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Abstract

In addition to its role in virus entry, HIV-1 gp120 has also been implicated in HIV-associated neurocognitive disorders.
However, the mechanism(s) responsible for gp120-mediated neuroinflammation remain undefined. In view of increased
levels of IL-6 in HIV-positive individuals with neurological manifestations, we sought to address whether gp120 is involved
in IL-6 over-expression in astrocytes. Transfection of a human astrocyte cell line with a plasmid encoding gp120 resulted in
increased expression of IL-6 at the levels of mRNA and protein by 51.362.1 and 11.662.2 fold respectively; this effect of
gp120 on IL-6 expression was also demonstrated using primary human fetal astrocytes. A similar effect on IL-6 expression
was observed when primary astrocytes were treated with gp120 protein derived from different strains of X4 and R5 tropic
HIV-1. The induction of IL-6 could be abrogated by use of gp120-specific siRNA. Furthermore, this study showed that the NF-
kB pathway is involved in gp120-mediated IL-6 over-expression, as IKK-2 and IKKb inhibitors inhibited IL-6 expression by
56.5% and 60.8%, respectively. These results were also confirmed through the use of NF-kB specific siRNA. We also showed
that gp120 could increase the phosphorylation of IkBa. Furthermore, gp120 transfection in the SVGA cells increased
translocation of NF-kB from cytoplasm to nucleus. These results demonstrate that HIV-1 gp120-mediated over-expression of
IL-6 in astrocytes is one mechanism responsible for neuroinflammation in HIV-infected individuals and this is mediated by
the NF-kB pathway.
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Introduction

Highly active anti-retroviral therapy has significantly reduced

the incidence of HIV-associated dementia (HAD). However, HIV-

associated neurocognitive disorders (HAND) remain a major

problem in people infected with HIV-1. Although the pathogenic

mechanisms responsible for HAND are uncertain, astrocytes are

thought to play a major role in the disorder. Astrocytes are the

most abundant cell type found in the neuroectodermal region and

have been shown to be associated with various pathological

abnormalities of the brain such as increased glutamate uptake,

hypoxia, increased oxidative stress and disruption of blood-brain

barrier integrity [1]. Astrogliosis has been reported in the brains of

patients with HAD [2]. Astrocytes undergo activation in response

to disorders in the CNS that involve injury and inflammation,

including cerebral ischemia [3], multiple sclerosis [4], Alzheimer’s

disease [5], and human immunodeficiency virus type 1 enceph-

alitis (HIVE) [6]. Li et al. showed that the intact HIV-1 virion can

alter the expression of various cytokines in human fetal astrocytes

[2].Viral proteins, such as Tat and gp120, have been implicated in

pathways that involve direct as well as indirect toxicities to glial

cells of the CNS, including astrocytes [7,8,9]. HIV-1 gp120 is a

surface glycoprotein, which not only enables viral attachment and

entry into the host cells, but has also been found to be involved in

neurotoxicty [10,11]. The mechanism of gp120-mediated neuro-

toxicity is known to involve oxidative stress [12,13,14] and

induction of IL-1b production by glial cells [15]. Ronaldson et al.

showed that gp120 plays a role in regulating transporter

expression in rat astrocytes, presumably through the action of

inflammatory mediators such as TNF-a, IL-1b, and IL-6 [16].

IL-6 is an activator of acute phase responses and is involved in

crosstalk with other inflammatory mediators [17,18]. IL-6-

mediated inflammation is known to cause a higher incidence of

gliosis and dendritic damage in patients with Parkinson’s disease

(PD), amyotrophic lateral sclerosis [10], multiple sclerosis [17] and

Alzheimer Disease [19] [20,21]. Furthermore, increased IL-6 and

PLoS ONE | www.plosone.org 1 June 2011 | Volume 6 | Issue 6 | e21261



IL-8 levels have also been reported in HIV-1 infected patients,

suggesting a possible link between cytokine levels and neuroAIDS

[22]. Using mixed cultures of primary brain cells Yueng et al.

demonstrated an increased expression of IL-6 in response to gp120

[23]. Another study by Kong et al. also demonstrated that gp120

could induce IL-6 in murine primary mixed glial cell cultures [24].

While cell culture models have demonstrated the induction of IL-6

along with other cytokines such as TNF-a and IL-1b a central role

for IL-6 in gp120-induced neuroinflammation has been demon-

strated using a rat model [25]. In this case, intrathecal

administration of gp120 was shown to induce the expression of

IL-6, TNF-a, and IL-1b. However, of critical importance is that

treatment of the animals with antibody to IL-6 abrogated the

expression of the other cytokines [25]. This suggests that IL-6 is

capable of regulating other cytokines that are involved in

mediating neuroinflammation.

Thus, determination of the mechanisms responsible for the

gp120-mediated increase in IL-6 expression in astrocytes could

provide information crucial for the treatment of neuroinflamma-

tion. To answer these questions we used a human astrocyte cell

line, SVGA, to determine the effect of gp120 on IL-6 expression at

the RNA and protein levels. Furthermore, these effects were

confirmed in primary human fetal astrocytes by exposing these

cells to gp120 protein. We also determined whether NF-kB

inhibitors or siRNAs targeted towards either gp120 or NF-kB

could block IL-6 upregulation by gp120.

Results

HIVgp120 induces a time-dependent IL-6 up-regulation
We first wanted to confirm that human astrocytes are a

potential source of gp120-mediated IL-6 over-expression. SVGA

cells were transfected with a gp120-expressing plasmid. Our

transfection efficiency ranged between 55–75% as shown demon-

strated by transfection of a plasmid encoding green fluorescent

protein followed by flow cytometric analyses (data not shown). IL-

6 mRNA was up-regulated and reached a peak level (51.362.1

fold) at 6 hours after transfection (Fig. 1A). IL-6 mRNA expression

diminished from this peak level and was found to be 33.861.1,

12.362.4, 3.660.4 and 2.760.4 fold higher than in empty vector-

transfected mock controls after 12, 24, 48 and 72 hour post-

transfection, respectively (Figure 1A). We also quantified IL-6

protein concentrations at these time points. IL-6 protein was

observed to be at significantly elevated levels as early as 6 hours

post-transfection in supernatants of gp120-transfected cells com-

pared to that in mock-transfected controls (3.41860.708 vs

0.37060.068 ng/ml) (Figure 1B). The IL-6 concentration in-

creased in both control and gp120-transfected cells over time but

gp120-transfected cells showed significantly elevated levels com-

pared to the control. The IL-6 concentration was 4.8 to 11.6 fold-

higher in gp120-transfected cells compared to those in control

wells (Figure 1B). Previous studies have reported that astrocytes

express the CXCR4 chemokine receptor [26,27]. Therefore,

gp120IIIB which can bind to CXCR4 was used in this study in

order to determine the effect of exogenous gp120 upon astrocytes.

SVGA cells were treated with 20 nM gp120IIIB. Increased levels

of IL-6 expression were found as soon as 1 hour, and these levels

gradually declined over the next 5 hours (Figure 1C).

To confirm the induction of IL-6 expression in response to gp120,

human primary astrocytes obtained from 3 different donors were

treated with 20 nM gp120IIIB for various lengths of time that

ranged from 30 min to 12 hours, after which mRNA and cell

culture supernatants were collected. Expression levels of IL-6

mRNA peaked at 1 hour (Figure 2A) followed by a gradual decline,

while protein expression in the supernatants peaked at 6 hours

(Figure 2B). All donors used in this study showed similar kinetic

patterns with different levels of induction (6.360.2, 8.460.3, and

11.360.7 fold peak mRNA expression). In order to determine

whether the observed response was specific for gp120, astrocytes

were treated with heat-inactivated gp120. IL-6 expression was not

significantly different in the treatment with heat-inactivated gp120

compared to the untreated control (Fig. 2C). We also treated

astrocytes with a gp120 protein-antibody complex, and this further

confirmed the specificity of gp120 (Figure 2C) as the gp120-immune

complex did not induce IL-6 expression.

In addition to CXCR4, gp120 can also bind to CCR5 as a co-

receptor. Astrocytes have been reported to express CCR5 in

addition to CXCR4 on their surface [28,29,30]. In order to

determine the differential effect of various strains of gp120 based

on its tropism, primary astrocytes were treated with 20 nM of

Figure 1. gp120-mediated increase of IL-6 expression in SVGA astrocyte cells. 16106 SVGA astrocytes were transfected with 1 mg gp120
JR-FL (R5 tropic) DNA using LipofectamineTM 2000. The cells were harvested at the times described in the text. Mock transfection was performed with
transfection of equal amount of empty human vector pcDNA3.1. All times noted on the figure and listed in the text are the times at which cells and
supernatants were harvested after the end of the 5 hour transfection protocol. IL-6 mRNA (A) and IL-6 protein (B) expression levels were measured
using real time RT-PCR and bioplex assays respectively. In (B), open bars show empty-vector transfected mock controls and closed bars show gp120
transfected samples. (C) shows the effect of exogenous gp120 on SVGA cells. SVGA were exposed to 20 nM recombinant gp120IIIB for various
lengths of time and total mRNA was isolated. IL-6 expression levels were measured using real time RT-PCR. The mRNA levels are presented as fold
difference between gp120 transfected cells and control cells transfected with empty plasmid. The protein concentration is presented as ng/ml
protein in supernatant. Each bar represents mean 6 SE of 3 experiments with each experiment done in triplicates. The statistical significance was
calculated using student’s t test and * and ** denotes p value of #0.05 and #0.01, respectively.
doi:10.1371/journal.pone.0021261.g001

gp120 and IL-6 in Astrocytes
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either gp120 CN54, gp120 CM or gp120 Bal. gp120 CN54, CM

and Bal strains are M-tropic strains and all showed over expression

of IL-6 (Figure 2D) at variable levels (2.260.21, 360.13 and

1.460.11 fold for gp120 CN54, CM and Bal respectively) .

Previous studies have shown that the trimeric form of gp120

elicited a potent neutralizing response as compared to monomeric

gp120 [31], thus providing a better immunogen for vaccination. In

order to determine the inflammatory response of astrocytes to both

of the forms of gp120, we used monomeric and trimeric forms of

the gp120 and gp140 from SF162 strain. Both monomeric and

trimeric forms increased the expression of IL-6 (1.260.1 and

1.360.1 fold respectively) (Figure 2E) to similar levels. Further-

more, in order to determine the effect of transfection on the

primary astrocytes, a plasmid encoding gp120 was transfected

using electroporation. The expression levels of IL-6 (2.3860.44

fold) in the transfected cells were comparable to those observed

when gp120 was added exogenously (Figure 2F).

gp120 translocated NF-kB1 from cytoplasm to nucleus in
astrocyte cells

We then wished to determine the signal transduction pathway

involved in IL-6 induction. We examined the NF-kB pathway

because its role in the induction of inflammatory cytokines,

including IL-6, has been well documented [32,33,34]. Nuclear

translocation of p50 and/or p65 (RelB) has been shown to be

associated with NF-kB activation. SVGA cells were transfected

with either the plasmid encoding gp120 or were mock-transfected.

In comparing the cytoplasmic and nuclear fractions of the gp120-

transfected and mock-transfected cells, we observed that gp120-

transfected cells showed 2.74 fold higher p50 translocation as

compared to mock-transfected cells (p,0.001) (Figure 3). In mock

transfected cells there was 1.7660.03 fold difference between

nuclear and cytosolic fractions, (p,0.05), whereas in gp120

transfected cells the difference was 4.9160.15 fold (p,0.001).

gp120 activates NF-kB by inducing phosphorylation of
IkBa in human fetal astrocytes

Inhibitory kappa B kinase is an enzyme that phosphorylates and

releases IkBa from the p50/p65 heterodimer, thus yielding active

NF-kB. Levels of p-IkB-a were measured to determine whether

NF-kB activation plays a role in IL-6 induction. Primary astrocytes

were treated with exogenous gp120 IIIB and the levels of

phosphorylated IkB-a were measured in whole cell lysates.

Although the peak levels were observed at different times for the

two donors, IkB-a showed a time-dependent increase in

phosphorylation as compared to total IkBa in astrocytes from

both the donors (Figure 4A & 4B). Peak levels of phosphorylated

IkB-a were observed at 10 min (1.94 fold higher) for donor-1 and

30 min (2.52 fold higher) for donor-2.

Specific antagonists of NF-kB and siRNA targeted against
NF-kB abrogated the gp120 mediated increase in IL-6
expression

We hypothesized that the gp120-mediated IL-6 increase in

astrocytes may occur through the NF-kB pathway as this pathway

Figure 2. gp120 mediated increased levels of IL-6 in primary human fetal astrocytes. 16106 primary human fetal astrocytes from each of
three different donors were treated with 20 nM gp120 IIIB for specific lengths of time and the cells were harvested to obtain mRNA. The cell culture
supernatants were collected at the times indicated and used to quantify the level of IL-6 protein expression using a Bio-Plex assay. Levels of IL-6
mRNA expression as measured by real-time RT-PCR peaked at 1 hour (A) and IL-6 protein expressions peaked at 6 hours (B). Monoclonal antibody for
gp120 was used to negate the gp120 mediated response and thus served as another control. Heat inactivated gp120 was compared with untreated
control to show gp120 specific IL-6 expression (C). Different strains of gp120 (D) and monomeric gp120 SF162 and trimeric gp140 SF162 (E) increased
the levels of IL-6 differentially. Primary astrocytes from different donors were transfected with gp120 plasmid in order to compare the levels of IL-6
expression after 2 hours (D). Each bar represents mean 6 SE of 3 experiments with each experiment done in triplicates. The statistical significance
was calculated using student’s t test and * and ** denotes p value of #0.05 and #0.01, respectively.
doi:10.1371/journal.pone.0021261.g002
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has been shown to be involved in IL-6 induction. We tested this

hypothesis by using two chemical inhibitors and two unique siRNAs

targeted against NF-kB. SC514 inhibits NF-kB activation by

targeting IKK-2 [35], whereas BAY11-7082 blocks NF-kB activation

by inhibiting the TNF-a-induced phosphorylation of IKKb [36].

SVGA astrocytes were treated with 10 mM of either IKK-2 (SC514:

IC50 = 14.5 mM) or IKKb (BAY11-7082: IC50 = 11.2 mM) inhibi-

tors for 24 hours prior to transfection with gp120 and maintained

with inhibitors throughout the experiment. The concentration of the

inhibitor was determined based on the IC50 as well as the viability of

the cells, which were ,90% viable at the inhibitor concentration that

was used (data not shown). Expression levels of IL-6 mRNA were

determined at 6 h after the termination of the transfection and IL-6

protein levels were measured at 48 h after the termination of the

transfection. Both SC514 and BAY11-7082 successfully inhibited

gp120-mediated expression of IL-6 mRNA by 56.5610.5 percent

and 60.867.3 percent, respectively (Figure 5A). Similarly, IL-6

protein levels were also reduced by 51.3612.4% and 34.8613.3%,

respectively by SC514 and BAY11-7082 (Figure 5B).

In order to independently confirm the involvement of the NF-

kB pathway in IL-6 induction we tested 2 siRNAs that were

targeted against NF-kB. NF-kB and Rel-A specific siRNA were

transfected into astrocytes 48 hours prior to gp120 transfection.

IL-6 mRNA and protein levels were determined as described

above. The results of these experiments are shown in Figure 5C

and 5D, respectively. Both NF-kB and Rel-A specific siRNA

blocked .60 and .90 percent mRNA and protein expression,

respectively. These experiments confirm the results from the

chemical inhibition experiments and demonstrate that the gp120-

mediated increase in IL-6 expression is dependent on the NF-kB

pathway. We also determined whether exogenous gp120 mediated

IL-6 expression could be abrogated with NF-kB antagonists.

Indeed, when pre-treated with SC514 (IKK-2 inhibitor), gp120

mediated IL-6 expression was reduced by 8064.13% (Figure 5E).

Small interfering RNA targeted against gp120 abrogated
IL-6 expression

In this study we sought to address whether gp120 siRNA would

block expression of IL-6. We designed 4 siRNA molecules

(Figure 6A). These siRNA were commercially synthesized by

Ambion Inc, Foster City, CA. The SVGA cells were transfected

with different siRNA, 48 hour prior to gp120 transfection. Levels

of IL-6 mRNA and protein expression were determined as

described above. The siRNA sequences and results from these

experiments are shown in Figure 5A. All 4 siRNAs inhibited IL-6

mRNA expression but the degree of inhibition was different with

individual siRNAs. siRNA-1 was the most effective followed by

Figure 3. Increased NF-kB-translocation in gp120-transfected
astrocytes. SVGA cells were either mock-transfected or were transfected
with gp120 plasmid for a period of 6 hours followed by separation of
cytosolic and nuclear fractions. These proteins were electrophoresed on
10% SDS gel and transferred to PVDF membrane. A representative western
blot with lane-1 (mock-transfected SVGA cytosolic fraction), lane-2 (gp120-
transfected SVGA cytosolic fraction), lane-3 (Mock-transfected SVGA nuclear
fraction) and lane-4 (gp120-transfected SVGA nuclear fraction) is shown. The
expression levels of p50 were normalized to their respective compartmental
housekeeping genes (LaminB for nucleus and b-tubulin for cytoplasm) as
loading controls. The bars, shown in the chart show normalized values of
the band intensities for p50 over loading controls for appropriate
compartments (LaminB for nucleus and b-tubulin for cytoplasm). The bar
chart represents the means and SE of the ratios of p50 to the appropriate
housekeeping gene (i.e. laminB for nuclear extracts and b-tubulin for
cytoplasmic extracts). The means and SE values are from 3 independent
experiments. The statistical significance was calculated using student’s t test
and * and ** denotes p value of #0.05 and #0.01, respectively.
doi:10.1371/journal.pone.0021261.g003

Figure 4. gp120 mediated increase in phosphorylation of IkB-a in primary human fetal astrocytes. Primary human astrocytes from two
donors were treated with 20 nM gp120 IIIB, cells were collected and lysed using RIPA buffer at different times. These proteins were electrophoresed
on 10% SDS gel and transferred to PVDF membrane. Antibodies against p-IkBa, total IkBa and b-actin were used for western blotting and membrane
was read on densitometer. Values below the lanes show band intensities of the respective bands for both the donors (A & B). The increase in p-IkB-a
was estimated by calculating the ratios of p-IkB-a to total IkB-a. Actin was used as loading control.
doi:10.1371/journal.pone.0021261.g004
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siRNA-2, 3 and 4 in abrogating gp120-induced IL-6 RNA

expression (Figure 6B). The efficacy of knockdown at the protein

level was different with siRNA-4 blocking IL-6 protein expression

most effectively (Figure 6C).

Discussion

Multiple mechanisms have been proposed for HIV-1-induced

neuroinflammation. In order to address the issue properly, it is

Figure 5. Inhibition of gp120-induced IL-6 expression by chemical inhibitors and siRNA specific for the NFkB pathway. SVGA
astrocytes were treated with 10 mM SC514 (IKK-2 Inhibitor) and BAY11-7082 (IKKb inhibitor) 24 hours prior to the transfection. 16106 SVGA astrocytes
were transfected with 1 mg gp120 DNA in the presence of inhibitor, which was also maintained throughout experiments. IL-6 mRNA (A) and protein
(B) was measured at 6 and 48 hours, post transfection respectively. For siRNA experiments, astrocytes were transfected with 50 nmoles of either
scrambled, NFkB, or RelA siRNAs for 48 hours before gp120 transfection. IL-6 mRNA (C) and protein (D) was measured at 6 and 48 hours after gp120
transfection on cells previously transfected with siRNAs. (E) SVGA astrocytes were treated with 20 nM gp120IIIB. 10 mM SC514 was added to SVGA
1 hour prior to gp120 treatment. IL-6 mRNA was measured after 1 hour of gp120IIIB treatment. The mRNA is presented as relative percent mRNA
expression with gp120 transfected cells as positive control. The protein concentration is presented as relative percent expression. Each bar represents
mean 6 SE of 3 experiments with each experiment done in triplicates. The statistical significance was calculated using student’s t test and * and
** denotes p value of #0.05 and #0.01, respectively.
doi:10.1371/journal.pone.0021261.g005
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critical to determine the potential mediators as well as the

pathways involved in the induction or generation of such

mediators. In the present study, gp120-mediated induction of

IL-6 has been demonstrated to be dependent upon the NF-kB

pathway. Interleukin-6 (IL-6) is a classical pro-inflammatory

cytokine, which has been shown to be involved in response to

various stimuli [37]. In our study using a human astrocyte cell line

we observed that IL-6 mRNA expression reached a peak 6 h after

transfection with a plasmid encoding gp120. In both types of cells

IL-6 mRNA reached a peak at 1 h after the initiation of treatment

with gp120 protein. These results are consistent with the previous

studies by Ronaldson and Bendayan [16] who have found similar

kinetics with respect to IL-1b, TNF-a and IL-6 after treatment of

rat astrocytes with gp120. These results are also consistent with

those obtained by Li et al, [2], who demonstrated that binding of

HIV-1 to human fetal astrocytes resulted in increased production

of IL-6. The authors confirmed the involvement of gp120 in

mediating IL-6 over-expression by utilizing a truncated mutant

virion, VSV-G pseudotype NL4-3, which was incapable of

expressing gp120. The wild type VSV/NL4-3 was capable of

inducing IL-6 in human fetal astrocytes, whereas the mutant failed

to do so. In our experiments, as expected, there was a lag phase

between the peak of mRNA and protein expressions and the

results clearly demonstrated that gp120 increased the expression of

IL-6 in SVGA astrocytes and in human primary astrocytes at the

levels of both mRNA and protein. Our work demonstrates for the

first time that gp120 induces IL-6 protein and mRNA in human

astrocytes. In addition to CXCR4, astrocytes are reported to

express CCR5 [28,29,30]. We showed differential expression

levels of IL-6 in response to various strains of gp120. gp120IIIB

was used as an X4 strain of gp120, while gp120 CN54, gp120 CM

and gp120Bal were used as R5 stains. Our results clearly

demonstrate that in addition to the gp120IIIB (X4 Strain),

gp120 CN54, gp120CM and gp120Bal significantly altered IL-6

expression to various extents.

Using siRNA targeted against gp120, as well as transfections

with empty vector, we have definitively shown that the increase in

IL-6 observed is due to the presence of gp120. Interestingly, we

observed differential regulation of IL-6 mRNA and protein

expression after siRNA knockdown of gp120. Although gp120

siRNA 1 was the most effective siRNA in blocking expression of

IL-6 mRNA, gp120 siRNA 4 was the most effective siRNA in

blocking IL-6 expression at the level of protein. The reason for this

discrepancy could be attributed to the fact that mRNA expression

was monitored within 6 hrs after transfection whereas protein was

monitored 48 hours after transfection and these siRNAs might

have required more than 6 hour to exhibit full effect.

Nuclear Factor kappa B (NF-kB) has been shown to be involved

in a wide array of cellular responses. The pathways in which NF-

kB has been determined to be a key mediator include cell death,

apoptosis and inflammation [32,33,34]. In rat astrocytes, induc-

tion of both MCP-1 and MCP-3 has been shown to be dependent

upon NF-kB [38]. Ronaldson, et al. showed that pretreatment of

astrocytes with a peptide inhibitor of NF-kB, SN-50 dramatically

reduced the level of TNF-a elicited by gp120 treatment [29]. IL-6

production has also been found to be mediated though the NF-kB

pathway in patients with rheumatoid arthritis [39], retinal

microglia [40], lung pericytes [41] and mice splenocytes treated

with LPS [42]. In our study, we sought to address whether NF-kB

Figure 6. Inhibition of gp120-induced IL-6 expression by
gp120-specific siRNA. Four gp120 siRNA (A) were designed using
Ambion software and commercially synthesized by Ambion Inc. Only
positive strand sequences are shown in the figure. Astrocytes were
transfected with 50 nmoles each of scrambled or one of the 4 different
siRNA for 48 hours before gp120 transfection. IL-6 mRNA (B) and
protein (C) was measured at 6 and 48 hours, post-gp120 transfection.
The mRNA is presented as relative percent mRNA expression with
gp120 transfected cells as positive control. The protein concentration is
presented as relative percent expression. Each bar represents mean 6

SE of 3 experiments with each experiment done in triplicates.
The statistical significance was calculated using student’s t test and
** denotes p value of #0.01.
doi:10.1371/journal.pone.0021261.g006
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activation is involved in mediating gp120-induced IL-6 expression.

We demonstrated that there is increased phosphorylation of IkBa
along with significant translocation of p50 from the cytoplasm to

the nucleus that is dependent upon gp120. This is similar to a

report by Saha et al. [43] that demonstrates that gp120 activates

the NF-kB pathway and leads to nuclear translocation of p50.

Results obtained from pharmacological inhibitors and siRNA

approach also confirmed that induction of IL-6 expression was

dependent upon the NF-kB pathway. Taken together, the

evidence presented in this paper along with results from other

laboratories provides strong support for the involvement of NF-kB

in mediating gp120 induction of IL-6. Along with its role in

inducing inflammatory cytokines, NF-kB has also been demon-

strated to be involved in regulating the responses to oxidative stress

in astrocytes [44,45]. Oxidative stress has been widely demon-

strated as an important mechanism through which gp120 affects

astrocytes [46]. Thus, activation of NF-kB by gp120 could be an

important mechanism by which the cell protects itself from the

oxidative stress associated with viral infection of the CNS.

Our data on the induction of IL-6 by gp120 are consistent with

previously reported results. It should be noted that the results that

we have observed using the two models of astrocyte exposure to

gp120 (i.e. intracellular production of gp120 vs. extracellular

administration of the protein) are somewhat different from each

other in terms of kinetics and levels of IL-6 induction observed.

These differences can be attributed to 2 differences in the models;

one model utilizes extracellular exposure of primary astrocytes and

the other model utilizes transfection of an immortalized cell line.

We have utilized both models in order to determine the effects of

gp120 on astrocytes regardless of the route of exposure. Our

results not only confirm what other laboratories have reported

with regard to extracellular exposure of astrocytes to gp120, but

we have also shown that non-productive infection of astrocytes by

HIV-1 may be a significant and persistent source of IL-6 in the

CNS. It is important to note that the work presented here is the

first demonstration that IL-6 is induced in human astrocytes in

response to gp120. All previous reports in the literature have used

either rat astrocytes or human mixed glial cultures.

This is an especially important finding because previously

reported evidence suggests that IL-6 may be involved in the

regulation of other cytokines such as TNF-a and IL-1b [25]. Taken

together, this suggests that gp120-mediated activation of the NF-kB

pathway may be critical therapeutic target for the treatment of

HIV-related neuroinflammation. One approach that could be

explored would be to try to interfere with the interaction between

NF-kB and its binding site in the IL-6 promoter in astrocytes.

Recent advances suggest that small RNAs or miRNA might be a

useful tool for silencing promoters/enhancers [47,48,49], and such

an approach might be applied to the IL-6 promoter in astrocytes.

Also, recently Kim et al. have employed a novel approach to target

specific cell types using antibody-based strategies [50]. Using their

approach they were able to efficiently target delivery of siRNA

specifically to T-cells via the CD67 receptor. Similarly, Wu et al.

used microRNA delivery to astrocyte specific promoter as a tool for

cancer therapy [51]. Such an approach might be further exploited

in astrocytes by targeting these cells using GFAP to deliver siRNA/

miRNA for NF-kB or IL-6 promotor. As successful antiretroviral

treatment has extended the lifespan of those infected with HIV, the

importance of finding novel treatments for the HIV-associated

morbidities caused by chronic inflammation and oxidative stress,

such as HAND, has become increasingly critical. Identification of a

critical therapeutic target, as has been presented in this study, is an

important step towards the development of more effective

therapeutic regimens for neuroAIDS.

Materials and Methods

Cells and Reagents
All studies were reviewed and approved by Institutional Biosafety

Committee and Institutional Review Board of UMKC. SVGA is a

clone of a human fetal astrocyte cell line (SVG) [52] and was

maintained in DMEM media supplemented with 10% FBS and 1%

gentamicin at 37uC in 5% CO2 environment. Human fetal

astrocytes were obtained from aborted fetal brain tissue and were

grown in DMEM media supplemented with 10% FBS and 1%

gentamicin at 37uC in 5% CO2 environment. The growing cells

were .98% astrocytes as defined by GFAP staining (Data not

shown). LipofectamineTM 2000, and NF-kB inhibitors (IKK-2;

SC514 and IKK-b; BAY1170-82) were obtained from Invitrogen

Inc. (Carlsbad, CA) and Calbiochem (EMD Biosciences Inc., La

Jolla, CA), respectively. The HIVgp120 plasmid, pSyn gp120 JR-

FL (Catalog # 4598), recombinant HIV-1 IIIB gp120 (Catalog #
11784), HIV-1 CN54 gp120 (Catalog # 7749), recombinant HIV-

1BaL gp120 (Catalog # 4961), HIV-1 gp120 Monoclonal (2G12)

(Catalog # 1476) and HIV-1 gp120 CM (Catalog # 2968) were

obtained from the NIH AIDS Research and Reference Reagent

Program. Monomeric gp120 SF162 and trimeric forms of gp140

SF162 were prepared as discussed earlier [53,54]. The heat-

inactivated gp120 was prepared by heating gp120 at 65uC for

30 minutes. Negative control samples with gp120-immune complex

treatments were also included. Monoclonal antibody gp120 (2G12)

was mixed with gp120IIIB for 30 minutes in 10:1 proportion to

make immune complex prior to addition to the cells. Small

interfering RNAs (siRNA) targeted against gp120 were designed

using Ambion software and then synthesized by Ambion Inc.

(Applied Biosystems, Foster City, CA). Pre-designed siRNA for NF-

kB (P/N AM51331; id 5213) and Rel-A (P/N 4390824; id s11914)

were also purchased from Ambion Inc. (Applied Biosystems).

Specific antibodies for p50, lamin-B and b-tubulin were obtained

from Santa Cruz Biotechnologies (Santa Cruz, CA).

Transfection
The SVGA cells were transfected with LipofectamineTM 2000

as recommended by the manufacturer. Briefly, 16106 cells were

transiently transfected with 1 mg pSyn gp120 JR-FL for a period of

5 h in serum-free medium. The transfection was terminated after

5 h by the addition of complete media. The cells were harvested

and total RNA was extracted using RNeasy kit from Qiagen

(Valencia, CA). Cytokine expression was measured after 6, 12, 24,

48 and 72 h after the transfection was terminated. For NF-kB

inhibition experiments, the cells were treated with 10 mM

antagonists for 24 hours prior to the start of transfection. siRNA

transfections were performed using LipofectamineTM 2000 48 hrs

prior to gp120 transfection. Briefly, 50 nmoles of siRNA was

transfected into each well containing 16106 astrocytes in serum-

free media. The transfection media was replaced after 24 hours

with the fresh DMEM containing 10% FBS and the cells were

incubated for 24 hours. The cells were then transiently transfected

with gp120 and the cytokine levels were determined as described

below. Controls in these experiments included mock transfection

with equimolar empty plasmid and scrambled siRNA to compare

siRNA trasfected cells.

Electroporation of primary astrocytes for transfection of
gp120

Transfections were performed as described in the manufactur-

er’s protocol. Briefly, 8606 cells were mixed with the transfection

reagent supplied with the kit (Amaxa rat astrocyte, VPI-1006) and

the cells were placed in a cuvette. 5 mg of gp120 plasmid was
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added to the cells and electroporation was performed using a

unique pulse program (T-020) for rat astrocyte cells which was

optimized for human astrocytes. The cells were allowed to recover

for 30 minutes with 500 ml DMEM media in the cuvette and

further diluted with DMEM followed by 30 minute incubation.

With the optimum conditions, the transfection efficiency was

found to be 60–70% as measured with GFP expression (Data not

shown) and the cell viability ranged from 45–60%. 26106 cells

were plated per well.

Real time RT-PCR and IL-6 protein assay
The cells were harvested and total RNA was extracted using

RNeasy kit from Qiagen (Valencia, CA) at 6, 12, 24, 48 and 72 hours

after the transfection was terminated. IL-6 mRNA was measured in

Real-Time RT-PCR using forward primer (59 GGT ACA TCC

TCG ACG GCA TC 39), reverse primer (59 CCA GTG CCT CTT

TGC TGC TT 39), and probe (59 FAM CAG CCC TGA GAA

AGG AGA CAT GTA ACA GGA AA-39 BHQ) in a Bio-Rad

iCycler. The reaction conditions were as follows: reverse transcription

at 50uC for 30 min, 95uC for 15 min and 50 cycles at 95uC for 15 sec

and 57.5uC for 1 min. To normalize gene expression, HPRT was

amplified in a separate reaction using the following primers and

conditions: forward primer: 59GCT TTC CTT GGT CAG GCA

GTA 39; reverse primer: 59 CCA ACA CTT CGT GGR GTC CTT

T 39; reverse transcription at 50uC for 30 m, 95uC for 15 m and 45

cycles at 95uC for 15 sec and 55uC for 30 sec The data was analyzed

using the equation 22DDCT method as described previously [55]. Cell

culture supernatants were collected at different times after transfec-

tion and IL-6 protein concentration was determined using a Bio-Plex

System (Life Science Research, Hercules, CA). The protein

expression was measured by comparing the values with the 5PL-

standard curve using Bio-Plex Manager 5.0 software.

Western blotting
SVGA cells were harvested at given time points and nuclear and

cytoplasmic extracts were prepared using the NE-PER Nuclear

extraction kit (Pierce, Rockford, IL) as per the manufacturer’s

directions. The cells were lysed with RIPA Buffer (Boston

BioProducts, Ashland, MA), followed by homogenization for

15 sec and centrifugation at 12000 RPM for 5 minutes to eliminate

cell debris. Protein concentrations were estimated using Pierce BCA

protein assay (Pierce). 20 mg of protein was loaded on a 12%

acrylamide gel and electrophoresed for at 90 V for 120 min and

transferred to a PVDF membrane at 350 mA for 70 min.

Phosphorylated-IkBa and total IkBa were detected using Phospho-

IkB-a (Ser32) (14D4) (1:1000) and IkB-a (#9242) (1:1000) primary

antibodies (Cell Signaling, Danvers, MA ), respectively. The band

intensities were normalized using total IkBa. The expression of p50

was detected using NF-kB p50 (H-119) (1:1000) primary antibody

(Santa Cruz Biotechnology, Inc.) and expression was normalized

using Lamin-B as an endogenous control for the nuclear extracts and

b-tubulin as an endogenous control for the cytoplasmic extracts.

Lamin B and b-tubulin were detected using Lamin B (C-20) (1:1500)

and b Tubulin (D-10) (1:1500) primary antibodies respectively (Santa

Cruz Biotechnology, Inc.). HRP conjugated secondary antibodies

were used to detect the primary antibodies and detection of protein

bands was performed using BM Chemiluminescence Western

Blotting Substrate (POD) (Roche Applied Sciences, Indianapolis,

IN). Quantification was done using spot densitometry with

FluorChem HD2 software (Alpha Innotech, San Leandro, CA).

Statistical analysis
Data are expressed in means 6 SE of 3 experiments with each

experiment done in triplicates. The statistical significance was

calculated in student’s t test and a p value,0.05 was considered

significant.
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