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Abstract

A change in coreceptor preference from CCR5 to CXCR4 towards the end stage disease in some HIV-1 infected individuals
has been well documented, but the reasons and mechanisms for this tropism switch remain elusive. It has been suggested
that envelope structural constraints in accommodating amino acid changes required for CXCR4 usage is an obstacle to
tropism switch, limiting the rate and pathways available for HIV-1 coreceptor switching. The present study was initiated in
two R5 SHIVSF162P3N-infected rapid progressor macaques with coreceptor switch to test the hypothesis that an early step in
the evolution of tropism switch is the adoption of a less constrained and more ‘‘open’’ envelope conformation for better
CD4 usage, allowing greater structural flexibility to accommodate further mutational changes that confer CXCR4 utilization.
We show that, prior to the time of coreceptor switch, R5 viruses in both macaques evolved to become increasingly sCD4-
sensitive, suggestive of enhanced exposure of the CD4 binding site and an ‘‘open’’ envelope conformation, and this
correlated with better gp120 binding to CD4 and with more efficient infection of CD4low cells such as primary macrophages.
Moreover, significant changes in neutralization sensitivity to agents and antibodies directed against functional domains of
gp120 and gp41 were seen for R5 viruses close to the time of X4 emergence, consistent with global changes in envelope
configuration and structural plasticity. These observations in a simian model of R5-to-X4 evolution provide a mechanistic
basis for the HIV-1 coreceptor switch.
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Introduction

The human immunodeficiency virus (HIV) enters target cells via

interaction of the viral glycoprotein with the cellular receptor CD4

and chemokine coreceptors, either CCR5 (R5 viruses) or CXCR4

(X4 viruses) [1]. Regardless of the route of transmission, R5 viruses

account for most of the primary HIV-1 infections [2,3]. With time,

X4 variants arise and coexist with R5 viruses in ,50% of subtype

B infected individuals, and their emergence is associated with

accelerated CD4+ T cell loss and disease progression [4]. The

determinant of phenotypic change from R5 to X4 maps largely to

the V3 loop of the envelope gp120 [5,6,7], requiring only a few

amino acid substitutions in this region to expand or alter

coreceptor preference [8,9,10]. Given the minimal requirement

for V3 sequence change to confer the ability to use CXCR4, the

high levels of virus replication and associated error rate [11,12,13],

and the selective advantage of expanded target cell population in

vivo [14,15], it is surprising that the switch from R5 to X4 virus

does not occur more rapidly and frequently in HIV-1 infected

individuals. Although the mechanistic basis and blockade(s) for

virus coreceptor switch remain ill-defined, several selective factors

such as high viral load and evolutionary rate, CD4+CCR5+ target

T cell limitation, and weakening of immune-driven pressures have

been proposed as playing important roles [16,17,18].

We recently developed a simian model of coreceptor switching,

based on infection of rhesus macaques with a pathogenic R5

SHIV isolate, SHIVSF162P3N [19,20,21]. The macaques infected

intravenously or intrarectally with SHIVSF1623N in which X4 virus

evolved and emerged were rapid progressors (RPs), with a clinical

course that was characterized by extremely high levels of virus

replication and weak or undetectable antiviral antibody and

cellular immune responses. Sequence changes in the V3 loop of

envelope gp120 were shown to determine the phenotypic change

from R5 to X4 in macaques, and this process transitioned through

dual-tropic (R5X4) variants capable of using both coreceptors,

albeit with reduced efficiency [22]. Interestingly, while X4

appearance was associated with an accelerated drop in peripheral

CD4+ T cell count, it followed rather than preceded the onset of
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precipitous CD4+ T cell loss in infected animals. The newly

emerging R5X4 and X4 viruses were highly sensitive to

neutralization with soluble CD4 (sCD4), and V3 sequence changes

that confer CXCR4 usage are also sufficient to determine increase

sCD4 sensitivity of the virus [22]. The conditions (e.g., extremely

high levels of virus replication), genotypic requirements (i.e., V3

loop sequence changes) and pattern (e.g., emergence of neutral-

ization sensitive X4 variants following the onset of CD4+ cell loss)

for coreceptor switching in SHIVSF162P3N-infected macaques

overlapped with those reported for HIV-1 infected humans

[8,9,23,24,25,26,27,28], supporting the use of this infection model

to study the basis and underlying selection pressures for R5-to-X4

virus evolution in vivo.

In this respect, the findings in HIV-1-infected individuals and in

SHIVSF162P3N-infected macaques that the emerging R5X4 and

X4 variants were highly sensitive to sCD4 neutralization, and that

the V3 sequence substitutions that altered coreceptor preference of

the virus also determined its sCD4 sensitivity are noteworthy

[19,22,27,29,30]. The former suggests that R5-to-X4 evolution is

possible only when neutralization antibody selective pressure is

absent or diminished with immune deterioration, while the latter

implies that the early steps in the R5-to-X4 evolution process may

require the same envelope conformation changes that render the

virus sCD4 sensitive. Increased sCD4 sensitivity is indicative of

enhanced CD4 binding and accessibility of the CD4 binding site,

which is usually masked in the structure of the unliganded

envelope glycoprotein of primary HIV-1 isolates in order to avoid

the binding of potential neutralization antibodies [31,32,33,34].

Since there is a diminished need to resist neutralizing antibodies in

the rapidly progressing macaques, and perhaps in HIV-1 infected

individuals towards end stage disease as well, when the immune

system collapses, enhanced CD4 binding may be best achieved by

adoption of an ‘‘open’’ envelope conformation to expose the CD4

binding site [31,35]. As envelope structural constraints have been

suggested to limit the pathways available for coreceptor switching

[13,36,37,38], an ‘‘open’’ envelope configuration can also release

or minimize such constraints, allowing for greater flexibility in

procuring the conformational transitions needed to confer

CXCR4 utilization.

We tested this model for the R5-to-X4 phenotypic switch by

assessing the sensitivity to sCD4 and a CCR5 antagonist of viruses

pseudotyped with CCR5-using envelope gp160s (Envs) amplified

over time from RP macaques with coreceptor switch, with these

measurements serving as surrogate markers for CD4 and CCR5

utilization efficiencies, respectively [39,40,41,42,43,44]. We also

examined binding of soluble gp120 to CD4-Ig, as well as the

ability of the R5 pseudoviruses to infect target cells that express

low levels of the CD4 receptor. This is because, conceivably, the

selection factor for viruses to expose the CD4 binding site and to

bind CD4 better is to infect target cells that express low levels of

the receptor more efficiently. Accordingly, HIV-1 R5 variants that

can infect CD4low cells such as macrophages are frequently

detected late in disease [45,46,47,48], and macrophages are the

major source of virus in SIV-infected RPs at end-stage disease

[49]. Moreover, efficient infection of macrophages in vitro

correlates with increased CD4 affinity, the capacity to use low

CD4 levels, and with increased sensitivity to sCD4 [43,50,51,

52,53,54,55,56]. Lastly, susceptibility of the R5 pseudoviruses to

neutralization with T20 and broadly reactive conformational

antibodies was also determined, with broad changes in neutral-

ization sensitivity interpreted as indicative of global rearrange-

ments in glycoprotein structure and greater envelope plasticity

[57,58]. These studies suggest that adaptation of an ‘‘open’’

envelope conformation that binds CD4 more efficiently evolves in

persisting R5 viruses, and is an early step in the pathway to the

coreceptor switch in rhesus macaques.

Materials and Methods

Ethics Statement
This work used blood from SHIV infected macaques housed at

the Tulane National Primate Research Center (TNPRC) in

accordance with the Animal Welfare Act and Guide for the Care

and Use of Laboratory Animals. TNPRC is accredited by the

Association and Assessment and Accreditation of Laboratory

Animal Care (AAALAC #000594). The OLAW animal welfare

assurance number for TNPRC is A4499-01 and the USDA

registration number is 72-R-0002. Care was provided by a faculty

of 8 veterinarians, and 120 animal care technicians, veterinary

technicians and enrichment staff. All procedures were performed on

anesthetized animals and post-operative analgesics were adminis-

tered as needed in accordance with IACUC approval. The Tulane

University IACUC and the Division of Veterinary Medicine have

established procedures to minimize pain and distress through

several means. The use of preemptive and post procedural analgesia

is required for procedures that would likely cause more than

momentary pain or distress in humans undergoing the same

procedure. Any deviation from the administration of analgesics

according to this policy requires adequate scientific justification

from the investigator and approval by the IACUC. Tulane also has

a written endpoint policy to minimize potential pain and distress

experienced by animals. If the animal becomes ill and/or meets the

criteria for the IACUC approved endpoint policy, it will be

euthanized using methods consistent with the recommendations of

the American Veterinary Medical Association (AVMA) Panel on

Euthanasia.

The Tulane IACUC specifically approved this study. And, in

accordance with the recommendations of the Weatherall report

‘‘The use of non-human primates in research’’, all steps were taken

to protect animal welfare and to ameliorate suffering in all work

involving non-human primates.

Cells
293T cells and Hela TZM-bl cells expressing CD4, CCR5 and

CXCR4 and containing integrated reporter genes for firefly

luciferase and b-galactosidase under control of the HIV-1 LTR

[59] were maintained in DMEM supplemented with 10% fetal

bovine serum (FCS), 100 U/ml penicillin, 100 mg/ml streptomycin

and 2 mM L-glutamine. RC49 and JC53 cells, which are clones of

HeLa/CD4/CCR5 cells that express low and high levels of CD4

respectively [60], were maintained in the same media. Human

peripheral blood mononuclear cells (PBMCs) were prepared by

Ficoll gradient centrifugation, stimulated with phytohemagglutinin

(PHA, 3 mg/ml; Sigma, St. Louis, MO) in RPMI medium

containing 10% FCS, penicillin, streptomycin, L-glutamine and

20 U/ml interleukin-2 (Norvatis, Emeryville, CA). Monocytes were

enriched by centrifugation of PBMCs through a 40% percoll

cushion followed by plastic adherence, and cultured in RPMI 1640

medium supplemented with 10% FCS and 5% human AB serum

for 5–7 days to allow for differentiation into macrophages [61].

Plasmid constructs and pseudovirus production
For expression of envelope glycoproteins, full-length gp160

coding sequences were amplified from infected macaque PBMC

or plasma RT products with primers SH43 (59-AAGACAGA-

ATTCATGAGAGTGAAGGGGATCAGGAAG-39) and SH44

(59-AGAGAGGGATCCTTATAGCAAAGCCCTTTCAAAGC-

CCT-39), subcloned into the pCAGGS vector and sequenced for
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verification. To generate luciferase reporter viruses capable of only

a single round of replication, envelope trans-complementation

assay was used as previously described [62]. Briefly, Env

expression plasmid and the NL4.3LucE-R+ vector were cotrans-

fected with polyethylenimine (PEI, Polyscience, Warrington, PA)

into 2.56106 293T cells plated in 100 mm plate. Cell culture

supernatants were harvested 72 hours later, filtered through 0.45-

mm filters, and stored at 270uC in 1-ml aliquots. Pseudoviruses

were quantified for p24 Gag content (Beckman Coulter, Fullerton,

CA).

Virus infectivity
For assessment of Env infectivity and entry efficiency, 76103

TZM-bl cells were seeded in 96-well plates 24 hours before use

and infected, in triplicate, with 2 ng p24 Gag equivalent of the

indicated pseudotyped viruses. Infected cells were cultured for

72 h at 37uC, at which time the cells were harvested, lysed and

processed for luciferase activity according to the manufacturer’s

instructions (Luciferase Assay System; Promega, Madison, WI).

Entry, as quantified by luciferase activity, was measured with an

MLX microtiter plate luminometer (Dynex Technologies, Inc.,

Chantilly, VA). For RC49 and JC53 infections, 76103 cells were

seeded in each well of a 96-well plate on the day prior to infection.

Infections were performed in duplicate with 2 ng p24 Gag

equivalent of the indicated pseudoviruses, and cells harvested for

quantitation of luciferase activity 72 hours later. For infection of

primary cells, 106 and 105 cells of human PBMCs and

macrophage respectively were infected in duplicate with 5 ng

p24 Gag equivalent of the indicated pseudotyped viruses in each

well of a 96-well plate. Infected cultures were harvested 72 hours

later and processed for luciferase activity. To control for

differences in Env entry efficiencies, infectivity for RC49 cells

was expressed as a ratio of the infectivity for these cells compared

to the infectivity in JC53 cells. Similarly, infectivity in macro-

phages was normalized to that achieved in peripheral blood

mononuclear cells (PBMCs) from the same donor.

Receptor and coreceptor usage efficiency
For assessment of receptor usage efficiency, 2 ng p24 equivalent

of the indicated pseudoviruses in 50 ml were incubated with equal

4-fold serial dilution volumes of the CD4-IgG2 fusion protein

(sCD4; PRO 542, Progenics Pharmaceuticals, Tarrytown, NY) for

1 h at 37uC and then added to cells, in duplicate wells, for an

additional 2 hours at 37uC. 100 ml of medium was then added to

each well and the virus-protein cultures maintained for 72 hours.

Control cultures received virus in the absence of sCD4. At the end

of the culture period, the cells were lysed and processed for b-

galactosidase activity (Galacto-Star System; Applied Biosystems,

Bedford, MA). A neutralization curve was generated by plotting

the percentage of neutralization vs sCD4 dilution, and 50%

inhibitory concentrations (IC50) were determined using the Prism

4 software (GraphPad, San Diego, CA). For assessment of

coreceptor usage efficiency, 76103 TZM-bl cells per well of a

96-well plate were inoculated, in duplicate, with 2 ng p24 Gag

antigen equivalent of the indicated pseudovirus in the absence or

presence of 4-fold dilutions of the CCR5 antagonist PSC-

RANTES. The cells were lysed after 72 hours at 37uC, processed

for b-galactosidase activity, and IC50 determined using the Prism 4

software.

Soluble gp120 CD4-Ig binding
To examine CD4 binding, gp120 glycoproteins from 293T

transfected cells were metabolically radiolabeled for 48 hours with

100 mCi/mL [35S]-methionine/cysteine ([35S] protein labeling

mix; Perkin-Elmer, Waltham, Mass) in Dulbecco’s modified

Eagle’s medium lacking methionine and cysteine and supplement-

ed with 5% dialyzed fetal bovine serum. Radiolabeled proteins

released in the culture supernatant were incubated with either a

mixture of sera from HIV-1 infected individuals or CD4-Ig [a

fusion protein in which the N-terminal two domains of CD4 are

linked to the Fc component of immunoglobulin G [63]] in the

presence of 70 ml of 10% Protein A-Sepharose (American

BioSciences Inc, Boulder, CO) for 2 hr at 37uC. The precipitates

were analyzed on NuPAGE Novex Bis-Tris polyacrylamide gels

(Invitrogen, Carlsbad, CA), followed by autoradiography and

quantification with a PhosphorImager (Molecular Dynamics,

Sunnyvale, CA).

Evaluation of spontaneous and sCD4-induced release of
gp120

2.56106 293T cells seeded in a 100-mm plate were transfected

with Env expression plasmid by the polyethylenimine method.

Transfected cells were collected 48 h later, washed twice,

resuspended in phosphate-buffered saline and divided in half.

sCD4 (0.5 mg/ml) was added to one of the two fractions, and both

fractions were incubated for 2 h at 37uC. The supernatants and

cells were subsequently collected, and the amounts of gp120 in

each fraction were quantitated by ELISA according to the

manufacturer’s instructions (Advanced Biosciences Laboratories,

Inc, Kensington, MD). Gp120 release was determined as a

percentage of gp120 present in the supernatants compared to the

total amount of Envs found in both the supernatants and the cell

lysates. Results shown are expressed as the percentage difference

in gp120 release in the presence of sCD4 relative to that seen in

the absence of sCD4.

Neutralization assay
Virus neutralization was assessed using TZM-bl cells in 96-well

plates. Briefly, equal volumes (50 ml) of pseudoviruses (2 ng p24

Gag equivalent) and 4-fold serial dilutions of IgG1b12, 447-52D

and T20 were incubated for 1 h at 37uC and then added to cells,

in duplicate wells, for an additional 2 hours at 37uC. 100 ml of

medium was then added to each well and the virus-protein

cultures maintained for 72 hours. Control cultures received virus

in the absence of blocking agent. At the end of the culture period,

the cells were lysed and processed for b-galactosidase activity. A

neutralization curve was generated by plotting the percentage of

neutralization vs agent dilution, and IC50 determined using the

Prism 4 software.

Immunophenotyping of SHIV-infected cells
Identification of SHIV-infected macrophages was accomplished

with double-label immunohistochemistry performed as previously

described with modifications [64,65]. Briefly, lymph node sections

were deparaffinized in xylene and rehydrated through graded

ethanol to tris-buffered saline (TBS) plus tween 20. Endogenous

peroxidase activity was blocked by incubation in 3% H2O2 in PBS.

Antigen retrieval was accomplished by microwave heating sections

at 95uC for 20 minutes in citrate buffer (DAKO, Carpinteria, CA),

followed by 20 minute cooling, and Dako protein block for

10 minutes. The blocked sections were incubated with SIVnef

antibody (clone KK75, IgG1; 1:200) overnight at 4uC then reacted

with biotinylated secondary antibody (HAM-b, Dako, 1:200) for

30 minutes. Sections were detected using standard avidin-biotin

peroxidase complex technique (ABC Elite, Vector Laboratories,

Burlingame, CA) and DAB chromagen (Dako). Sections were

blocked again for 10 minutes with protein block (Dako) and
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incubated with Iba-1 antibody (Wako Chemicals, Richmond, VA,

rabbit polyclonal, 019-19741, 1:1000) for macrophages for

30 minutes at room temperature followed by biotinylated secondary

antibody (GAR-b, Dako, 1:200) for 30 minutes. Sections were

detected using standard avidin-biotin alkaline phosphatase complex

technique (Vectastain ABC-AP, Vector Laboratories, Burlingame,

CA) and Permanent Red (Dako). Slides were counterstained with

Mayer’s hematoxylin, rinsed in tap water, coated with Clear Mount

(Electron Microscopy Science, Hatfield, PA), air-dried overnight,

then coverslipped.

Statistical Analysis. Differences in susceptibility to sCD4,

IgG1b12, 447-52D and T20, as well as infection of CD4low cells

and binding of gp120 to CD4-Ig between the acute (w2 for BR24

and w1 for CA28) and the evolving R5 viruses were examined

using Mann-Whitney U test. P-values,0.05 were considered

statistically significant.

Results

Increased sCD4 sensitivity of evolving R5 viruses in a RP
with coreceptor switch

We first determined if R5 viruses evolved over time to be more

sCD4 sensitive in BR24, the initial reported case of coreceptor

switching in R5 SHIVSF162P3N-infected RP macaques [19]. BR24

sustained high viremia and progressed to disease at 28 week post-

infection (wpi) in the absence of seroconversion, with tropism

switch documented at 20 wpi. We obtained multiple CCR5-using

full-length envelope gp160 (Env) at 2, 8, 12, 16, 20, 24 and 28 wpi

and generated single-round replication-competent luciferase

reporter viruses for functional characterization. Four randomly

selected functional Env clones from the SHIVSF162P3N inoculum

were also characterized for comparison. We found no significant

difference in the entry efficiency of R5 viruses bearing Envs

amplified from macaque BR24 at 2–16 wpi, when measured in

CD4hi CCR5hi TZM-bl cells, but R5 viruses present during and

following the time of X4 emergence at 20 wpi infected TZM-bl

cells less efficiently (2–3 fold reduction in RLU; Figure 1A). There

was also no significant change in the ability of the evolving R5

viruses to use the CCR5 coreceptor up to the time of switch, as

indicated by similar IC50 inhibitory dose with the CCR5 inhibitor

PSC-RANTES (Figure 1B). However, viruses evolving following

the time of switch showed a 1.5- to 2-fold increase in susceptibility

to PSC-RANTES inhibition, suggesting that they used the CCR5

coreceptor less efficiently. These findings of reduced entry fitness

and decreased CCR5 use for R5 viruses that coexist with emerging

X4 viruses in BR24 towards end-stage disease at 20, 24 and

28 wpi contrast with reports of increased replication and efficacy

of CCR5 usage with disease progression in HIV-1 infected

individuals with R5 viruses only [44,66,67,68,69,70,71,72], but

are consistent with results for late R5 viruses from HIV-1 infected

individuals with detectable CXCR4-using variants [73,74,75].

In contrast, R5 viruses in BR24 evolved prior to the time of

coreceptor switch to become increasingly susceptible to inhibition

with CD4-IgG2, a tetrameric soluble CD4 (sCD4) construct based

on IgG (Figure 1C). There was little difference in the

concentrations of sCD4 needed to achieve 50% neutralization

(IC50) of the week 2 (w2) and the inoculating P3N viruses (0.92 and

0.72 mg/ml, respectively), but a statistically significant 4.3-fold

increase in sCD4 sensitivity was evident for viruses present six

weeks later (w8; IC50 of 0.21 mg/ml). sCD4 sensitivity continued to

increase significantly for R5 viruses in BR24, with a 5.4-fold

increase seen for the w12 viruses (IC50 of 0.17 mg/ml), and a 9.1–

9.4 fold increase for viruses present at 16 and 20 wpi (IC50 of

,0.1 mg/ml) that is suggestive of increased accessibility of

oligomeric gp120 to CD4 prior to and during the time of

coreceptor switch. Notably, acquisition of increased sCD4

sensitivity of the R5 viruses took place in the presence of a high

CD4+ T cell count (.500 CD4+ T cells per ml blood at 16 wpi),

Figure 1. Entry efficiency, PSC-RANTES and sCD4 sensitivity of
R5 viruses evolving over time in BR24. Entry of luciferase reporter
viruses expressing CCR5-using envelopes into TZM-bl cells expressed as
relative light unit (RLU)(A), and susceptibility of the reporter viruses to
neutralization with PSC-RANTES (B) and sCD4 (C) were determined. The
dashed vertical line indicates time of tropism switch in BR24 (20 wpi),
and the numbers in the brackets indicate the number of clones
analyzed at each time point. Envelope clones from the SHIVSF162P3N

inoculum (P3N) were also included in the characterization for
comparison. Absolute CD4+ T-cell count in the animal over the course
of infection is shown in (C) for reference, and values above the bars
indicate fold increase in sCD4 sensitivity relative to that of the w2
viruses. * P,0.05 (Mann-Whitney U test). Data are representative of 2–3
independent experiments (error bars, s.d.).
doi:10.1371/journal.pone.0021350.g001
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suggesting that paucity of CD4+ target T cells is not the driving

force for viruses to expose their CD4 binding site. Increase in

sCD4 sensitivity continued for R5 viruses evolving following the

time of coreceptor switch in BR24. Compared to the w2 viruses,

the w24 and w28 viruses exhibited 11.6- and 8.6-fold increases in

sensitivity, respectively.

The increase in sCD4 sensitivity of early R5 viruses in
BR24 correlates with better CD4 binding and with
infection of CD4low cells, but this association dissipates
near the time of coreceptor switch

We next sought to establish, for the evolving R5 viruses in

BR24, an association between sCD4 sensitivity, soluble gp120

(sgp120) binding to CD4-Ig, infection of primary macrophages

and HeLa RC49 cells, the latter having been used as an indicator

of macrophage-tropism and ability to utilize low levels of CD4 for

infection [43,76]. Results showed that the 4.3 and 5.4 fold increase

in sCD4 sensitivity of the w8 and w12 viruses as compared to the

w2 viruses respectively was accompanied by a 2–3 fold increase in

binding of the w8 and w12 sgp120s to CD4-Ig (Figure 2A), and

with a corresponding fold increase in the ability of the viruses to

infect RC49 cells (Figure 2B) and primary macrophages

(Figure 2C). The increase in the ability of the w12 viruses to

infect CD4low cells and to bind CD4-Ig is statistically significant.

Thus, viruses in BR24 are evolving early to adopt an ‘‘open’’ Env

conformation in order to bind CD4 more efficiently for infection

of CD4low cells.

The association between sCD4 sensitivity, sgp120 CD4-Ig

binding and infection of CD4low cells was also seen for R5

viruses evolving following the time of coreceptor switch at 20 wpi

in BR24. The late w24 and w28 viruses were highly susceptible

to sCD4 inhibition (IC50 of 0.08 and 0.11 mg/ml, respectively),

and bound CD4-Ig and infected CD4low cells with great

efficiencies. The notable exceptions were R5 viruses present

close to (16 wpi) and at the time of switch (20 wpi). As illustrated

in Figure 3A, despite an increase in sCD4 sensitivity when

compared to the w12 viruses, the w16 and w20 sgp120s

exhibited decreased CD4-Ig binding. Moreover, infectivity of

the w16 and w20 viruses for CD4low cells was either comparable

to that of the w12 viruses (in RC49 cells) or reduced (in primary

macrophages).

To understand the disconnect between sCD4 neutralization and

CD4 binding of the w16 and w20 viruses, we assessed sCD4-

induced gp120 release from the surface of 293T cells transiently

expressing their envelope glycoprotein trimers, as this had been

shown to be a mechanism by which sCD4 neutralizes HIV-1

infection [77,78,79,80,81]. Results showed that the extent of

sCD4-induced gp120 detachment from the surface of Env-

expressing 293T cells was negligible for the w8, w12 and w16

Envs (Figure 3B). sCD4-induced gp120 release increased for the

w20, w24 and w28 viruses as compared to the w16 virus, but was

lower than that of the sCD4-resistant inoculating and w2 viruses.

These findings are consistent with previous studies with HIV-1

primary isolates, showing a lack of correlation between sCD4

inhibition and the degree of sCD4-dependent gp120 release

[80,82]. Thus, we conclude that high sCD4 sensitivity of the w16

and w20 R5 viruses in BR24 cannot be explained by increased

affinity of the envelope glycoprotein complex for CD4, or by

increased sCD4-induced gp120 shedding.

Figure 2. sgp120 CD4-Ig binding and infection of CD4low cells
with BR24 viruses. The binding of sgp120 to CD4-Ig together with
the fold-increase in sCD4 sensitivity (A), infectivity of HeLa RC49 cells (B)
and primary macrophages (mW; C) that express low levels of CD4 with
pseudotyped viruses bearing CCR5-using Envs amplified over time from
BR24 were determined. Properties of four envelope clones in the
SHIVSF162P3N inoculum (P3N) were also determined and shown for
reference. sgp120 binding to CD4-Ig (A) was normalized to that of
sgp120 binding to polyclonal serum from HIV-1 infected individuals.
Infectivity in RC49 cells (B) and macrophages (C) that express low levels
of CD4 was expressed as a ratio of infectivity in JC53 cells and
autologous PBMCs that express high levels of CD4 and CCR5,
respectively. The dashed vertical line indicates time of tropism switch.
For sgp120 CD4-Ig binding, data are the means and standard deviations
from at least two independent experiments. For infection of CD4low

cells, data are representative of at least 3 independent experiments
(error bars, s.d.). * above the bars indicates normalized CD4-Ig binding

and CD4low cell infectivity ratios that are statistically different between
the acute (w2) and the evolving R5 viruses.
doi:10.1371/journal.pone.0021350.g002
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Global changes in envelope glycoprotein structure of R5
viruses near and at the time of coreceptor switch in
macaque BR24

Binding to CD4 induces major conformational changes in the

envelope glycoprotein that play key roles in Env-mediated fusion.

Among these are exposure of the V3 loop and formation of the

coreceptor-binding site on gp120 [83,84,85,86,87], and of a triple-

stranded coiled coil activated fusion intermediate structure

composed of the N-terminal heptad repeat (HR1) region of gp41

[88,89,90,91,92,93]. Structural alterations in the gp120 CD4

binding site or in the V3 domain for BR24 viruses present near or

at the time of coreceptor switch, therefore, could have affected

their sCD4 susceptibility. Furthermore, recent studies showed that

induction of an activated state in the HIV-1 Env that rapidly

decays into functionally inactive forms could also mediate sCD4

sensitivity [94]. Accordingly, we assessed neutralizing antibody

and T20 sensitivity of the w16 and w20 viruses to probe the

conformational state of their envelope glycoproteins. The

antibodies used were the broadly neutralizing antibody IgG1b12

directed against the CD4 binding site, and the anti-V3 loop MAb

447-52D [95,96]. The fusion inhibitor T20 (also known as Fuzeon

or enfuvirtide) binds to the hydrophobic groove on the surface of

the coiled coil formed by HR1 [88,97], and sensitivity to T20 has

been shown to be modulated by gp120 interactions with the

coreceptor as well as the half-life of the HR-1 groove

[94,98,99,100].

Statistically significant changes in virus sensitivity to b12 and

447-52D were evident beginning at 8 and 16 wpi, respectively

(Figure 4). Notably, there was an increase in b12 sensitivity that

may be indicative of structural changes in CD4 binding site

conformation or accessibility. 50% inhibition of the w16 and w20

viruses was achieved with ,1 mg/ml of the antibody compared to

3 and .20 mg/ml needed for the earlier (w8 and w12) and acute

(w2) viruses, respectively. The w16 and w20 viruses were also more

sensitive to 447-52D neutralization as compared to the earlier R5

viruses (IC50 of 5–6 mg/ml compared to .20 mg/ml, respectively),

with continued increase in sensitivity for viruses following the time

of switch, perhaps suggestive of increased exposure of the V3 loop.

Furthermore, the w16 viruses were slightly more resistant to T20

neutralization (IC50 of 0.8 mg/ml) compared to the early (w8 and

w12; IC50, ,0.6 mg/ml) as well as the late (w24 and w28; IC50,

0.3–0.5 mg/ml) viruses; one possible explanation is that exposure

of the gp41 HR1 groove on envelope glycoproteins of w16 viruses

decays faster. Together, these findings are in support of significant

changes in structure or accessibility of the CD4 and the V3 loop,

and easier induction of a metastable activated state of the envelope

glycoprotein which could account for the increase in sCD4

sensitivity of the w16 and w20 R5 viruses.

Similar early events for tropism switch in another
SHIVSF162P3N infected RP macaque

To corroborate the above findings, we investigated if the early

events of envelope evolution prior to the time of switch in BR24

are recapitulated in CA28, another RP macaque with coreceptor

switch. Peak and set-point viremia were one-log higher in CA28

than in BR24, and the animal progressed to AIDS at 15 wpi, with

transient seroconversion at 7 wpi [20]. We previously documented

X4 emergence in CA28 at 11 wpi, but more recent studies

revealed the presence of another R5-to-X4 evolutionary pathway

that led to the emergence of a distinct dual-tropic virus at 9 wpi

[101]. We amplified CCR5-using Envs from CA28 at w1, 4, 7, 9,

11 and 15 wpi and found them to mediate comparable entry into

TZM-bl cells (Figure 5A). There was no notable difference in

PSC-RANTES sensitivity of the evolving R5 viruses (,2-fold,

Figure 5B), but consistent with findings in BR24, R5 viruses in

CA28 prior to the time of tropism switch were more sensitive to

sCD4 neutralization (Figure 5C). Compared to the w1 viruses,

the w7 viruses from CA28 were significantly more sensitive to

sCD4 neutralization. And, as was observed in BR24, the increase

in sCD4 sensitivity was acquired in the presence of high CD4+ T

cell numbers (,500 CD4+ T cells per ml blood at 7 wpi). sCD4

sensitivity however decreased for viruses during the time of switch

in CA28 (w9 and w11 viruses). The transient development of anti-

SHIV antibody at 7 wpi in this animal could be a contributing

factor.

The 2.4-fold increase in sCD4 sensitivity of the w4 viruses

correlated with a corresponding fold increase in sgp120 binding to

CD4-Ig and with enhanced infection of RC49 cells and primary

macrophages (Figure 6A), but this association dissipated at w7,

two weeks prior to the first switch event in this animal.

Importantly, and consistent with what was observed for BR24

w16 viruses, the dissociation between sCD4 neutralization and

CD4 binding of the CA28 w7 viruses cannot be explained by

greater sCD4-induced gp120 release (Figure 6B), but by

antigenic change in the receptor binding site and the V3 loop

Figure 3. Relationship between sCD4 sensitivity, CD4-Ig binding, infection of CD4low cells and sCD4-induced gp120 release of BR24
viruses. (A) The relationship between sgp120 binding to CD4-Ig, sCD4 sensitivity, infection of RC49 cells and primary macrophages (mW) of BR24
dervied viruses is illustrated. Values above the bars indicate fold increase in sCD4 sensitivity of BR24 viruses compared to viruses in the SHIVSF162P3N

inoculum (P3N). (B) Extent of sCD4-induced gp120 from surface of 293T cells transiently expressing BR24-derived envelope glycoproteins. Percentage
difference in gp120 release in the presence of sCD4 relative to that in the absence of sCD4 is shown. The data are the means and standard deviations
of two independent experiments. The vertical dashed line in (A) and (B) indicates the time of coreceptor switching, and the dotted area highlights the
time when the relationship between sCD4 sensitivity, sgp120 binding to CD4-Ig and infection of CD4low cells dissipates.
doi:10.1371/journal.pone.0021350.g003
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(Figure 6C). The extent of sCD4-induced gp120 release was

comparable for the w4 and w7 viruses, but 50% neutralization of

the w7 viruses was achieved with ,5 mg/ml of the anti-CD4BS

antibody b12 and ,8 mg/ml of the anti-V3 mAb 447-52D as

compared to .20 mg/ml for the w4 and viruses present at the

other time points examined. The increase in sensitivity to b12 and

447-52D neutralization of the w7 viruses is statistically significant.

Furthermore, the w7 viruses showed a modest increase in T20

resistance (IC50 of 1.4 mg/ml in comparison to ,1 mg/ml for the

other viruses). Collectively, the similarities in increase sCD4

sensitivity that is associated with better CD4 binding of the early

R5 viruses, and changes in envelope configuration for R5 viruses

close to the time of switch in BR24 and CA28 support similar

mechanism(s) and selective pressures for change in coreceptor

preference in the two RP macaques.

Macrophages are the predominant virus-producing cells
at end-stage disease in macaques BR24 and CA28

To determine if viruses are evolving in BR24 and CA28 for

infection of macrophages in vivo, double labeled immunohisto-

chemical staining for SIV nef (brown) and the macrophage marker

lba-1 (red) was used to identify SHIV-expressing cells in the

mesenteric lymph node at time of euthanasia. Based on coexpres-

sion of lba-1, the majority of SHIV–expressing cells in the lymph

node of BR24 and CA28 were found to be macrophages (Figure 7).

Thus, similar to findings in SIV-infected RPs at end-stage disease

[49], macrophage infection is responsible for sustaining virus

replication in the two R5 SHIVSF162P3N-infected RP macaques at

very late stages of disease.

Discussion

A change in coreceptor preference from CCR5 to CXCR4 late

in infection has been well documented in some HIV-1 infected

individuals since the early days of the AIDS epidemics, but the

reasons and mechanisms for this tropism switch remain elusive.

Because X4 emergence is strongly associated with rapid CD4+ T–

cell loss and disease progression, and concerns that the

introduction of CCR5 entry inhibitors as anti-HIV therapeutics

could facilitate X4 emergence and exacerbate disease, there is an

increasing need to improve our understanding of the selection

pressures which favor CCR5-to-CXCR4 switch. Using a simian

model of HIV-1 coreceptor switch, we tested in this study the

hypothesis that an early selective force in the evolutionary pathway

of tropism switch is the need for viruses to increase the efficiency of

CD4 binding for infection of CD4low-expressing cells such as tissue

macrophages. The adoption of a less constrained and more

‘‘open’’ envelope conformation that exposes the CD4 binding site

for enhanced CD4 binding, in turn, releases or reduces envelope

structural constraints that have been suggested to limit the

pathways available for change in coreceptor preference. We show

that R5 viruses evolved early in two rapid progressor macaques to

become sCD4-sensitive, and this correlated with better gp120

binding to CD4 and with efficient infection of CD4low cells such as

primary macrophages and the HeLa RC49 cells. Furthermore,

significant changes in neutralization sensitivity to agents and

antibodies directed against functional domains of both gp120 and

gp41, including the V3 loop that is important for coreceptor

binding were seen for R5 viruses present close to the time of X4

emergence in these rapid progressing macaques, consistent with

global changes in envelope conformation and structural plasticity

that facilitate the remodeling needed to expand or switch to

CXCR4 usage. These observations in two R5 SHIVSF162P3N-

infected macaques therefore support our proposed mechanistic

model for coreceptor switching.

Several mechanisms can explain sCD4 sensitivity of HIV/SIV.

For the early R5 viruses in macaques BR24 (w8, w12) and CA28

(w4), we showed that increase sCD4 sensitivity correlated with

better CD4-Ig binding (Figures 3A and 6A), consistent with

exposure of the CD4 binding site and adoption of an ‘‘open’’

envelope conformation. For R5 viruses close to the time of switch

(w16 for BR24 and w7 for CA28), however, changes in the CD4

binding site and/or alteration in the conformational changes

induced by CD4 binding appeared to be the underlying basis

(Figures 4 and 6C). Interestingly, we observed, in both

macaques, that sCD4-induced gp120 shedding decreased for Envs

evolving prior to the time of switch (Figures 3B and 6B),

suggesting that a tighter interaction between the gp120 and gp41

may be necessary during the process of envelope remodeling to

acquire CXCR4 use. Alternatively, it has been proposed that an

increased number of virion-associated Env complexes available for

receptor interaction might facilitate infection of CD4low cells

[54,102,103]. Thus, it is conceivable that a more stable gp120-

gp41 interaction, in particular for BR24 w8 and w12 and CA28

w4 Envs, increases gp120 retention by Env complexes for infection

of CD4low cells. Genetic studies to determine if virion-gp120

retention and infection of CD4low cells of these early viruses in

BR24 and CA28 are linked will be required to examine this latter

possibility.

We show that acquisition of increased sCD4 sensitivity occurred

in the presence of high amounts of CD4+ T cells, implying that

paucity of CD4+ target T cells is not the driving force for viruses to

Figure 4. Changes in neutralization sensitivity of R5 viruses evolving over time in macaque BR24. Susceptibility of BR24 R5
pseudoviruses to neutralization with b12, 447-52D and T20 was determined, with sensitivity of variants from the inoculating virus SHIVSF162P3N (P3N)
shown for reference. The vertical dashed line indicates the time of coreceptor switching, and the dotted area designates the period of marked
envelope conformational changes. Data are representative of at least two independent experiments (error bars, s.d.). * above the bars indicate IC50

values that are statistically different between the acute (w2) and the evolving R5 viruses.
doi:10.1371/journal.pone.0021350.g004
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expose their CD4 binding site and to increase CD4 binding.

Moreover, we recently reported that viruses did not evolve early to

become sCD4 sensitive in macaques that were depleted of B cells

to abrogate or diminish antiviral antibody responses prior to

infection with SHIVSF162P3N, implying that the reduced antibody-

driven pressure in the RPs was also not sufficient to select for

viruses with an ‘‘open’’ Env conformation [104]. Rather, the tight

association between CD4 binding and infection of CD4low cells of

the evolving R5 viruses in both BR24 and CA28, and the finding

that primary macrophages are the principle virus-producing cells

at end-stage disease in these two macaques with coreceptor switch

suggest that adoption of an ‘‘open’’ Env is in response to the need

to use low levels of CD4 receptor more efficiently. However,

increased sCD4 sensitivity and CD4 binding were seen as early as

4–8 wpi, a time when CD4+ T cells and not tissue macrophages

are the preferred targets of HIV/SIV infection [105,106,107].

This then raises the intriguing possibility that a selective pressure

for altered CD4 affinity of the early R5 viruses in BR24 and CA28

could be decreasing CD4 expression levels on target T cells.

Although direct evidence in support is lacking, infectivity of HIV-1

primary isolates in vitro is strongly dependent on the level of CD4

expression [40,108,109]. Moreover, transmitted and founder

viruses in acute HIV-1 infection have been reported to replicate

poorly in monocyte-derived macrophages [3,110] and to require

high receptor levels for entry [76]. Our finding that the ability of

the acute viruses (w2 for BR24 and w1 for CA28) to bind CD4 and

to infect CD4low cells in both macaques is decreased is consistent

with these reports in human, and suggests that CD4+ T cells

expressing high amounts of the receptor may be the earliest and

preferred targets of virus infection and depletion in vivo, leaving

only cells with lower CD4 levels available during the post-acute

phase of infection. Nevertheless, CD4 and CCR5 concentration

requirements for R5 HIV-1 infections in vitro have been shown to

be interdependent, with viruses being highly dependent on the

CD4 concentrations or strength of the initial virus-CD4 bond

when cell surface CCR5 density is low [60]. Thus, it is possible

that the selection factor for better CD4 usage we observed in the

RP macaques following acute R5 SHIVSF162P3N infection could be

due to initially low CCR5 and not CD4 expressions on T

lymphocytes. Studies to monitor variations in CD4 and CCR5 cell

surface densities on target T cells during the course of

SHIVSF162P3N infection and to examine their relationship to

macrophage infection and tropism switch in RP macaques will be

needed to more clearly address the selection factors for viruses to

evolve early to use low levels of the CD4 receptor more efficiently.

Because most HIV-1-infected individuals have developed

neutralizing antibodies, less constrained and ‘‘open’’ envelopes

are selected against and not commonly found. This then raises the

question as to what extent the observed changes associated with

the coreceptor switch in rapid progressor macaques that did not

develop or maintain a strong antiviral antibody response reflect

what occurs in humans. In this regard, it is noteworthy that X4

dominance is seen only towards end-stage disease in HIV-1

infected individuals, when the immune system is impaired [25,

28,111,112]. And, although rare, rapid progressor status has been

documented in HIV-1 infected individuals [73,113,114,115,

116,117,118,119], with phenotypic switch reported in cases where

this was examined [73,119]. Moreover, emergence of sCD4

neutralization-sensitive X4 viruses in the presence of neutralizing

antibodies has been reported [27], suggesting that X4 virus

evolution is in anatomical compartments with lower antibody

pressure than in the plasma, and/or that these viruses spread via

cell-cell, a mode of transmission that is less susceptible to antibody

neutralization. Indeed, we have shown that peripheral lymph

nodes that are enriched in target cells for X4 viruses are the

preferred sites of their evolution and amplification [21,22], and the

syncytium-inducing/fusion capacity of X4 viruses has been well

Figure 5. Entry efficiency, PSC-RANTES and sCD4 sensitivity of
R5 viruses evolving over time in CA28. Entry of luciferase reporter
viruses expressing CCR5-using envelopes into TZM-bl cells (A), and
susceptibility of the reporter viruses to neutralization with PSC-RANTES
(B) and sCD4 (C) were determined. The solid and dashed vertical lines
indicate the two switch events in CA28 leading to the emergence of
distinct dual-tropic and X4 viruses, respectively. The numbers in the
brackets denote the number of envelope clones analyzed at each time
point. Absolute CD4+ T-cell count in the animal over the course of
infection is shown in (C), and values above the bars indicate fold
increase in sCD4 sensitivity of CA28 viruses compared to viruses in the
SHIVSF162P3N inoculum (P3N). *P,0.05 (Mann-Whitney U test). Data are
representative of at least three independent experiments (error bars,
s.d.).
doi:10.1371/journal.pone.0021350.g005
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documented [120]. Thus, the observations made in the SHIV-

infected macaques studied here are likely to represent an

important step toward our understanding of HIV-1 coreceptor

switch in humans.

In summary, our findings provide evidence that adoption of an

‘‘open’’ Env by R5 viruses in response to the selection pressure for

better CD4 usage and infection of CD4low cells represents an early

step in the chain of events leading to R5-to-X4 evolution, allowing

other selection factors such as virus replication-associated

mutational events that are required for tropism switch, but which

usually come with costs to viral fitness because of structural

constraints, to be manifested. Studies of coreceptor switch in RPs

are useful for they allow examination of the process of R5 envelope

evolution required for a generalized switch uncomplicated by the

selection pressure of antiviral antibody responses. Although our

studies were limited with respect to the number of animals, the

similarity of the evolutionary pattern in structure and function of

R5 envelope variants seen in the two outbred RP macaques that

differed in the kinetics and levels of virus replication prior to the

time of coreceptor switch support a shared mechanism and

selective pressure(s) for the change in coreceptor preference.

Further research will be required to determine if acquisition of an

‘‘open’’ Env conformation to increase CD4 affinity is a property

unique to the early R5 viruses in R5-SHIVSF162P3N-infected RPs

with coreceptor switch, and how broadly our findings in the

SHIV-rhesus model relate to HIV infection of humans. Addition-

Figure 6. Structure and function of R5 viruses evolving over time in macaque CA28. The relationship between sCD4 sensitivity, binding of
sgp120 to CD4-Ig, infectivity of HeLa RC49 cells and primary macrophages (mW)(A), the extent of sCD4-induced gp120 release (B), and neutralization
susceptibility (C) of pseudoviruses bearing CCR5-using Envs amplified over time from CA28 is shown. The solid and dashed vertical lines indicate time
of the two switch events in CA28, and the dotted area marks the time when correlation between sCD4 sensitivity, sgp120 binding to CD4-Ig and
infectivity of CD4low cells dissipates (A), and period of notable envelope conformational change (B and C). Data are representative of at least two
independent experiments (error bars, s.d.). * above bars indicate differences in sCD4 sensitivity, CD4-Ig binding and susceptibility to agents and
antibodies between the acute (w2) and the evolving R5 viruses that are statistically significant.
doi:10.1371/journal.pone.0021350.g006

Figure 7. SHIV-infected macrophages identified with double-label SIVnef and Iba-1 immunohistochemistry. Tissue macrophages are
the primary SHIV infected cells at end stage disease in BR24 (A) and CA28 (B). Double-labeled immunohistochemical staining for SIVnef (brown) and
the macrophage marker lba-1 (red) was performed. Arrows mark representative double-positive cells.
doi:10.1371/journal.pone.0021350.g007
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ally, it will be of interest to examine coreceptor switching in

SHIVSF162P3N-infected macaques that have developed a neutral-

izing antibody response, to discern the impact of humoral immune

selection forces on the tempo and molecular pathways available

for tropism switch.
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