2.1 Global Parameters. This section encloses parameters

specific to a dance period, i.e. the sequence waggle-return-waggle-

return (see Figure 2). These are: dance duration (the duration of a

period in seconds), dance area (the spatial distribution of a dance

period in millimeters), dance orientation (the mean angle of the

dancer throughout a dance period) and waggle-return duration ratio

(the ratio of consecutive waggle and return durations).

2.2.2 Waggle Run Parameters. The waggle run class is

specific to parameters describing a waggle run or relations between

waggle runs. These are: waggle duration (the duration of a waggle

run in seconds), waggle length (the length of a line connecting start

and end point of a waggle run in millimeters), waggle orientation (the

mean angle of all stored positions throughout the waggle run in

degrees), waggle direction (the angle of a linear least-squares fit of the

smoothed waggle run’s planar positions in degrees), waggle drift (the

displacement vector of two consecutive waggle runs) and waggle

divergence (method A: the angle between the mean orientation (or

direction) of all left and all right waggle runs; method B: the mean

angle between consecutive waggles).

2.2.3 Return Run Parameters. In this section parameters

describing return run properties are clustered: return run duration

(the duration of a return run in seconds), return run forward velocity,

return run sideward velocity and return run angular velocity (the motion

velocities in the return run as a function of time).

2.2.4 Intra-Waggle Parameters. All parameters that

describe intrinsic properties of waggle runs are specified in this

class: The orientation amplitude (the orientation difference of the body

in facing, consecutive turning points of a waggle oscillation),

displacement amplitude (the distance of an turning point to the

midpoint of the previous and following turning point), waggle

frequency, waggle velocity (the forward velocity while waggling), waggle

steps (the displacement vector of all left and right turning points).

A number of parameters were previously identified to be highly

correlated to particular properties of the feeding location.

E.g. the angles waggle orientation and waggle direction correlate with

the direction to the feeder. The waggle length or the waggle duration,

the return length and return duration or even the number of waggle

oscillations were described to correlate with the distance to the

Analysis of the Waggle Dance Motion of Honeybees
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feeder ([1]). Our analysis also gives a numerical reason for the

choice of one of these redundant parameters over the other. We

assume that a lower variance indicates the conservation of that

property and thus a high significance in the decoding process.

After the parameter selection the model is supposed to create a

dance that meets the frame properties that are described by the

global parameters - these are not included explicitly in the model.

They form the spatial and temporal limits of the robotic dance and

serve only to verify the model.

Besides the properties known from the literature we describe the

waggle drift, i.e. the vector connecting two consecutive waggle run’s

starting points. To decide whether to include the property into the

list of dance parameters we test the hypothesis of different means

with a Hotelling T-square test. We introduce the parameter waggle

step as the vector connecting two consecutive left or right turning

points of waggle oscillations. This might be of interest, because the

turning points are likely to be the antennal ‘‘sampling points’’ of

the waggle motion from the perspective of the dance followers.

Also we introduce two measures for describing the amplitude of

the waggle motion: orientation amplitude and displacement amplitude.

The former is defined as the orientation difference at two

consecutive turning points, the latter is defined as the distance of

an turning point to the midpoint of the line that connects the one

before and after.

The program MATLABH is used for the whole analysis. We

manually reviewed all automatically obtained results. First we run

a script that identifies the waggle runs to obtain the separation

needed for the class-specific analysis. Therefor we Fourier

transform the one-dimensional derivatives of the x and y

coordinates using a sliding window of 0.2 seconds width. A

Fourier transform decomposes a signal into its constituent

frequencies. If we find a spectral activity of the body motion at

12 Hz higher than a threshold the respective window was selected

to contain tail-wagging. The resulting binary data was post-

processed using dilution and erosion operations, known from

image processing, to close gaps in some waggle runs. A few angular

measures in the waggle phase were computed using two different

methods. The ‘‘orientation method’’ is the angular mean of all

stored orientations of the bounding box throughout the waggle

phase. The ‘‘direction method’’ is the angle of the linear least

squares fit of the 2D trajectory of a waggle run. The x,y positions

were smoothed before the fit. This was necessary for very short

waggle phases because these were ‘‘shorter than wide’’, i.e. the fit

would express the lateral motion rather than the forward motion.

Smoothing the trajectory helps to extract the direction of the

waggle, but might be a source of additional error and will be

discussed later. Some authors have used one or the other method

to measure the waggle angle ([18],[19],[20],[1],[2]). Interestingly,

in some dances these angles differ significantly. I.e. some bees

‘‘look’’ into a direction different to the direction of their waggle

path. Another program identifies the turning points of the waggle

runs by finding the points on the trajectory that locally maximize

Figure 1. A frame of a highspeed video recording that was processed by the tracking program. The position of the dancer can be
marked with a rectangular box by the user for a starting frame. The position of its center and the angle of the box are found and stored for
consecutive frames automatically.
doi:10.1371/journal.pone.0021354.g001
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the orthogonal distance to the mean direction line, as depicted in

Figure 2. Some waggle runs were too short to be found by the

automatic procedure since they consist of just one oscillation. We

consider only waggle runs longer than two oscillations in the

manual selection or 100 ms in the automatic one. Some return

runs are interrupted, i.e. the subsequent waggle run is performed

after a long time, after trophallaxis or other behaviors. These runs

are not considered a return run and the waggle run that follows is

not paired with the one before for the computation of the waggle

divergence. The threshold for exclusion is 4 seconds (mean return

run duration plus two standard deviations is around 3 seconds).

To compare the variability of parameters of different scales and

units we compute the coefficient of variation (CoV) which is

defined as the standard deviation divided by the mean. The two-

dimensional test of difference of mean is performed using

Hotelling’s T-square statistic. Difference of means of one-

dimensional data is done with a Student’s t-test. Test for

uniformity of circular data is performed with Rao’s spacing test.

Results

3.1 Global Parameters
The CoV of the dance period duration is 0.16. That is a hint to a

very tight temporal dance regime. The standard deviation of the

dance period area is around 7 mm2. That means almost all dance

periods are performed within an area of 28 mm2, i.e. a square

with edges two bee lengths long. The distribution of the dance

angle is uniform (P = 0.5). That renders it likely that follower bees

differentiate between the body pose of the dancer in waggle -

and return runs. The CoV of the waggle-return-ratio is 0.44.

Again, this points to the high importance of the temporal

dynamics.

3.2 Waggle Run Parameters
The waggle run duration has low variance (CoV = 0.36). The

means of the two angular measures waggle direction and waggle

orientation are not significantly different (two tailed t-test,

P = 0.3078). The mean drift vector was tested to be not

significantly different to a zero drift (Hotelling T-square, F-Test,

P = 0.178) meaning that dancing bees are not systematically

progressing in a certain direction from waggle to waggle. The

analysis of the waggle divergence reveals a difference in the orientation

and direction measure. Showing similar variance, the difference of

both divergence measures is extremely significant (Pv0.0001).

The actual waggle path a dancer describes therefor gives a better

approximation of the ‘‘real’’ direction to the feeder than the body

orientation.

3.3 Return Run Parameters
The return duration and return velocity have a CoV of 0.22 and 0.21,

respectively. We resampled forward, sideward and angular

velocities in the return runs to vectors of unit length. By default

return runs were downsampled to 700 elements - one third of the

mean number of points. Afterwards, the vectors could be averaged

and fitted using a polynomial model (see Figure 3). Both the

forward and the sideward motion (for both left and right return

phases) show interesting characteristics in the course of the return.

A dancer turns fastest shortly after the waggle and slowest just

before the following one. The amount of sideward motion is not

negligible and always directed outwards.

3.4 Intra-Waggle Run Parameters
The orientation amplitude is found to be more variable than the

displacement amplitude. Coefficients of variation are 0.6 and 0.38,

respectively. The waggle frequency band is rather narrow

(CoV = 0.15). Since dances of 20 different dancers were pooled,

one might expect the individual variance to be even lower. The

speed of forward motion in the waggle phase also has low variance

(CoV = 0.33). The waggles steps clearly point forward. A closer look

at the distribution (Figure 4) reveals two modes: One peak at

(0 mm,0 mm), i.e. a lateral waggle motion that has no forward

movement and one peak at (1 mm,0 mm) that corresponds to the

forward motion of the dancer after one single waggle oscillation.

This sharp peak displays the steps a dancer makes in the waggle

phase. Interestingly, the distribution has almost unit variance in

both dimensions, i.e. the system shows comparable variability for

the lateral wagging motion as for the forward motion.

Table 1. Statistics of dance properties.

Parameter Unit/Ann. m s
s

m

Global Parameters

dance duration s 5.24 0.85 0.16

dance radius mm -

x - 7.6 -

y - 7.1 -

waggle-return - 0.22 0.10 0.44

duration ratio

Waggle Parameters

duration s 0.44 0.16 0.36

waggle length mm 6.32 2.36 0.37

waggle orientation 0 20.03 28.06 -

waggle direction 0 1.24 24.85 -

waggle drift mm

forward 0.27 4.57 -

sideward 20.01 4.62 -

divergence A 0

orientation 31.98 - -

direction 22.11 - -

divergence B 0

orientation 33.12 19 0.57

direction 22.76 29.86 1.31

Return Parameters

return duration s 2.13 0.47 0.22

return velocity mm s{1 20.10 4.27 0.21

Intra-Waggle Parameters

orientation 0 13.89 8.33 0.60

amplitude

displacement mm 2.64 1 0.38

amplitude

waggle frequency Hz 12.67 1.89 0.15

waggle velocity mm s{1 15.04 5.00 0.33

waggle steps mm

forward 1 0.9 -

sideward 0.04 0.9 -

An explanation of the parameters is given in the section 2.2. Units and
annotations are shown in column 2. Means, standard deviation and coefficient
of variation are given, if available.
doi:10.1371/journal.pone.0021354.t001
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Figure 2. A natural dance period. Top: Plot of planar positions of the dancer bee’s center. Two consecutive waggle runs are depicted. Return runs
are dash-dotted. Start and end are marked with an asterisk and plus sign, respectively. On the left waggle run we show the linear least squares fit
(dashed line) of the smoothed waggle (light grey solid curve) and the mean orientation line (solid line). In the right waggle run we marked the left
and right turning points of the waggle oscillation with a diamond and square sign, respectively. Bottom: Orientation of the bounding box over time.
Return run orientation is dash-dotted.
doi:10.1371/journal.pone.0021354.g002
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3.5 The Robotic Dance Model
We include the following parameters in the dance model: waggle

duration, waggle forward velocity, waggle orientation, divergence, return

forward velocity function, return sideward velocity function, return angular

velocity function, displacement amplitude and waggle frequency. Using these

parameters a dance model was build and tested on our robot, a

customized plotter ([14]). Since a waggle motion contains

oscillations of around 13 Hz in all three dimensions (planar

position and orientation) the robotic motion generated a lot of

unwanted vibrations. To reduce the amount of mechanical noise

we now only use the orientation motor for the waggle oscillation.

The robot’s body is excentrically fixed on the robot’s arm such that

the rotation axis of the robot points 1 cm in front of the robot

body’s head. Using this trick we can generate x,y-oscillations using

only one motor. To reduce mechanical noise in the transition from

return to waggle phase the waggle oscillation is multiplied with a

linear ramp. Figure 5 shows a trajectory produced by the final

model, which can be found as Matlab code in Appendix S1.

Discussion

We propose dance parameters for the construction of a waggle

dance model which produces trajectories closely resembling real

ones. In this study we limited our analysis to obtain the parameters

for the description of honeybee waggle dances advertising a fixed

distance of 230 m. Future work will include recording, tracking

and analyzing dances for a discrete set of distances.

The proposed low variance parameters indicate the significance

of particular body pose or motion properties in the communica-

tion process. The way how the dancer’s body moves and how this

motion modulates other dance-related stimuli can, however,

plausibly be allocated to and modeled with these particular

properties. Furthermore, our evaluation allows some interesting

inferences.

The mean angle of all positions throughout the dance (the dance

angle) is uniformly distributed. No meaningful direction informa-

tion can be obtained by sampling the body pose of the dancer

throughout the whole dance. The waggle run, as the medium for

the polar coordinates, needs to be highlighted in some way. It

remains unknown if the waggle motion or other signals only

present in the waggle phase, such as signals arising from wing

oscillations, implement this. Both angular measures of the waggle

exhibit a high variance. Averaging over all angles, however, yields

a very good approximation of the direction to the feeder. The

integration of subsequent samples of the waggle angle thus

improves the precision of the message. De Marco et al. carried out

a random resampling analysis to assess the error of the dance

message as a function of the number of waggle runs sampled ([20]).

Although random sampling might not be a realistic simulation, it

underlines the great amount of uncertainty followers have to cope

with when sampling a rather low number of waggle runs. The

precision of the dance message might be increased by other signals

though. The wing buzzes for example might mark the very body

orientation that corresponds to the feeder’s direction. Unfortu-

nately, we were not able to detect the timing of the wing buzzes in

our video recordings since the low lighting conditions we used did

not allow for high shutter speeds and thus lead to a high amount of

motion blur. In the coming season 2011 we will make new

recordings in order to examine that hypothesis.

We found that the two angular measures yield a significant

difference in the divergence angle. This angle is either assessed by

comparing the means of left and right waggle runs (method A). Or

it is measured ‘‘sequentially’’, i.e. only consecutive waggle runs are

used to collect the angular differences which, in the end, are

Figure 3. The forward, sideward and angular velocities, taken from 358 left and 362 right return runs and resampled to a unit
duration (0 to 1). The average velocities are drawn dash-dotted, the solid line depicts the polynomial fit. The top plot shows the forward (top) and
sideward (bottom) velocities, the second plot depicts the angular velocities.
doi:10.1371/journal.pone.0021354.g003
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averaged (method B). Both divergences differ with respect to the

angular measure used. The orientation measure (based on the

average body orientation) always yields larger divergences than the

direction measure (that refers to the direction of the waggle path).

This might be explained by the transitions of the waggle to return

run or vice versa. While waggling, the dancer bee often turns her

body into the return run’s direction but keeps the body’s trajectory

straight. To this might add that at the beginning of the waggle the

dancer bee might have turned not entirely into the right angle. To

prove these assumptions we recalculated the divergences discard-

ing the first and last 10%, 20% and 30% of the waggle run.

Leaving out the first portions, the difference of the two divergences

gets even larger, entirely on the account of the direction measure.

By discarding the end of the waggle the difference of the two

angular measures drops to 40–50, which still is extremely significant

(Pv0:001, see Appendix S1 for the results of the recalculation). By

Figure 4. The histogram of the waggle step vectors exhibits two modes: a sharp peak at (0 mm, 0 mm) and another local maximum
at 1 mm in the waggle direction. The former corresponds to wagging on the spot, the latter reflects the forward motion through one waggle
movement.
doi:10.1371/journal.pone.0021354.g004
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discarding the first portion of the waggle we can not see an effect

on the waggle orientation. That matches the fact that the angular

and sideward velocities drop to almost zero right before the waggle

run (see Figure 3). These results indicate that bees might finetune

the divergence (tuned-error-hypothesis, see [21]).

Looking at real dance trajectories, the figure eight that is used

commonly to describe the dance shape is observed rather

infrequently. This is on the one hand due to the followers

vigorous physical efforts to keep close body contact to the dancer

and, by doing so, being obstacles in her way. On the other hand

the dance floor is usually no free space and also the followers can

not move freely. If the dancer’s path is occupied she continues the

turn on the spot or executes evasive maneuvers. Yet very

effectively, a group of 2–3 followers usually clears the area for

the dancer’s subsequent waggle run with every turn they follow.

We superimposed waggle periods (waggle-return-waggle-return)

and created a two dimensional histogram of the body coordinates

(Fig. 6). That makes visible the figure of eight and illustrates that a

dance period takes place on a very small area of approximately

2 cm2. Together with the previous observation we infer that the

return runs not only serve to return to the place where the

previous waggle occured. It binds a distinctive group to the dancer

and utilizes their motion to keep clear a yet small area within a

very chaotic and dynamic environment. Also the tight temporal

dynamics of waggle and return phase leads to the notion of a

dance period as an ‘‘information packet’’.

Applying Peirce’s definition, communication codes can be of

three kinds: iconic, indexical and symbolic ([22]). While iconic

information relies on the resemblance of code and entity being

communicated (first order code) and indexical codes are

‘‘pointing’’ to the object (second order code), symbols rely on

the convention of a meaning. Potentially, the dance contains

indexical (e.g. the smell of the crop) and iconic codes (the wing

buzzes resemble the flight to be taken). Wether some dance

components serve as symbols can not be answered based on the

knowledge obtained from the observations and analyses we made

only. Obviously, honeybees share a common brain function that

maps the experience of the field trip and the hive situation to the

very dance motion, or vice versa, that might as well be used to

translate the multisensory input of a dance follower into

information that is used to find the feeding spot. That common

mapping function might be seen as a genetic convention and thus

adds a symbolic character to the dance. Yet of now, we do not

know how this function works in detail, wether it extracts such

abstract concepts as angles and distances or maps the memory of a

foraging experience to a motion pattern in a kind of ‘‘memory

playback’’. The honeybee robot alone might not enable us to

reveal these internal processes completely. It can be of great help,

though, answering which stimuli carry information. Using the

robot we can decouple the stimuli involved and in doing so

perform unnatural dances to observe the system under these

conditions. Naturally, the degree to which the dance can be

decomposed and distorted with the robot is generally unlimited.

On the other side, the degree of resemblance of the imitation is

bounded. This analysis yields a solid basis to model the dance

motion with highly realistic results. It therewith lays the foundation

to imitate the complex spatio-temporal dynamics of the associated

stimuli. The proposed model is able to produce trajectories for a

feasible, i.e. naturally observable, range of parameter values. We

ran the model with natural parameter combinations (by measuring

durations, motion speeds, etc. from video recordings) for dances

advertising food sources at 300 m and 600 m distance and always

obtain almost symmetric, figure-of-eight trajectory shapes. If we

feed the model unnatural parameter sets, e.g. a high waggle run

duration but a low return run duration, we would still obtain a

trajectory - but only poorly resembling natural dance shapes.

Furthermore, the model does not explicitely verify if the trajectory

is resulting in motor speeds that exceed their limits. For a wide

range of still plausible parameter sets however the robot is able to

drive the path computed by the model.

So far, the robotic dance motion alone has not yet recruited

followers to an unknown feeder. In a yet unpublished experiment,

adding wing beats to the pure dance motion increases the rate with

which foragers visit a known but depleted, unscented feeding site.

Until now, we haven’t yet been able to prove that the robot is

communicating the direction to a feeder. This is closely related to

the fact that followers have to sample a high number of waggle

runs in order to gain a feasible estimate of the direction ([23]). In

robotic dances a natural following behaviour is excited only

partially. There might be three reasons for that observation. First,

the implemented robotic stimuli are not a full replication of the

natural stimuli. This includes a variety of aspects as the timing (e.g.

of the wing buzzes), intensity (e.g. of the heat production) or spatial

distribution (e.g. of the 3-dimensional field of air flows) of stimuli.

Second, there might be some stimuli completely missing as well,

e.g. substrate borne vibrations. Third, we have to consider the

Figure 5. Top: A waggle dance generated from the default
parameters. The solid line shows the trajectory of the center of the
robot’s body. The dash-dotted line depicts the curve of the 2D plotter
that carries the motor used for the rotation and the lateral wagging
motion. Bottom: Body orientation over time.
doi:10.1371/journal.pone.0021354.g005
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possibility that, although the robotic replication of the dance is

sufficient, there might be other factors inhibiting the followers to

actively execute their typical behavioral pattern. Disturbances may

result from opening the hive, the unnaturally high forces when

running over bees or aversive reactions to chemicals on the robot.

Indeed, natural interactions on the comb surface are manifold and

the acceptance of the robot seems to be a very fragile process. In

order to reduce severe physical interferences, the robot must be

stopped before running over the other bees. Manual control is not

feasible with respect to precision and reaction time. Therefore we

utilize small embedded camera modules that monitor a perimeter

around the robot to recognize obstacles and trigger trophallaxis

automatically ([14]). Also we have added a transparent plastic

plate to the robot’s central rod to cover the aperture of the hive

through which we insert the robot. Future recordings of dances

and upcoming recruitment experiments studying the ability of the

robot to convey directional or distance-related information will

provide the basis for the generalization of our current waggle

dance model.

Supporting Information

Appendix S1 This document contains calculations of different

divergence measures, the Matlab code for the dance model and

figures showing the distributions of most of the dance properties.

(PDF)
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