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Abstract

Background: Malaria control programs require a detailed understanding of the contemporary spatial distribution of
infection risk to efficiently allocate resources. We used model based geostatistics (MBG) techniques to generate a
contemporary map of Plasmodium falciparum malaria risk in Indonesia in 2010.

Methods: Plasmodium falciparum Annual Parasite Incidence (PfAPI) data (2006–2008) were used to map limits of P.
falciparum transmission. A total of 2,581 community blood surveys of P. falciparum parasite rate (PfPR) were identified
(1985–2009). After quality control, 2,516 were included into a national database of age-standardized 2–10 year old PfPR data
(PfPR2–10) for endemicity mapping. A Bayesian MBG procedure was used to create a predicted surface of PfPR2–10 endemicity
with uncertainty estimates. Population at risk estimates were derived with reference to a 2010 human population count
surface.

Results: We estimate 132.8 million people in Indonesia, lived at risk of P. falciparum transmission in 2010. Of these, 70.3%
inhabited areas of unstable transmission and 29.7% in stable transmission. Among those exposed to stable risk, the vast
majority were at low risk (93.39%) with the reminder at intermediate (6.6%) and high risk (0.01%). More people in western
Indonesia lived in unstable rather than stable transmission zones. In contrast, fewer people in eastern Indonesia lived in
unstable versus stable transmission areas.

Conclusion: While further feasibility assessments will be required, the immediate prospects for sustained control are good
across much of the archipelago and medium term plans to transition to the pre-elimination phase are not unrealistic for P.
falciparum. Endemicity in areas of Papua will clearly present the greatest challenge. This P. falciparum endemicity map
allows malaria control agencies and their partners to comprehensively assess the region-specific prospects for reaching pre-
elimination, monitor and evaluate the effectiveness of future strategies against this 2010 baseline and ultimately improve
their evidence-based malaria control strategies.
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Introduction

The Indonesian archipelago of some 17,000 islands straddles

the equator and stretches 5,200 km from western Malaysia to

Papua New Guinea and covers a land area of 1.9 million km2

(Figure 1) [1]. Seven main islands or island groups comprise the

nation: Sumatra, Java, Kalimantan, Sulawesi, Maluku, the Lesser

Sundas, and Papua (Figure 1). Indonesia was home to over 230

million people in 2010 [2]. These islands also harbour 20 known

anopheline vectors of malaria transmitting all four of the species of

Plasmodium that routinely infect humans [3]. By a narrow margin

over Plasmodium vivax, P. falciparum is the most common cause of

human malaria in Indonesia [4] with an estimated 12 million

(6–21 million) clinical cases of P. falciparum cases each year [5].

Elyazar et al. [4] detail this complex geography and mosaic of

infection risk which seriously complicates efforts to control malaria

on the archipelago.

On 28 April 2009, the Indonesian Ministry of Health

announced its plan [6] to reach the pre-elimination stage by

2020 and to be free of malaria transmission by 2030 [7]. The plan

states that these objectives would be reached in four distinct stages

(Figure 1) [6]: (stage 1) the Thousand Islands group just north of

Jakarta, Bali and Batam Islands in 2010; (stage 2) Java, Aceh and

Riau Islands in 2015; (stage 3) Sumatra, West Nusa Tenggara,
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Kalimantan and Sulawesi in 2020 and (stage 4) Papua, West

Papua, East Nusa Tenggara and Maluku Islands in 2030. These

efforts require detailed maps of malaria risk to guide the strategic

distribution of limited fiscal resources, expertise, and, importantly,

social and political capital in meeting declared objectives

[6,7,8,9,10,11]. Updates of the baseline map described here will

be essential as control progresses, thus identifying the main foci of

active transmission and bringing focus to efforts to interrupt

sources of residual transmission and in limiting importation risk in

areas that have been cleared of malaria.

There have been many recent efforts to establish national

contemporary malaria distributions to help optimize malaria

intervention strategies in Africa, Asia and the Western Pacific. In

Africa, Kazembe et al. [12] derived malaria risk maps in Malawi

using data from 73 survey sites across that country between 1977

and 2002. Noor et al. [13] presented P. falciparum malaria

prevalence maps in Somalia in 2008 at 565 km resolution using

452 community-based parasite prevalence surveys conducted data

between 2005 and 2007. Noor et al. [14] also defined Kenya P.

falciparum risk maps at 161 km resolution in 2009 using 2,095

malaria surveys sites between 1975 and 2009. Gosoniu et al. [15]

have produced Angolan malaria prevalence maps for 2010 at a

spatial resolution of 161 km resolution using malaria data from 92

survey locations. In Asia, Brooker et al. [16] developed P. vivax

maps in Afghanistan for 2006 at spatial resolution 868 km using

logistic regression models and malaria survey data from 269

endemic villages. Reid et al. [17] constructed P. falciparum risk maps

for Bangladesh for 2007 at 161 km resolution using Bayesian

geostatistical logistic regression models and 345 malaria preva-

lence surveys in 2007. Manh et al. [18] produced malaria

distribution maps in Vietnam for 2010 using zero-inflated Poisson

regression models in a Bayesian framework from 12 months of P.

falciparum and P. vivax malaria reported cases from 670 districts. In

the Western Pacific, Reid et al. [19] established the baseline of

malaria distribution maps prior to an elimination programme on

the most malarious province in Vanuatu for 2010 using 220 geo-

referenced villages. This work reflects increasing demand for

national level malaria risk maps to help guide malaria control

operations, as well as growing confidence and sophistication of the

methodologies used to derive useful and operationally relevant

maps.

This report describes the use of a Bayesian model-based

geostatistics (MBG) approach [20,21] to predict the risk of P.

falciparum malaria in Indonesia in 2010 at a spatial resolution of

161 km using the largest assembled contemporary empirical

evidence for any country in Asia. This collaborative effort between

the Ministry of Health of the Republic of Indonesia and the

Malaria Atlas Project (MAP, http://www.map.ox.ac.uk) aims to

improve national planning for the implementation of malaria

control and elimination strategies. This work currently addresses

only P. falciparum malaria as work on the important P. vivax

problem is in progress.

Methods

Assembling a national database of Plasmodium
falciparum Annual Parasite Incidence data

The collation of Annual Parasite Incidence (API) at the highest

spatial resolution available between 2006 and 2008 was routinely

conducted by the Sub-Directorate of Malaria Control at the

Figure 1. The map of Indonesian provincial administrative boundaries and their elimination objectives. The Indonesian archipelago
consists of 33 provinces and comprises seven main islands: Sumatra, Java, Kalimantan, Sulawesi, Maluku, the Lesser Sundas and Papua. The dashed
lines, Wallace Line [23], separate the Western Indonesia (to left from the line) and Eastern Indonesia regions (to right from the line). The Indonesian
elimination objectives are to be implemented in four stages: (stage 1) The thousand islands (Jakarta), Bali and Batam Islands in 2010; (stage 2) Java,
Aceh and Riau Islands in 2015; (stage 3) Sumatra, West Nusa Tenggara, Kalimantan and Sulawesi in 2020 and (stage 4) Papua, West Papua, East Nusa
Tenggara and Maluku Islands in 2030.
doi:10.1371/journal.pone.0021315.g001
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Directorate of Vector-borne Diseases in Jakarta. The reported

cases of confirmed P. falciparum malaria per 1,000 population were

computed for each year by district level and averaged over the

number of reporting years. Each PfAPI summary estimate was

mapped by matching it to its corresponding first and second level

administrative unit in a geographic information system (GIS;

ArcView GIS 9.3, ESRI, 2008).

Assembling a national database of Plasmodium
falciparum malariometric prevalence

The process of assembling community-based survey estimates of

parasite prevalence undertaken since 1985 has been described

previously [22]. Searches for PfPR data are an on-going activity of

the Malaria Atlas Project (MAP, http://www.map.ox.ac.uk) and

were completed for the current study on 1 June 2010. The

completed database was subjected to various levels of exclusion in

order to obtain the final input data set for modelling as follows:

removing surveys located only to large (.100 km2) and small

polygons (.25 km2), removing those surveys that could not be

precisely geo-positioned, removing those that could not be

temporally disaggregated into independent surveys or for which

the date was unknown. The dataset was then stratified into two

regions for descriptive purposes (Figure 1), since western and

eastern Indonesia are biogeographically distinct regions of the

archipelago, typically demarked by the Wallace Line [23].

Assembling Indonesia human population data
The Global Rural Urban Mapping Project (GRUMP) beta

version provides gridded population counts and population density

estimates at 161 km spatial resolution for the years 1990, 1995 and

2000, both adjusted and unadjusted to the United Nations’national

population estimates [24,25]. The adjusted population counts for

the year 2000 were projected to 2010 by applying the relevant

national urban and rural growth rates by country [26] using

methods described previously [27]. The urban growth rates were

applied to populations residing within the GRUMP-defined urban

extents [25], and the rural rates were applied elsewhere. National

2010 totals were then adjusted to match those estimated by the

United Nations [28]. These population counts were then stratified

nationally by age group using United Nations-defined [28]

population age structures for the year 2010 to obtain population

count surfaces for the 0–5 years, 5–14 years and $15 years age

groups. This population surface was extracted for Indonesia and

aligned to all other spatial data grids used in the analysis.

Defining the limits of Plasmodium falciparum
transmission

Following previously defined protocols [21,29,30], PfAPI data

were mapped to the lowest available administrative unit and used

to classify areas as either no risk (zero cases over three years), and

either unstable or stable risk if the mean annual number of

confirmed cases over three years was lower or higher than 0.1 per

1,000 people per annum respectively. These polygon-based data

were then rasterised to 161 km spatial grids. A biological model

that identified areas where low temperatures were likely to

preclude transmission [31] was used to identify further risk-free

areas, and merged onto the same 161 km grid to create a single

surface defining areas of no risk, unstable, and stable transmission

at high spatial resolution.

Assembling environmental covariates
The MAP maintains a large library of globally mapped

environmental data that represent potentially useful covariates of

malaria prevalence. This grid library has recently been described

in detail [32] and includes suites of temporal Fourier analysis

(TFA) [33] products deriving from time-series of remotely sensed

land-surface temperature, normalized difference vegetation index

(NDVI), and middle infra-red (MIR) data from the Advanced

Very High Resolution Radiometer (AVHRR) platform [34];

equivalent TFA-processed precipitation products derived from

the WorldClim gridded climatology resource [35]; land cover

classifications from the GlobCover project [36]; delineations of

rural and urban areas based on the GRUMP [25] product with

additional stratification of the latter into urban/peri-urban using

approaches described previously [37]; and finally a bespoke

temperature suitability index that captures the dynamic suitability

of local ambient temperature regimes to support malaria parasite

development within anopheline vectors [35]. All grids were

clipped to a standard regional extent that incorporated Indonesia

and that matched the grids defined for the spatial limits of

transmission, and subject to an automated pre-processing

algorithm that used per-pixel resampling and/or nearest neigh-

bour interpolation to ensure identical spatial resolution and

definition of land versus sea pixels.

Defining an optimum suite of environmental covariates
The environmental data library described above consists of

around 90 potential covariates. A variable selection procedure was

implemented to identify an optimum subset of 20 covariates, a

number chosen to representing an appropriate trade-off between

gaining maximum informative power from the covariates whilst

retaining computational feasibility and avoiding over-fitting. The

Bayesian Information Criteria (BIC) [36,38] is a model compar-

ison metric which provides an objective means of quantifying the

trade-off described above: predictive accuracy (which tends to

increase with more covariates) is scored against model parsimony

(which decreases with more covariates) and an optimum

compromise is suggested. A total set-analysis was undertaken

whereby models were built using all possible combinations of 20

covariate sets, and the BIC statistic calculated for each. The set

with the optimum (i.e. lowest) BIC value was then identified.

Because of their very large computational expense, this prelimi-

nary analysis could not be conducted using full geostatistical

models and, in line with previous studies [38], was instead based

on comparison of simpler non-spatial generalised linear regression

models. The final selected suite consisted of the two indicator grids

defining areas that were urban or peri-urban; the bespoke

temperature suitability index; six products from the TFA

processed WorldClim precipitation data; and five, four, and two

from the TFA processed AVHRR NDVI, land surface temper-

ature, and MIR data sets, respectively.

Bayesian space-time geostatistical modelling
Building on approaches described previously for global

prevalence mapping [21]. The underlying value of PfPR2–10 in

2010, Pf 2P2R2{10 xið Þ, at each location xi was modelled as a

transformation g :ð Þ of a spatiotemporally structured field super-

imposed with unstructured (random) variation [ xið Þ. The number

of P. falciparum positive responses Ni
z from a total sample of Ni

individuals at each survey location was modelled as a conditionally

independent binomial variate given the unobserved underlying

age-standardized PfPR2–10 value [39]. An age-standardisation

procedure [21,40] was implemented to allow surveys conducted in

participants of any age range to be converted to the epidemio-

logically informative two-up-to-ten-year age range using an

algorithm based on catalytic conversion models first adapted for

malaria by Pull and Grab [41]. Each survey was referenced

Falciparum Malaria Endemicity in Indonesia in 2010
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temporally using the mid-point (in decimal years) between the

recorded start and end months. The spatiotemporal component

was represented by a stationary Gaussian process f xi,tið Þ with

mean m and covariance defined by a spatially anisotropic version

of the space-time covariance function proposed by Stein [42]. A

modification was made to the Stein covariance function to allow

the time-marginal model to include a periodic component of

wavelength 12 months, providing the capability to model seasonal

effects in the observed temporal covariance structure. These effects

arise when studies performed in different years but during similar

calendar months have a tendency to be more similar to each other

than would be expected in the absence of seasonality. The mean

component m was modelled as a linear function of a vector of the

final selected suite of twenty environmental covariates,

k : m~bxzbk xð Þ: The unstructured component [ xið Þ was

represented as Gaussian with zero mean and variance V . Bayesian

inference was implemented using Markov Chain Monte Carlo to

generate 100,000 samples from the posterior distribution of: the

Gaussian field f xi,tið Þ at each data location: the unobserved

parameters bx,b, and V as stated above and further unobserved

parameters defining the structure and anisotropy of the exponen-

tial space-time covariance function. Distances between locations

were computed in great-circle distance to incorporate the effect of

the curvature of the Earth, which becomes important for a nation

as large as Indonesia. Samples were generated from the 2010

annual mean of the posterior distribution of f xi,tið Þ at each

prediction location. For each sample of the joint posterior,

predictions were made using space-time conditional simulation

over the 12 months of 2010 {t = 2010Jan, ..., 2010Dec}. These

predictions were made at points on a regular 161 km spatial grid.

Model output therefore consisted of samples from the predicted

posterior distribution of the 2010 annual mean PfPR2–10 at each

grid location, which were used to generate point estimates and

uncertainty metrics (computed as the mean and standard

deviation, respectively, of the set of posterior samples at each

pixel). Additionally each pixel was also classified into one of three

endemicity classes defined previously [21] as of particular

relevance for control: PfPR2–10#5%; 5%,PfPR2–10,40%;

PfPR2–10$40%. Classification was based on the class with the

highest posterior probability of membership.

Evaluating model performance
An empirical model assessment exercise was carried out by first

selecting 10% (252) of the full data set using a spatially de-clustered

stratified random sampling algorithm, described previously [21],

and then re-running the model in full using the remaining 90%

(2,264) of data to make predictions at the space-time locations of

these held-out data. Model performance was then evaluated using

three criteria: the ability of the model to (1) predict point-values of

PfPR2–10 at un-sampled locations, (2) predict the correct

endemicity class at un-sampled locations and (3) to generate

credible intervals that capture appropriately the uncertainty

associated with predictions at each location.

The ability of model to predict point-values of PfPR2–10 at un-

sampled locations was then evaluated by comparing observed

values to those predicted (using the posterior mean) by the model

at the equivalent locations. Assessment was made using three

summary statistics: (1) the mean prediction error (ME), (2) the

mean prediction absolute error (MAE) and (3) the linear

correlation coefficient. The ME measures the bias of prediction

and the MAE measures the accuracy of predictions. The

correlation coefficient indicates the linear association between

predicted and observed values, which was also visualised using a

scatter plot.

The ability of the model to predict the correct endemicity class

at un-sampled locations was assessed by (1) using the area of under

curve (AUC) of a receiver-operating characteristics (ROC) curve

and (2) calculating the overall percentage of validation points

predicted to the correct class and those grossly mis-assigned (with a

low endemicity point being classed as high, and vice-versa). These

assessments indicated the reliability of endemicity class assignment

[21,43,44,45]. The interpretation of AUC was defined by

established cut-off values, whereby an AUC of one indicates the

model is perfect in differentiating a given endemicity class, values

above 0.9 regarded as excellent discrimination and between 0.7

and 0.9 as fair to good discrimination. An AUC value of 0.5

represents a model with no ability to differentiate endemicity

classes above a random allocation.

The ability of the model to generate appropriate credible

intervals was tested via a coverage plot. Working through 100

progressively narrower credible intervals (CIs), from the 99% CI to

the 1% CI, each was tested by computing the actual proportion of

held-out prevalence observations that fell within the predicted CI.

Plotting these actual proportions against each predicted CI level

allows the overall fidelity of the posterior probability distributions

predicted at the held-out data locations to be assessed.

Measuring area and population at risk
The modelled surface defining the limits of stable transmission

was combined with that defining the binned endemicity classes

within this limit to produce a single five-category map delineating

areas within Indonesia: those at zero risk; at risk of unstable

transmission; and those at risk of stable transmission experiencing

infection prevalence of between 0% and 5%; 5% and 40%, and

40% to 100% PfPR2–10. The quantification of areas within each

category was undertaken by first projecting the predicted class

map from geographic to Mollweide equal area projection in

ArcGIS 9.3. The areas covered by each category were then

calculated in km2. To derive population at risk within each zone,

this categorical map was overlaid with the GRUMP-beta 2010

gridded population surface using an exact bespoke algorithm

written in Fortran90, and the total population living in each risk

category was calculated. These totals were further disaggregated

by provincial level.

Results

Summaries of P. falciparum malaria prevalence survey
data

A total of 2,581 temporally independent community PfPR were

identified nationally from 27 of the 33 P. falciparum malaria

endemic provinces from a total of 79 different sources between

1985 and 2009 (Figure 2). The three data richest provinces were

Papua (n = 643), East Nusa Tenggara (n = 516) and Aceh

(n = 288). A total of 65 survey locations were excluded from

analysis because they were polygon data (n = 6), could not be geo-

positioned (n = 6), were longitudinal surveys that could not be

disaggregated temporally (n = 39) or were missing information on

the month of survey (n = 14).

Of the remaining 2,516 data points, Table 1 shows the

summaries of PfPR by region. The presence of P. falciparum was

observed in 75% of total data points. PfPR was generally higher in

surveys in the eastern than the western region. The majority of the

PfPR data incorporated resulted from surveys conducted in 2008

(57%). Most surveys included the upper age.20 years (89%). A

total of 85% of the total number of records resulted from direct

communication with malaria specialists across Indonesia and with

the Indonesian National Malaria Control Program. Twelve

Falciparum Malaria Endemicity in Indonesia in 2010
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percent of surveys were geo-positioned by Global Positioning

Systems (GPS). Surveys with small sample sizes (n,50) represent-

ed 12% of the total data archived whilst 38% had sample sizes

between 100 and 500. The median sample size was 187.

Microscopy was the most commonly recorded diagnostic tech-

nique (66% of all surveys).

Overall, more malaria surveys were conducted in Eastern regions

compared to Western regions (60% vs. 40%). The distribution of P.

falciparum malaria surveys was not uniform among main islands in

the archipelago (Figure 2). The islands of Sumatra (Western), Papua

(Eastern) and Lesser Sundas (Eastern) were reported as the three

richest PfPR data islands with proportion of 34.7%, 25.4% and

24.6%, respectively. Kalimantan was reported as the island with the

sparsest PfPR data (0.8%) followed by Sulawesi (1.2%). In Java

where more districts reported no-risk of malaria, only 4.8% of PfPR

data were collected between 1985 and 2009.

The spatial limits of Plasmodium falciparum transmission
The Plasmodium falciparum malaria risk defined by API and the

temperature mask is shown in Figure 2. The clear demarcation of

no P. falciparum risk in the Papuan highland is the most striking

feature; the aridity mask [21] was not used as it did not modify risk

in any areas of Indonesia. Of a total land area of 1.9 million km2,

0.2 million km2 (11.4%) was classified at no risk of malaria

transmission, 0.5 million km2 (26.4%) as unstable transmission and

1.2 million km2 (62.2%) as stable transmission (Table 2). Further

regional stratifications of areas at risk are provided in Table 2.

The spatial distribution of Plasmodium falciparum malaria
endemicity

The continuous predicted surface of P. falciparum is presented in

Figure 3. In stable transmission areas, the distribution of P.

falciparum shows a high degree of heterogeneity ranging from 0.3%

to about 41%. The frequency distribution of both input data and

predicted PfPR2–10 in 2010 for Indonesia were visualised using

violin plots (Figure 4). These plots display a smoothed distribution

of PfPR2–10 overlaid on a central bar showing median and inter-

quartile range values. The median of predicted PfPR2–10 was

11.9% (range 0.4%–39.5%).

The map of the predicted malaria endemicity class of PfPR2–10 is

presented in Figure 5. Each pixel was also classified into one of three

endemicity classes defined previously [21,46] as of particular

relevance for control: PfPR2–10#5%; 5%,PfPR2–10,40%;

PfPR2–10$40%. We refer to these as low, intermediate and high

stable risk. Of those exposed to stable P. falciparum risk, the largest

area was at low risk (0.967 million km2, 50.8% of total area at risk),

followed by intermediate risk (0.216 million km2, 11.4%) and high

risk (864 km2, 0.05%). Further regional stratifications of areas at risk

are provided in Table 2 and provincial level estimates in Table S1.

The estimation of population at risk of Plasmodium
falciparum malaria

Table 2 shows the estimated population at risk of P. falciparum

malaria in Indonesia in 2010. We have estimated 132.8 million

people (57.1%) lived at any risk of P. falciparum transmission in

Indonesia in 2010. Of these, 93.5 million (70.3%) inhabited areas

of unstable and 39.3 million (29.7%) in stable transmission.

Among those exposed to stable P. falciparum risk the vast majority

were at low risk (36.7 million, 93.3%) with the reminder at

intermediate (2.6 million, 6.6%) and high risk (0.006 million,

0.01%). Further provincial level estimates of population at risk are

provided in Table S2.

In the Western region, 112.1 million people (54.7%) live at any

risk of P. falciparum transmission. Of these, 87.9 million (78.5%)

Figure 2. The spatial limits of Plasmodium falciparum defined by Annual Parasite Incidence and the temperature mask. Areas were
defined as stable (dark grey areas, where PfAPI$0.1 per 1,000 pa), unstable (medium grey areas, where PfAPI,0.1 per 1,000 pa), or no risk (light grey,
where PfAPI = 0 per 1,000 pa). The 2,516 community surveys of P. falciparum prevalence conducted between 01 January 1985 and 31 May 2010 are
plotted.
doi:10.1371/journal.pone.0021315.g002
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inhabited areas of unstable and 24.2 million (21.5%) in stable

transmission. Within the area of stable P. falciparum risk, 23.5

million lived in low risk (97.3%) and 0.65 million in intermediate

risk (2.7%). Alternatively, more people in western Indonesia lived

in unstable transmission zone than those of stable transmission

zone (78% vs 22%). The distribution of the population at risk was

not uniform across the islands of the western region: 80.4 million

in Java, 23.3 million in Sumatra and 8.5 million in Kalimantan.

The proportion of unstable to stable risk was 96% vs. 4% in Java,

38% vs. 62% in Sumatra and 23% vs. 77% in Kalimantan. In the

stable transmission zone, 100% of people in Java lived in low

endemicity risk, 98.8% in Sumatra and 92.7% in Kalimantan.

In the Eastern region, 20.7 million (75%) people live at any risk

of P. falciparum transmission. Of these, 5.5 million (26.7%)

inhabited unstable transmission areas and 15.2 million (73.3%)

stable. Within areas stable P. falciparum risk, 13.2 million (87.1%)

lived in low risk, 1.9 million (12.8%) in intermediate risk and 0.005

million (0.04%) in high endemicity risk. In other words, less people

lived in unstable transmission areas than those of stable

transmission areas (27% vs 73%). All of 10.2 million people lived

Table 1. Summary of the most important aspects of the PfPR data by main region.

Total records of input data set Western Eastern Total Percentage

(n = 1,013) (n = 1,503) (n = 2,516) (100%)

Number selected for model

Population sample size 264,304 674,753 939,057

Number of PfPR.0 520 1,355 1,875 74.5

Mean (standar deviation) PfPR (%) 3.06 (6.64) 8.14 (9.57) 6.09 (8.87)

Median (range) PfPR (%) 0.16 (0–61.3) 5.02 (0–81.7) 2.63 (0–81.7)

Primary source of PfPR data

Peer reviewed sources 95 150 245 9.7

Unpublished work 819 1,343 2,162 85.9

Reports{ 99 10 109 4.4

Source of spatial coordinates

Personal communication 35 39 74 2.9

GPS 129 165 294 11.7

Encarta 106 142 248 9.9

Combination 661 1,070 1,731 68.8

Other digital gazetteers 36 29 65 2.6

Paper source 4 1 5 0.2

Map 42 57 99 3.9

Time period

1985–1989 104 12 116 4.6

1990–1994 58 64 122 4.9

1995–1999 35 60 95 3.8

2000–2004 81 115 196 7.8

2005–2009 735 1,252 1,987 78.9

Upper age sampled

, = 10 18 42 60 2.4

.10 and , = 15 70 10 80 3.2

.15 and , = 20 - 117 117 4.6

.20 925 1,334 2,259 89.8

Diagnostic method

Microscopy 806 866 1,672 66.5

RDT 207 637 844 33.5

Denominator

1–49 216 72 288 11.5

50–100 282 252 534 21.2

101–500 305 662 967 38.4

.500 210 517 727 29.9

Median (IQR) 104 (53–424) 245 (108–725) 187 (84–581)

{Ministry of Health reports, theses and other unpublished sources.
doi:10.1371/journal.pone.0021315.t001
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Table 2. Areas and population at risk of Plasmodium falciparum malaria in 2010 throughout the Indonesian archipelago.

Area and population at risk Region Total

Western Eastern

Value % Value % Value %

Area (km2) 1,153,945 100.0 748,886 100.0 1,902,831 100.0

No-risk 145,516 12.6 71,373 9.5 216,889 11.4

At-risk 1,008,429 87.4 677,513 90.5 1,685,942 88.6

Unstable 402,204 34.9 99,427 13.3 501,631 26.4

Stable 606,225 52.5 578,086 77.2 1,184,311 62.2

PfPR2–10#5% 588,510 51.0 378,317 50.5 966,827 50.8

5%,PfPR2–10,40% 17,715 1.5 198,905 26.6 216,620 11.4

PfPR2–10$40% 0 0 864 0.1 864 0.05

Population 204,915,987 100.0 27,628,308 100.0 232,544,295 100.0

No-risk 92,753,767 45.3 6,912,056 25.0 99,665,823 42.9

At-risk 112,162,220 54.7 20,716,252 75.0 132,878,472 57.1

Unstable 87,994,775 42.9 5,538,611 20.0 93,533,386 40.2

Stable 24,167,445 11.8 15,177,641 54.9 39,345,086 16.9

PfPR2–10#5% 23,517,672 11.5 13,225,290 47.9 36,742,962 15.8

5%,PfPR2–10,40% 649,773 0.3 1,946,790 7.0 2,596,563 1.1

PfPR2–10$40% 0 0 5,561 0.02 5,561 0.02

Free, unstable and stable risk areas were corresponded to PfAPI = 0 per 1,000 pa, 0,PfAPI,0.1 per 1,000 pa and PfAPI$0.1 per 1,000 pa.
doi:10.1371/journal.pone.0021315.t002

Figure 3. The Plasmodium falciparum malaria PfPR2–10 endemicity map. Model-based geostatistical point estimates of the annual mean PfPR2–10

for 2010 within the stable spatial limits of P. falciparum malaria transmission, displayed as a continuum of yellow to red from 0%–50% (see map legend).
The rest of the land area was defined as unstable risk (medium grey areas, where PfAPI,0.1 per 1,000 pa) or no risk (light grey, where PfAPI = 0 per
1,000 pa).
doi:10.1371/journal.pone.0021315.g003
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at any risk of P. falciparum transmission in Sulawesi, followed by 6.6

million in Lesser Sundas, 1.9 million each in Maluku and Papua.

Uniformly, the proportion of people inhabited in stable transmis-

sion areas among all main islands in this region. Within stable

transmission, between 84.6% and 99.9% of people lived in low

endemicity risk in Sulawesi, Maluku and Lesser Sundas. However,

in Papua, a high proportion of population at-risk are observed to

be at intermediate risk (50%).

Model performance
Table 3 shows the outcomes of the model validation exercise. In

predicting point-values of PfPR2–10 at un-sampled locations, the

estimated mean error was 0.08% (in units of PfPR2–10), indicating

very small systematic bias. Mean absolute error (i.e average model

precision) was estimated at 4.7% PfPR2–10. The correlation

coefficient between predicted and observed values was 0.77

indicating strong linear agreement (see also the corresponding

scatter plot, Figure 6A). Overall, 77% of held-out data were

predicted to their correct endemicity class. Only 1.2% of points

were assigned to a non-adjacent endemicity class. ROC curves for

each endemicity class are plotted in Figure 6B. The AUC values

were 0.90 for PfPR2–10#5%; 0.87 for 5%,PfPR2–10,40% and

0.96 for PfPR2–10$40%, indicating good or excellent class

discrimination for all classes. Figure 6C shows the coverage plot

comparing predicted to actual credible intervals. The plotted line

is close to the ideal 1:1 line throughout the range indicating that

predicted credible intervals provided an appropriate measure of

model uncertainty.

Discussion

A Bayesian model-based geostatistical spatial-temporal platform

[21,30] was used to define the spatial limits of P. falciparum and its

endemicity level in Indonesia. The resulting maps at 161 km

spatial resolution provide a continuous surface of P. falciparum

malaria risk from an evidence-base of over 2,500 independent

estimates of P. falciparum malaria prevalence. These resulting

estimates of area and population at risk of P. falciparum represent a

Figure 4. Violin plots showing for each region frequency
distributions of PfPR2–10 data. The width of each polygon illustrates
the relative frequency of different PfPR2–10 values. The background is
coloured to match the endemicity classes shown in Figure 5. The black
central bar indicates the inter-quartile range and white circles indicate
the median values.
doi:10.1371/journal.pone.0021315.g004

Figure 5. The Plasmodium falciparum malaria PfPR2–10 predictions stratified by endemicity class. They are categorized as low risk
(PfPR2–10#5%), intermediate risk (5%,PfPR2–10,40%) and high risk (PfPR2–10$40%). The rest of the land area was defined as unstable risk (medium
grey areas, where PfAPI,0.1 per 1,000 pa) or no risk (light grey).
doi:10.1371/journal.pone.0021315.g005
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refinement and update for Indonesia of an earlier estimate made

for 2007 [21,30]. The substantive difference in methods used to

generate the maps means that a comparison between the two is

not a valid method for tracking change. The operational

importance of such methods in an elimination context is

acknowledged, and specific methods are being developed to

facilitate the process of tracking change in malaria risk over the

time.

P. falciparum maps and the control and elimination
objectives of Indonesia

The maps presented here provide detailed insights into spatially

varying risk that, in turn, can support a range of strategic planning

and wider decision making within the Indonesia Ministry of

Health and among its many partners in malaria control and

elimination. By means of example we discuss here utility with

respect to a comparison of two regions of Indonesia at opposing

ends of the transmission intensity spectrum: Java and Papua.

The three provinces of Java (which exclude the national capital

area of Jakarta and a special administrative area of the city of

Yogyakarta) are densely populated: West Java (42 million), East

Java (39.9 million) and Central Java (35.2 million) (Table S2).

These three provinces contribute 71.6 million people (54%) of

total population at risk of P. falciparum in the whole of Indonesia. In

contrast, the three provinces constitute only 4.9% (83.163 km2) of

the total area at risk (Table S1) with the vast majority living under

unstable transmission (68.9 million; 96.3%). The remainder

inhabit low endemicity areas (2.6 million; 4.7%). Efforts focused

upon Java would result in relatively large gains in reducing the

population at risk of P. falciparum malaria in all of Indonesia. This is

not inconsistent with national plans, both historically and

currently, with elimination of malaria from Java planned by

2015. The absolute feasibility of this goal would need to be further

assessed with additional work [47].

The situation of malaria in Papua island is entirely different to

Java. Papua (the western half of the island of New Guinea)

comprises two provinces contributing only 1.4% (1.85 million) of

total population at risk of P. falciparum in the whole of Indonesia,

whilst they occupied over a fifth of total area at risk of P. falciparum

in this country. About 96% of the population at risk inhabited

areas of stable transmission. Among those exposed to stable risk,

the proportion of people living in between low and medium risk is

essentially similar. Altogether these two endemicity classes

contributed 99.7% (1.78 million) of total population at stable risk.

The remainder reside in high risk areas (0.3%). Therefore

maintaining aggressive control in Papua is critical and will be

necessary to continue for the foreseeable future. It is clear that

Figure 6. Evaluation of model performance. (A) Scatter plot of
actual versus predicted point-values of PfPR2–10. (B) Receiver-Operating-
Characteristic curves for each PfPR2–10 endemicity class (PfPR2–10,5%;
5%,PfPR2–10,40%; PfPR2–10$40%) and associated AUC statistics. (C)
Probability-probability plot comparing predicted credible intervals with
the actual percentage of true values lying inside those intervals. In the
top and bottom plots the 1:1 line is also shown (dashed line) for
reference.
doi:10.1371/journal.pone.0021315.g006

Table 3. Summary of the validation statistics for predicting
point values PfPR2–10 and endemicity class.

Evaluation measure Indonesia

Predicting point values PfPR2–10

Mean prediction error 0.08%

Mean absolute prediction error 4.7%

Correlation between the predicted and observed data 0.77

Predicting PfPR2–10 endemicity class

AUC (#5%) 0.898

AUC (.5% to,40%) 0.866

AUC ($40%) 0.964

Overall % correct 77.2%

#5% classed as $40% (%) 0.3%

$40% classed as#5% (%) 0.9%

doi:10.1371/journal.pone.0021315.t003
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similar evidence-based guides will help untangle the complexity of

the malaria epidemiology in Indonesia and that this will need to be

augmented by additional work on morbidity and mortality

estimation, as well as on P. vivax malaria. The prospects for

elimination of malaria on Papua by 2030 will hinge upon long-

term progress in reducing high risk among relatively low numbers

of people scattered across wide and often remote areas. This in

turn depends largely upon broader development of healthcare

systems delivering prompt diagnosis and effective treatment,

especially at the fringe of reach for such services. Maps like those

presented here may bring focus to the placement of resources

aimed at this objective.

Spatial variation in map accuracy
The precision of the predicted map (Figures 7 and 8) is

influenced strongly by the density of data points used for analysis

as well as the inherent variability of the underlying survey data

[48]. About 85% of PfPR data is supplied by three main islands

(Sumatra, Papua and Lesser Sundas) which covered 48.7% of 1.68

million km2 of area at risk of P. falciparum in Indonesia. However,

only two percent of total PfPR data was assembled from two

islands (Kalimantan and Sulawesi) which occupied 40.9% of total

area at risk. These maps can help direct future parasitological

surveys to areas of maximal uncertainty. At the time of writing,

The Global Fund for AIDS, Tuberculosis and Malaria has funded

the Indonesian Ministry of Health to conduct a series of malaria

surveys covering 51 of 128 districts in Kalimantan and Sulawesi

Islands. The assembled data described here guided that commit-

ment of survey resources. Future maps, informed by additional

and well-placed data gathering, will similarly do so and yield

increasingly reliable distributions of risk.

The reliable distribution of local risk can facilitate travel

medicine professionals and travellers in their assessment of the risk

of malaria infection in the Indonesian archipelago and Figures 7

and 8 produced here will help to indicate the spatial accuracy of

malaria intensity at detailed tourist destinations. However, the

information should not be used directly to estimate risk to

individual travellers risk and should never be used as an alternative

to formal travel advice. The risk to malaria infection can

substantially differ for different travellers taking into account their

personal protection and prophylactic measure. The longer they

stay in malaria areas, the higher the risk of contracting malaria.

Precautionary measures to prevent mosquito bites should be

advised although visiting malaria free zones.

Indonesian challenges to control and elimination
Hay et al. [49] suggested a framework of milestones on the path

to malaria elimination in the context of MAP outputs. The five

stages and their corresponding endemicity levels include: attack

(PfPR2–10$40%), sustain (PfPR2–10.5%–,40%), transition

(PfPR2–10#5%), consolidate (PfAPI,0.01) and maintain

(PfAPI = 0). In attack and sustain phases, the suggested actions

are aggressive, combined and extensive interventions, such as total

coverage of artemisinin combination therapies (ACTs), insecticide

treated nets (ITNs), indoor residual spraying, and intermittent

preventive treatment. When PfPR2–10#5%, specific and targeted

intervention should be implemented, guided by efficient active and

passive case detection through surveillance and foci of deliberate

control measures. In the consolidation phase, the foci of infection

must be eliminated through sustained specific and targeted

interventions. After the malaria-free stage is achieved, the ability

to detect cases and respond with ACT therapies and other

measures, e.g., vector control, will be absolutely necessary.

Adapting such a generic schema to an Indonesia-specific

context is required to make progress and this adaptation is on-

going. The obstacles and opportunities of malaria control in

Figure 7. The standard deviation map of predicted PfPR2-10 within the stable transmission areas. These values indicate an index of
relative uncertainty. Dark blue areas represent where predictions were made with large uncertainty. Yellow areas represent where predictions were
made with small uncertainty.
doi:10.1371/journal.pone.0021315.g007
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Indonesia have been recently described in detail [4] and include

case detection and surveillance, diagnosis, treatment, and vector

control. In addition to substantially increasing access to diagnostic

services, the establishment of a robust quality assurance program

in support of such services may be essential [50]. Progress in

diagnostics is certainly required to to overcome the high

proportion of clinically diagnosed malaria cases (87%) [4]. The

persistent use of chloroquine or sulfadoxine/pyrimethamine, both

known to be widely ineffective, to treat clinically diagnosed

malaria should be immediately minimized and ultimately

abandoned. This requires aggressive strategies for expanding the

reach of reliable diagnostic services.

Future work
There are inherent uncertainties in any use of routine malaria

case reports to measure risk, driven largely by the completeness

and representativeness of data sources [18,51]. While biological

masks can help differentiate areas of incomplete reporting from

areas of true zero risk, significant efforts will need to be devoted

into improving the precision of our estimates in low transmission

zones. It is certainly true that people charged with conducting

blood surveys in search of malaria parasites are guided by instinct

and information to areas where they are most likely to be found.

Overcoming this tendency will become especially important as

Indonesia progresses towards elimination.

The population at risk estimates represent the denominator in

deriving morbidity and mortality estimates [52]. Hay et al. [5]

presented a new cartographic technique to estimate national,

regional and global scales of clinical burden of P. falciparum

malaria. A modelled relationship between prevalence and clinical

incidence [53], together with P. falciparum malaria endemicity

maps were used to estimate incidence in areas of stable

transmission. Geostatistical joint simulation was then used to

quantify uncertainty in these estimates. However, this work did not

provide sub-national level estimates and deriving these would help

the Indonesian malaria control agencies forecasting the area-

specific requirements for antimalarial drugs, and thereby minimize

both health-costly stock-outs and financially costly loss of therapies

to expiration [54].

The population at risk estimates will allow malaria control

managers to tailor vector control interventions. This can help

forecast the number of long-lasting insecticide treated nets (LLINs)

that need to be procured and distributed [55]. The cost estimates

of scaling up LLIN coverage can also be calculated [56]. This

LLIN intervention has important implications in those areas where

the interruption of malaria transmission could be achieved with

universal coverage of LLIN in medium transmission intensity

(PfPR2–10,40%) [49,57]. However, the distribution of the

Anopheles vectors and their bionomics need evaluating before the

scale up any LLIN intervention. This is also true of the myriad

other possible interventions aimed at reducing human-anopheline

contact. The selection and investment in specific tools for doing so

hinges upon the distribution, density, behaviour and physiology

(i.e., resistance to insecticides) of the local anopheline species. The

combination of sub-national endemicity maps with maps of the

distribution of the dominant Anopheles vectors of malaria could

empower malaria control managers to formulate evidence-based

intervention strategy appropriate to the bionomics of their local

vectors [21,58]. This is another significant area of on-going

activity.

The assembled survey data described in this report also revealed

the almost ubiquitous presence of P. vivax malaria in Indonesia.

The biological complexity of P. vivax relative to P. falciparum

imposes obstacles to mapping endemicity [29,30] but the 1,732

data points in hand for this parasite represent a wealth of

information for working through the technical challenges. That

important work is in progress. Malaria elimination aims at all

species and the fielding of interventions effective against that

biological range will provide conspicuous and likely necessary

economies of scale in reaching success.
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