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Abstract

Background: Epigenetic factors, such as microRNAs, are important regulators in the self-renewal and differentiation of stem
cells and progenies. Here we investigated the microRNAs expressed in human limbal-peripheral corneal (LPC) epithelia
containing corneal epithelial progenitor cells (CEPCs) and early transit amplifying cells, and their role in corneal epithelium.

Methodology/Principal Findings: Human LPC epithelia was extracted for small RNAs or dissociated for CEPC culture. By
Agilent Human microRNA Microarray V2 platform and GeneSpring GX11.0 analysis, we found differential expression of 18
microRNAs against central corneal (CC) epithelia, which were devoid of CEPCs. Among them, miR-184 was up-regulated in
CC epithelia, similar to reported finding. Cluster miR-143/145 was expressed strongly in LPC but weakly in CC epithelia
(P = 0.0004, Mann-Whitney U-test). This was validated by quantitative polymerase chain reaction (qPCR). Locked nucleic
acid-based in situ hybridization on corneal rim cryosections showed miR-143/145 presence localized to the parabasal cells of
limbal epithelium but negligible in basal and superficial epithelia. With holoclone forming ability, CEPCs transfected with
lentiviral plasmid containing mature miR-145 sequence gave rise to defective epithelium in organotypic culture and had
increased cytokeratin-3/12 and connexin-43 expressions and decreased ABCG2 and p63 compared with cells transfected
with scrambled sequences. Global gene expression was analyzed using Agilent Whole Human Genome Oligo Microarray
and GeneSpring GX11.0. With a 5-fold difference compared to cells with scrambled sequences, miR-145 up-regulated 324
genes (containing genes for immune response) and down-regulated 277 genes (containing genes for epithelial
development and stem cell maintenance). As validated by qPCR and luciferase reporter assay, our results showed miR-145
suppressed integrin b8 (ITGB8) expression in both human corneal epithelial cells and primary CEPCs.

Conclusion/Significance: We found expression of miR-143/145 cluster in human corneal epithelium. Our results also
showed that miR-145 regulated the corneal epithelium formation and maintenance of epithelial integrity, via ITGB8
targeting.
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Introduction

In adult tissue, the renewal of epithelium relies on the

population of stem cells. They generate transit-amplifying (TA)

cells, which proliferate and differentiate to stratified squamous

epithelium. Adult stem cells are usually slow-cycling in vivo whereas

TA cells are frequently dividing with short cell cycles. When

placed in culture, stem cells and TA cells generate holoclones and

paraclones respectively [1]. Corneal epithelial progenitor cells

(CEPCs) reside in the basal epithelium of limbus which is an

annulus located at the vascularized junction between transparent

cornea and opaque sclera [2]. They are characterized by a lack of

cytokeratin-3/12 and connexin-43, which are corneal differenti-

ation markers [3,4]. They undergo more frequent cell divisions

than differentiated epithelial cells and can be cultured ex vivo from

limbal tissues [5]. There has been persistent success in clinical

application of limbal grafting or autologous limbal culture cells to

restore damaged corneal epithelia [6,7].

Epigenetic factors, such as microRNAs, are known to affect

stem cell biology, including the maintenance of pluritotency and

differentiation [8,9]. MicroRNAs are small non-coding RNAs

of 20 to 25 nucleotides in length and usually act as endogenous

repressor of gene activity [10]. They bind to the 39 untranslated

region (39UTR) of target mRNAs for translational repression or

mRNA cleavage. More than 10,000 distinct microRNA sequences

from genomes of viruses, worms and mammals have been

identified through random cloning and sequencing or computa-

tional prediction (microRNA Registry, http://www.microrna.

sanger.ac.uk/sequences). In human, more than 800 microRNAs,

attributing to about 2% of known protein coding genes, are known
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to regulate various biological processes, although many of the

target genes remain to be identified.

In mouse, miR-134 induces ES cells to differentiate towards

ectodermal lineage [11]. The miR-17-92 cluster maintains the

undifferentiated property of lung epithelial progenitor cells [12].

P63, a proliferation regulator of epithelial cells is a target gene of

miR-203 [13]. In mammalian eyes, six retina-specific microRNAs

(miR-96, 182, 183, 184, 210 and 140-AS) have been identified by

microarray analysis [14]. In human and rat retinas, eleven

microRNAs (miR-7, 7d, 23a, 29, 107, 124, 135a, 135b, 143, 200b

and 206) were identified by a target finding approach on the

39UTR of known retinal genes [15]. In mouse cornea, miR-184 is

highly enriched in basal corneal epithelium but absent in the

superficial cells of cornea, whole limbal and conjunctival epithelia

[16]. In contrast, miR-205 and 217 are present in corneal, limbal

and conjunctival epithelia, and epidermis. MiR-184 may partic-

ipate in the terminal differentiation of corneal epithelia and

antagonize with miR-205, which down-regulates SH2-containing

inositol phosphatase-2 in regulating epithelial cell proliferation

[17]. In this study, we investigated the microRNA expression in 2

anatomical distinct human corneal tissues: limbal-peripheral

corneal (LPC) epithelium containing CEPCs and central corneal

(CC) epithelium without CEPCs.

Methods

Corneal specimen collection and CEPC culture
Human corneal rims from adult donors were recruited in the

Joint Shantou International Eye Centre (JSIEC), China. The

JSIEC Independent Ethics Committee approved the study and

participants gave written informed consent. The specimens were

immediately processed for cryosectioning. LPC and CC epithelia,

separated by 1-mm in width, were dissected for small RNA

extraction (Fig. S1A). For CEPC isolation, the limbal epithelium

was digested with Dispase (50 mg/ml, Invitrogen, Carlsbad, CA,

US) and D-sorbitol (100 mM) in SHEM [DMEM/Ham’s F-12

(Invitrogen) containing 5 mg/ml transferrin, 5 mg/ml insulin,

5 ng/ml selenate, 0.1 mM ethanolamine, 0.1 mM o-phosphoetha-

nolamine, 5 mg/ml hydrocortisone, 0.5% dimethylsulfoxide,

10 ng/ml recombinant human basic fibroblast growth factor

(bFGF, Invitrogen), 10 ng/ml human epidermal growth factor

(EGF, Invitrogen), penicillin G and streptomycin sulfate (Invitro-

gen)]. The epithelium was disintegrated to single cells using

TryPLE (Invitrogen) [18] for plating out at 500 cells/cm2 on

Primaria dish (BD, Franklin Lakes, NJ, US) cultured in CnT20

medium and supplements (CELLnTEC, Basel, Switzerland).

Holoclones formed in 7 days were harvested for CEPCs (Fig.

S1B). Unless specified, all reagents were obtained from Sigma (St

Louis, MI, US).

Microarray experiments
Total RNA was extracted by Trizol/chloroform and purified

with the RNeasy kit (Qiagen, Valencia, CA, US). RNA quantity

and integrity were examined by RNA 6000 Pico Chip Kit (Agilent,

Santa Clara, CA, US) on Agilent 2100 Bioanalyzer. RNA samples

with 28S/18S ratios in the range of 1.4 to 1.8 were used.

MicroRNA profiling was performed using Agilent Human

microRNA Microarray V2 platform, which screens for the

expression of 723 human microRNAs from Sanger database

v.10.1. For gene expression analysis, Agilent Whole Human

Genome Oligo Microarray was used. RNA samples were labeled

with cyanine-3 (Cy3) using the Agilent One–Color Labeling kit

and hybridized to the array according to the manufacturer’s

protocol. The signal was detected with an Agilent DNA

Microarray Scanner. The array data is MIAME compliant and

the raw data was deposited in NCBI Gene Expression Omnibus

(GSE24979 and GSE24980, http://www.ncbi.nlm.nih.gov/geo/).

Data normalization and analysis
The scanned images were extracted with Feature Extraction

Software 9.5.3.1 (Agilent). Background intensity and feature non-

uniform outliers were removed by standard procedures. The

processed data were imported to GeneSpring GX10.0.2 for log2

transformation. Signal cut-off measurements were less than 0.01,

and normalized to 75th percentile of signal intensity to standardize

each chip for cross-array comparison. Differentially expressed

miRNAs were identified using unpaired Student’s t test with P

values cut off by 0.01 and fold change more than 2.0. MicroRNA

target gene prediction was performed by TargetScan algorithm.

The gene expression list was uploaded to web-based tool DAVID

(Database for Annotation, Visualization and Integrated Discovery)

V6.7 for enriched Gene Ontology terms and significant pathway

analysis. The statistically significant terms calculated by Fishers

Exact T test associated with the biological processes were selected

for comparison.

Real-time quantitative PCR
Complementary DNA (cDNA) was prepared using High

Capacity cDNA Reverse Transcription kit (Applied Biosystems,

Calsbad, CA, US) from total RNA (1 mg) using Taqman miRNA-

specific RT primer (Exiqon, Vedbaek, Denmark, Table S1) and

a cocktail containing reverse transcription buffer, dNTP mix,

recombinant RNase inhibitor, Multiscribe reverse transcriptase at

standard procedure. Real-time PCR was performed using Taq-

man Universal PCR Master Mix on PRISM 7900HT Sequence

Detection System (Applied Biosystems). Amplification of a single

fragment was confirmed by a dissociation curve with good

correlation with standards and threshold-cycle values. Gene

expression was performed by Sybr Green assay or semi-

quantitative RT-PCR and primers were listed in Table S2.

Locked nucleic acid (LNA)-based in situ hybridization
Cryosections (10 mm thick) were fixed in 4% paraformaldehyde,

acetylated with acetic anhydride/triethanolamine (Sigma) and

treated with 5 mg/ml proteinase K [19]. After pre-hybridization,

the sections were hybridized with denatured digoxigenin (DIG)-

labeled LNA-miRCURY oligo probe (Exiqon) for specific

microRNAs or scrambled sequences at 60uC for 24 hours. After

washings, signals were detected by anti-DIG-alkaline phosphatase

conjugate (Roche, Basel, Switzerland) followed by reduction with

substrate (nitroblue tetrazolium/5-bromo-4-chloro-3-indolyl phos-

phate, NBT/BCIP, Roche). The sections were counterstained

with hematoxylin before examination under light microscopy

(DMRB, Leica, Vertrieb, Germany).

Cell transfection
Human CEPCs from passage 1 holoclones were collected and

plated for transfection with lenti-miR plasmid (System Biosciences,

MountainView, CA, US) driven by CMV promoter using Lipofec-

tamine 2000 (Invitrogen). Insert sequence for pMIRH143PA-1:

59-GCGCAGCGC CCUGUUCCCAGCCUGAGGUGCAGU-

GCUGCAUCUCUGGUCAGUUGGGAGUCUGAGAUGAA-

GCACUGUAUAGCUCAGGAAGAGAGAAGUUGUUCUG-

CAG; for pMIRH145PA-1: 59-CACCUUGUCCCUCACGGG-

GUCCAGUUUUCCCAGGAAUCCCUUAGAUGCUAAGA

UGGGGAUUCCUGGAAAUACUGUCUUGAGGUCAUGGUU.

The control was pCDH-CMV-MCS-EF1-copGFP expression
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vector (System Biosciences). The transfection efficiency was

monitored by the percentage of green fluorescent protein (GFP)

positive cells.

Immunofluorescence and western blotting
For immunofluorescence, the samples were fixed with 2%

neutral buffered paraformaldehyde and permeabilized with 0.15%

saponin (Sigma). After blocking, they were incubated with

monoclonal antibody recognizing cytokeratin-3/12 (AE5, Sigma),

connexin-43 (Cnx43, Millipore, Billerica, MA, US) or ITGB8

(Sigma), followed by fluorescein-conjugated IgG secondary

antibody (Invitrogen) and DAPI (49,6-diamidino-2-phenylindole)

staining. For western blotting, the cells were lysed in 50 mM Tris-

HCl containing 150 mM sodium chloride, 1% Nonidet P-40,

0.25% sodium deoxycholate, protease inhibitor cocktail (Roche)

and 1 mM phenylmethyl sulfonylfluoride for 30 minutes on ice.

The clear supernatant was collected for protein denaturation in a

buffer at a final concentration of 2% sodium dodecylsulfate (SDS),

50 mM DL-dithiothreitol and 1% glycerol and analyzed by 10%

SDS-PAGE (polyacrylamide gel electrophoresis) using monoclonal

antibody against Cnx-43, ABCG2 (Abcam), p63a (Cell Signaling,

Danvers, MA, US) or GAPDH (Sigma), followed by appropriate

horseradish peroxidase-conjugated Ig secondary antibodies. Stain-

ing signals were detected by enhanced chemiluminescence (ECL,

GE Healthcare). Except stated, all reagents were obtained from

Sigma.

Corneal epithelium organotypic culture
Human amniotic membrane (AM) obtained by elective

Caesarean with written consent was preserved sterile in 50%

glycerol at 280uC. Prior to culture, AM epithelium was removed

by treatment with 5 mg/ml dispase. The remaining basement

membrane and stroma were placed in a culture insert (Corning,

Corning, NY, US) with the epithelial side facing up. CEPCs

transfected with pre-miRs or scrambled sequences were seeded at

a density of 56104 cells/cm2 in serum-free SHEM supplemented

with EGF and bFGF and cultured until confluence. The cell

monolayer was air-lifted with basal side nourished by culture

medium for 21 days to induce multilayer formation. The con-

structed epithelium was fixed with 10% neutral buffered for-

maldehyde, paraffin embedded and sectioned for histological exa-

mination. Sections were used for immunohistochemical staining

with anti-human ITGB8 antibody and horseradish peroxidase-

DAB (3,39-diaminobenzidine) reaction.

Luciferase reporter assay
A 5734 base-pair XhoI/Not1 fragment encompassing the full-

length 39UTR of the human ITGB8 gene was amplified by PCR,

forward primer: 59-GAAGCTCGAGCTTTCGGTGCAACT T-

CTAAA, and reverse primer: 59-ATTAGCGGCCGCGATTAA-

CACCTACTACTAAACAG. The fragment was ligated into the

XhoI/Not1 sites of psiCHECKTM-2 vector (Promega, Madison,

WI, US) with Renilla luciferase as the primary reporter gene. The

wildtype pCHECK-ITGB8_39UTR construct was used as tem-

plate to generate specific substitution (AACT to TTCT) of miR-

145 target site using QuikChange II Site-Directed Mutagenesis kit

(Stratagene, La Jolla, CA, US) and oligonucleotides (28–34th site:

GATTTTTAAACACTTAATGGGATTCT GGAATTGTTA-

ATAATTGC; and 4421–4427th site: TCTCACTTTTAAACA-

AAATTTTCT GGAAAAATATTACATGG). Wildtype and

mutant constructs were verified by direct sequencing. For the

luciferase assay, HeLa cells in 24-well plates were transfected with

0.5 mg construct and 50 pmol of pre-miR-145 or scrambled sequ-

ences using Lipofectamine 2000. At 24 hours post-transfection,

cells were collected for measuring the luciferase activity by the

Dual Luciferase Reporter Assay (Promega). The experiment was

repeated 5 times. Mean activities and standard deviation were

calculated and samples compared for statistical significance using

paired Student’s t-test.

Results

Demarcation of human limbal-peripheral versus central
corneal epithelia

To assess the quality of corneal specimens, one-eighth of each

cornea rim with intact limbus was paraformaldehyde-fixed.

Cryosections were obtained for immunofluorescence of corneal

progenitor and differentiation markers, including p63a, ATP

binding cassette glycoprotein member 2 (ABCG2), cytokeratin-15

(CK15), cytokeratin-3/12 (CK3/12), Cnx43 and epidermal

growth factor receptor (EGFR) [20–23]. Those specimens

exhibiting correct expression and localization of these markers

were used for further experiments (Figure S2). The cell membrane

staining of ABCG2 was observed in limbal basal epithelial cells but

not in any of the peripheral and central corneal epithelial cells.

The nuclear p63a staining was strong in limbal basal and

suprabasal cells, gradually restricting to the basal epithelia of

peripheral and central cornea. Undifferentiated CK15 was

prominent in limbal basal, limbal suprabasal and peripheral

corneal basal epithelia but absent in central corneal basal

epithelium. Corneal differentiation marker CK3/12 was absent

in limbal basal epithelium and weak in the peripheral and central

corneal basal epithelia. Gap junction protein Cnx43 was not

expressed in most basal cells of limbus but was positive in central

cornea. Cell membranous EGFR was found in basal cells of both

limbus and cornea. The exclusive existence of p63astrong

ABCG2+CK3/122Cnx432 cells in basal LPC epithelia demon-

strated the existence of CEPCs. Holoclone formation was obtained

from cells dissociated from LPC but not from CC, substantiating

the presence of CEPCs in LPC (Fig. S1B).

MicroRNA profiling in human corneal epithelium
From 10 ı̀m thick cryosections, LPC and CC epithelia were

dissected out as pairs and processed immediately for small RNA

extraction to preserve the in situ microRNA expression, which

could be disrupted due to in vitro manipulation. Both LPC and CC

samples were analyzed for ABCG2 and p63a expression by qPCR

and western blotting. The sample pairs with positive ABCG2

expression in LPC but negative in CC were selected for

microRNA analysis (Figs. S1C, D).

By qPCR analysis, we found similar expressions of reported

housekeeping microRNAs (U6, hsa-let-7a, miR-16 and miR-26b)

in both LPC and CC samples (hsa-miR-16 was shown in Fig. S3).

The expression of reported ES cell-specific microRNAs (hsa-miR-

302a, 302d, 320, 338, 371, 372, 373 and 373#) was also

examined. After normalization with housekeeping U6, they were

negligibly expressed in both LPC and CC samples. In addition to

miR-205 reported to express constitutively in mouse corneal,

limbal and conjunctival basal epithelia [16], we also observed

similar expressions of ocular-specific hsa-miR-182 and 204 in LPC

and CC samples (Fig. S3).

Since CEPCs are present in LPC epithelia but not in CC and

they could be regulated by microRNAs, we predicted that LPC

epithelia might contain microRNAs distinguishable from those in

CC epithelia. For microRNA profiling using microarray investi-

gation, we studied 4 pairs of LPC and CC samples showing similar

miR-205 expression levels (Fig. 1C). We identified 14 microRNAs

(miR-10b, 126, 127, 139, 142-3p, 142-5p, 143, 145, 146a, 155,

MicroRNA-145 in Corneal Epithelial Differentiation
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211, 338, 376a and 377) expressed by more than 2 folds in LPC

than in CC epithelia (P,0.05, unpaired Student’s t test) (Table 1,

Fig. 1A). Among them, miR-145 (43.6 folds, P = 0.00029) and 143

(27.2 folds, P = 0.0006) were the most significantly up-regulated

microRNAs in LPC epithelia. On the other hand, 4 microRNAs

(miR-149, 184, 193b and 575) were expressed 2 folds or more in

Figure 1. MicroRNA microarray analysis of human LPC and CC epithelial samples. (A) MicroRNAs expressed with .2 folds higher in LPC
compared to CC epithelia. (B) MicroRNAs expressed higher by .2 folds in CC compared to LPC epithelia. (C) miR-205 expression in both epithelia.
Data were log(2) transformed and normalized to 75th percentile of signal intensity for standardization. Statistical significance was calculated by
unpaired Student’s t test.
doi:10.1371/journal.pone.0021249.g001

Table 1. List of candidate miRNAs identified from miRNA microarray analysis.

MicroRNAs Unpaired Student’s t-test Reported functions (incl.)

Candidate microRNAs up-regulated in LPC versus CC epithelia

1 hsa-miR-145 P = 0.00029 Tumor suppressor [41], ES pluripotency [25], cardiac SMC differentiation [27]

2 hsa-miR-143 P = 0.0006 Tumor suppressor [41], ES pluripotency [25], cardiac SMC differentiation [27]

3 hsa-miR-146a P = 0.0078 Tumor suppressor [42], inflammation [43]

4 hsa-miR-142-3p P = 0.0088 Immune reaction [44], hematopoiesis [45]

5 hsa-miR-155 P = 0.0102 Cell metabolism [46], immune reaction [47], viral infection [48]

6 has-miR-10b P = 0.0127 Tumorigenesis and metastasis [49]

7 hsa-miR-338 P = 0.0132 Tumor suppressor [50], neurogenesis [51]

8 hsa-miR-377 P = 0.0168 Extracellular matrix modelling [52]

9 hsa-miR-376a P = 0.0178 No report

10 hsa-miR-142-5p P = 0.021 Hematopoiesis [53]

11 hsa-miR-211 P = 0.022 Tumorigenesis [54]

12 hsa-miR-126 P = 0.025 Angiogenesis, cardiac development [55]

13 hsa-miR-127 P = 0.0269 Tumorigenesis [56], apoptosis, organ development [57]

14 hsa-miR-139 P = 0.0364 Tumorigenesis [58], FoxO1 signaling [59]

Candidate microRNAs down-regulated in LPC versus CC epithelia

1 hsa-miR-184 P = 0.00005 Oncogenic [60], neural stem cell-specific [61], cornea-specific [16]

2 hsa-miR-193b P = 0.0024 Tumor suppressor [62]

3 hsa-miR-149 P = 0.031 No report

4 hsa-miR-575 P = 0.043 No report

doi:10.1371/journal.pone.0021249.t001
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CC than in LPC epithelia (P,0.05, unpaired Student’s t test)

(Table 1, Fig. 1B). Among them, miR-184, as previously reported

[16], was the most significantly up-regulated microRNA in CC

epithelia (4.9 folds, P = 0.00005, unpaired Student’s t test).

Elevated expression of miR-143 and miR-145 in LPC epithelia

was validated by qPCR on additional 11 pairs of human LPC and

CC epithelia. After normalization with the respective U6, DCT of

miR-143 was 5.960.8 in LPC and 11.160.9 in CC epithelia

(P = 0.0006, Mann Whitney U-test) (Fig. 2A). Similarly, DCT of

miR-145 was 4.560.7 in LPC and 10.260.7 in CC epithelia

(P = 0.0004, Mann Whitney U-test) (Fig. 2B). The smaller the

DCT values relative to U6, the higher the expression. With about

88% efficiency in our PCR amplification system, LPC had miR-

143 and miR-145 expressions 26.6-fold and 36.5-fold higher than

CC epithelia respectively. Such levels were comparable to the

array results described earlier.

Localization of miR-143 and miR-145 in human corneal rim

specimens was shown by LNA-based in situ hybridization. We

hybridized the corneal rim cryosections with denatured DIG-

labeled LNA-miRCURY oligo probes for miR-143 (Fig. 2C),

miR-145 (Fig. 2E), scrambled sequences (Fig. 2G) and U6

(Fig. 2H). In contrast to U6 as the positive control and scrambled

sequence as the negative control, miR-143 and miR-145 were

more intensively detected in the limbal epithelium, but low to

negligible in the corneal epithelium. Similar results were found in

4 repeated experiments. As shown in Figures 2D and F under

higher magnification, miR-143 and miR-145 were present

predominantly in the parabasal layers, with the intensity reducing

towards the superficial layers. They were not strongly expressed in

the basal layer, which contains CEPCs.

MiR-145 regulated corneal epithelial differentiation
Freshly isolated human CEPCs were cultured in CnT20

medium and cells from primary holoclones were pooled and

plated as passage 2 (P2) for transfection with lenti-miR expression

plasmid pMIRH143PA-1 or pMIRH145PA-1 at a ratio of 3 ml

Figure 2. Validation of miR-143 and miR-145 expression in limbal epithelium. By qPCR analysis, (A) miR-143 and (B) miR-145 was up-
regulated (compared to U6 expression) in LPC epithelia, when compared to CC (P,0.001, Mann Whitney U-test). Red lines indicated mean CT value. In
situ hybridization showed (C) miR-143 and (E) miR-145 in limbal epithelium, compared to (G) scrambled sequences and (H) U6. At higher
magnification, (D) miR-143 and (F) miR-145 were present in parabasal layers. Scale bars: 150 mm (C, E, G, H); 40 mm (D, F).
doi:10.1371/journal.pone.0021249.g002

MicroRNA-145 in Corneal Epithelial Differentiation

PLoS ONE | www.plosone.org 5 June 2011 | Volume 6 | Issue 6 | e21249



Lipofectamine 2000 per mg DNA. Over-expressions of miR-143

and miR-145 were shown by GFP live imaging (Figs. 3A–B, miR-

143; 3C–D, miR-145) and qPCR (Fig. 3E). The transfected cells

were kept in CnT50 medium with low bovine pituitary extract

(15 mg/ml) for optimal corneal epithelial cell growth for 2 days

followed by expression analysis. By immunofluorescence, both

miR-143 and 145-transfected cells had increased CK3/12

expression (Figs. 3G and H), when compared to cells transfected

with scrambled sequences (Fig. 3F). This was also detected by

western blotting (Fig. 3N, second panel). On the other hand, miR-

145-transfected cells showed relatively stronger Cnx-43 expression

(Fig. 3K), which was mild in cells transfected with scrambled

sequences (Fig. 3I) or miR-143 (Fig. 3J). Western blot analysis

showed Cnx-43 upregulation in CEPCs transfected with miR-145

by about 15 folds more than those with scrambled sequences

(Fig. 3L). In addition, these cells had reduced ABCG2 (Fig. 3M,

bottom panel) and p63a expression (Fig. 3N) as revealed by RT-

PCR and immunofluorescence, respectively. This expression

pattern of corneal differentiation markers, i.e., reduced ABCG2

and p63a expression, and its expression in parabasal layers of

limbal epithelium, indicated that miR-145 might be involved in

corneal epithelial differentiation. We corroborated this supposi-

tion by a three-dimensional corneal epithelial organotypic assay.

Human P2 CEPCs transfected with miR-143, miR-145 or scram-

bled sequences were expanded to monolayer cell sheet on denuded

AM in submerged culture, followed by air-lifting to induce cell

stratification. The composites were harvested for morphological

examination. The number of epithelial layer was quantified in

15 random sites along the composite to obtain the epithelium

forming efficiency. CEPCs without transfection (Fig. 4D), with

Figure 3. Transfection analysis of miR-143 and miR-145. (A–D) Human P2 CEPCs transfected with (A and B) Lenti-miR-143 and (C and D) Lenti-
miR-145. (A, C) Phase-contrast images; (B, D) live GFP imaging. (E) Overexpression levels of miR-143 and 145 in transfected CEPCs by qPCR analysis.
Amplification signals from cells with scrambled sequences (Scm) were indicated. Immunofluorescence of (F–H) cytokeratin-3/12 and (I–K) connexin-
43 in CEPCs transfected with (F, I) scrambled sequence, (G, J) Lenti-miR-143 and (H, K). (L) Western blotting and densitometry analysis of connexin-43
(Cnx43) and GAPDH in CEPCs transfected with Lenti-miR-145 or scrambled sequences. (M) RT-PCR result of integrin b8 (ITGB8), cytokeratin-3 (CK3),
ABCG2, b-actin and GAPDH in different primary CEPCs (at P2) transfected with Lenti-miR-145 or scrambled sequences. (N) Immunofluorescence of
miR-145 (revealed by GFP), p63a and nuclear DAPI stain in P2 CEPCs after Lenti-miR-145 transfection. Scale bars: (A–D) 100 mm; (F–K, N) 10 mm.
doi:10.1371/journal.pone.0021249.g003

MicroRNA-145 in Corneal Epithelial Differentiation

PLoS ONE | www.plosone.org 6 June 2011 | Volume 6 | Issue 6 | e21249



lipofectamine only (Fig. 4E) or transfected with scrambled

sequences (Fig. 4A), generated thicker epithelia. They had typi-

cal epithelial morphology with basal cuboidal-like cells next to

the basement membrane. The cells were packed and appeared

squamous in shape at the superficial layers (non-transfected:

12.561.5 layers; lipofectamine-only; 9.962.3 layers; transfected

with scrambled sequence: 10.262.4 layers) (Fig. 4F). However, this

was not observed in the epithelia generated from miR-145-

transfected CEPCs (Fig. 4B). The epithelium was degraded, thin

(5.661.3 layers) and loosened with reduced cell density. Few

cuboidal cells were found in the basal layer and cells were tends to

be flatten or squamous in shape. The epithelium generated from

miR-143-transfected CEPCs had morphology and compactness

intermediate between control and miR-145 epithelia (8.361.6

layers) (Fig. 4C). The same results were obtained in duplicated

experiments.

Transcriptional regulation by miR-145
We compared the transcription profile of human corneal

epithelial HCE cells transfected with lenti-miR-145 or with

scrambled sequences using the Agilent Whole Human Genome

Oligo Microarray platform, which screens for 41K human genes

and transcripts. In two separate array experiments, miR-145 up-

regulated 324 genes and down-regulated 277 genes by a five-fold

difference compared to cells transfected with scrambled sequences

(Tables S3A–B). Significant Gene Ontology terms enriched in the

deregulated gene sets represented immune response (P,1027),

process (P,1025), regulation (P,1023), inflammatory response

(P,1024), cell defence (P,1025), cell apoptosis (P,1023), cell

differentiation (P,1023) and development (P,1023). In addition,

differentially regulated genes with .2 folds difference could be

associated with epithelium development, cell proliferation and

differentiation (Table 2, a full list is shown in Table S4). Real-time

PCR analysis in 4 transfection experiments consistently showed

that miR-145 markedly down-regulated integrin b8, ITGB8

(P = 0.00024, paired Student’s t test) and up-regulated interferon

b1 (IFNB1) (P,0.005) but not other candidate genes, such as

Wnt7A, SOCS7 and Klf4 (Fig. 5A). Similar reduction of ITGB8

expression was observed in primary human CEPCs transfected

with miR-145 (Fig. 3M). Predicted by TargetScan Human version

5.1 (http://www.targetscan.org), 2 conserved sites for miR-145

binding: 28–34th and 4421–4427th was found in the 39UTR,

equivalent to 3043–3049th and 7436–7442nd of human ITGB8

(NM_002214) (Fig. 5B). Notably, the first site is conserved in

primates only whereas the second is found among primates,

rodents and avian. Hence, influence of miR-145 on ITGB8

expression could be species-specific. To confirm miR-145

regulated ITGB8 expression by direct targeting the 39UTR, we

cloned the full-length wildtype ITGB8 39UTR fragment down-

stream of psiCHECK-2 luciferase reporter gene and introduced

mutated miR-145 target sites: 28–34th and 4421–4427th, by site-

directed mutagenesis. Luciferase expression, which represented

Figure 4. Corneal epithelial organotypic assay. Representative hematoxylin-eosin stained pictures from serial sections of cell-denuded AM
composite showing the thickest epithelium and the most epithelial layers. (A) CEPCs transfected with scrambled sequences, (B) CEPCs transfected
with pre-miR-145, (C) CEPCs transfected with pre-miR-143 and (D) CEPCs with Lipofectamine 2000 and (E) non-transfected CEPCs. Scale bars: 100 mm.
(F) Epithelium forming efficiency determined by the number of epithelial layers in 15 sites along the composite. * P = 0.042; ** P = 0.0002 (paired
Student’s t-test).
doi:10.1371/journal.pone.0021249.g004
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promoter activity, was examined in HeLa cells co-transfected with

the vectors and pre-miR-145 or scrambled sequences. The cells

co-transfected with wildtype 39UTR and miR-145 had reduced

luminescence when compared to cells with wildtype 39UTR and

scrambled sequences (P,0.005, one-way ANOVA) (Fig. 5C).

Reduced luminescence was also found in cells co-transfected

with miR-145 and mutated 39UTR at site 28–34th but not with

mutated site at 4421–4427th. Immunofluorescence showed mem-

branous staining of ITGB8 in human limbal epithelium, parti-

cularly the basement membrane in contact with basal cells and

superficial cell layers (Fig. 5D). Negative staining of the parabasal

layers was coincident with positive miR-145 expression as shown

by in situ hybridization (Figs. 2E and F). ITGB8 was strongly

detected in cultured epithelia generated from CEPCs transfected

with scrambled sequences but mild in those from pre-miR-145-

transfected CEPCs (Fig. 5E).

Discussion

In this study, we found differential expressions of 18

microRNAs between human limbal-peripheral and central corneal

epithelia. Among them, miR-143 and miR-145 were expressed

predominantly in the limbal epithelium but at very low levels in

the central corneal epithelium. In primary human CEPCs,

transfection of miR-145 up-regulated cytokeratin-3/12 and

connexin-43 and concomitantly suppressed p63 and ABCG2

expression. We hypothesized that miR-145 could be an important

regulatory molecule for human corneal epithelial differentiation.

These cells developed to thinner and defective epithelium in vitro.

This morphological alteration could be caused by miR-145 via the

direct targeting on ITGB8. Meanwhile, disruption of binding site

in ITGB8 39UTR by site-directed mutagenesis eradicated the

inhibition caused by miR-145. To our knowledge, this is the first

report of microRNA regulation on human ocular cell differenti-

ation and an example that microRNA can interfere with tissue

development.

Located in human chromosome 5 and rodent chromosome 18,

miR-143/145 are co-transcribed as one microRNA cluster from

the same microRNA precursor. In a mouse model, both are

initially expressed in the developing embryonic heart, followed by

migration to smooth muscle cells of the aorta, intersomitic arteries,

esophagus, lung, colon bladder and umbilical cord at later stages

[24]. In adult mice, they are expressed in lung, skeletal muscle,

heart and skin, and most abundantly in aorta and fat. MiR-145 is

faintly expressed in self-renewing human ES cells but up-regulated

during differentiation, indicating an inductive role on ES cell

differentiation [25]. It directly targets on core plurpotency factors,

repressing Oct4, Sox2 and Klf4, which are crucial to maintain the

self-renewal and pluripotency capacity of ES cells and promote

developments of the mesoderm and ectoderm lineages [24,26–28].

A feedback mechanism has been proposed between miR-145 and

Oct4 regulation [25]. Oct4 down-regulates miR-145 expression

through repressive binding to its promoter. Hence, in ES cells,

high Oct4 level suppresses miR-145 and the cells are capable of

self-renewing. When entering into specific lineages, the differen-

tiated cells express miR-145, which promotes differentiation and

targets on Oct4 to suppress the self-renewal capability. In this

study, miR-143/145 were expressed in the limbal epithelium, in

particular the parabasal wing cell layers, but not in the central

corneal and basal limbal epithelia. The parabasal region is

enriched with proliferative TA cells with no self-renewal ability.

The absence of Oct4 facilitates miR-145 expression. Furthermore,

in normal adult CEPCs, Oct4, Sox2 and Klf4, as anticipated, are

not detectable (Fig. 5A). This restricted the proof-of-concept study

of miR-145 targets by knock-down experiments. Instead, over-

expressing miR-145 in human CEPCs promoted CK3/12 and

Cnx43 expression, which indicated the onset of corneal epithelial

differentiation. Concurrently, these cells had reduced ABCG2 and

p63 expressions, indicating their exit from stem cell proliferation

state. As shown by in vitro corneal epithelium organotypic assay, a

thinner and loosened epithelium was generated from miR-145-

transfected human CEPCs. These findings strongly indicated that

Table 2. Selected human gene/transcript changes in miR-145 transfected HCE cells, compared to scrambled sequences.

Genes/transcripts Fold changes Reported features with cornea

Upregulated, compared to scrambled control

- Interleukin 28B [IL28B] 100.5 Viral infection [63]

- Interferon b1 [IFNB1] 55.8 Infection, viral inflammation [64]

- Interferon a-inducible protein 6 [IFI6] 40.3 No information

- Endothelin converting enzyme 2 [ECE2] 7.0 Vasoconstriction [65]

- Complement component 1, q subcomponent-like 2 [C1QL2] 6.3 Inflammation

- Tumor necrosis factor a-induced protein 6 [TNFAIP6] 4.0 Angiogenesis, apoptosis, inflammation [66]

- Somatostatin receptor 4 [SSTR4] 3.9 Angiogenesis, inflammation [67]

- Retinoic acid receptor a [RARA] 2.2 Differentiation, inflammation [68]

Downregulated, compared to scrambled control

- Angiopoietin 4 [ANGPT4] 0.08 Corneal angiogenesis, wound healing [69]

- Prostate stem cell antigen [PSCA] 0.11 Cornea development [70]

- Katanin p60 subunit A-like 2 [KARNAL2] 0.19 Cornea burn wounding [71]

- Cadherin 16 [CDH16] 0.26 Corneal limbal cell marker [72]

- Integrin b8 [ITGB8] 0.4 Corneal basal cell expression [73]

- Wingless-type MMTV integration site family 7A [WNT7A] 0.43 Corneal cell proliferation and wound closure [74]

- Suppressor of cytokine signalling 7 [SOCS7] 0.45 Corneal ulceration

doi:10.1371/journal.pone.0021249.t002
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Figure 5. Target gene identification of miR-145 in human corneal epithelium. (A) Gene expression analysis by qPCR showing that ITGB8
was significantly down-regulated (P = 0.00024, paired Student’s t-test) and IFNB1 was induced after miR-145 transfection (P,0.005). Wnt7A, Klf4,
SOCS7 and FBN3 showed no changes. The dots represented DCT values (CT of transfected cells subtracted with CT of control cells). Horizontal lines
indicated mean CT values. Scm: scrambled sequences. (B) Sequences of two miR-145 binding sites located in human ITGB8 39UTR. Yellow shaded
regions represent the conserved complementary nucleotides of miR-145 seed sequence in different species. The first 28–34th nucleotide region is
only conserved in primates whereas 4421–4427th region is conserved in primates and rodents. (C) HeLa cells co-transfected with wildtype (WT)
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miR-145 suppressed the progenitor cell pool, and the cells were

prone to differentiate, resulting in an underdeveloped epithelium

with fewer cuboidal basal cells. We have attempted to transfect

primary CEPCs by lenti-miR plasmid and observed about 70–

80% transfection efficiency according to live GFP expression. We

selected these cells for organotypic culture, which had demon-

strated the influence of miR-145 on corneal epithelium develop-

ment. Together with the reduced ITGB8 expression in the

resulting epithelium, this likely showed that some cells could

maintain miR-145 expression after culture for a month. However,

we could not determine if this was due to transfection or endo-

genous expression in cells. Further experiments using lentivirus

to obtain a long-term over-expression of miR-145 or specific

miR-145 knockdown will be carried out to study the biological

mechanism how miR-145 regulates corneal cell proliferation,

migration and differentiation. Previous study using a zebrafish

platform illustrated that miR-145 knockdown resulted in under-

developed gut and heart [29].

We observed miR-145 down-regulated ITGB8 in human

corneal epithelial cells and this might influence epithelium

development and formation. In human limbal epithelium, ITGB8

was predominantly detectable in cell-cell boundary of superficial

layers and also found scattered between cells in the basal layer.

Interestingly, it was negligibly expressed in the parabasal region

where miR-145 was detected. ITGB8, with its binding partner aV,

is expressed in normal epithelial and neuronal cells in vivo and

regulates transforming growth factor b (TGFb) activation in

various events, including cell growth, matrix modeling, epithelial-

mesenchymal homeostasis, immune regulation and vasculogenesis

[30]. Binding of Sp1, Sp3 and AP-1 transcription factors to its core

promoter regulates ITGB8 expression in a p38-dependent manner

[31]. TGFbactivation could lead to autocrine and paracrine

signaling on cell growth and matrix production, which are

important for epithelial cell adhesion and motility [32]. b8

interaction with Rho guanine nucleotide dissociation inhibitor-1

selectively stimulates Rac1, which regulates actin cytoskeleton

arrangement, an important event in cell proliferation and

differentiation [33,34]. Also, aVb8 integrin facilitates Fas

induction [35], which is crucial for cell migration, production of

inflammatory cytokines and corneal wound healing.

In addition, miR-145-transfected HCE cells had up-regulated

IFNB1, which is known with anti-inflammatory activity. The

cornea is described as ‘‘immune privilege’’, characterized by

suppression of systemic immunity after infection. This can be

associated with low vascularization, presence of Fas ligand, which

is a target of aVb8 integrin, and TRAIL molecules and inhibitory

substances in the aqueous humor [36]. As a consequence, corneal

allografts usually survive longer than allografts in other body parts

[37]. The immunologically protective mechanism in cornea can be

associated with the production of nitric oxide, which intoxicates

various pathogens [38]. Production of interleukins, interferon and

TGFb via aVb8 integrin pathway) are pathogen-induced

immunologically protective mechanism in corneal cells [39,40].

Up-regulation of IFNB1 may contribute to enhancement of anti-

inflammatory capability of corneal cells.

In conclusion, we discovered differential expression of micro-

RNAs in human limbal and corneal epithelia. MiR-145 could be

an important regulatory molecule for human corneal epithelial

progenitor cell proliferation and differentiation. It is also crucial

for the integrity of corneal epithelium, likely via ITGB8 targeting,

which will be further investigated with ITGB8 knockdown mice.

Our findings provide the first identification of microRNAs

expressed in adult tissue-specific site with regulatory effect on

tissue cell differentiation.

Supporting Information

Figure S1 (A) A schematic diagram illustrating the sample

collection. LPC and CC epithelia separated by 1-mm (by width]

uncut region were dissected out. (B) Clonal assay of CC and LPC

isolated cells in culture for 7 days. Scale bar: 150 mm. (C) qPCR

analysis to show ABCG2 expression in LPC but undetectable in

LPC samples. (D) Western blotting of ABCG2 to validate the

presence of CEPCs in LPC but not CC epithelia. Constant

expression of p63a and b-actin was noted in LPC, CC and CJ

(conjunctival epithelium).

(JPG)

Figure S2 Immunofluorescence of corneal progenitor cell and

differentiation markers to validate the presence of CEPCs in

human LPC compared to CC epithelia. Scale bars: 50 mm.

(JPG)

Figure S3 Expression analysis showing similar miR-16 (n = 7),

miR-182 (n = 11) and miR-204 (n = 11) in LPC and CC epithelia.

(JPG)

Table S1 List of miRNA-specific primer in the miRNA

expression analysis.

(DOC)

Table S2 Specific primers used in qPCR analysis.

(DOC)

Table S3 Human gene/transcript changes in miR-145 trans-

fected HCE cells, compared to scrambled sequences.
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Table S4 Significant Gene Ontology (GO) terms enriched in

differential expressed gene list of miR-145- versus scrambled

sequence-transfected cells (fold change $5).
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pCHECK-ITGB8_39UTR and pre-miR-145 showed lower luciferase reporter activities when compared with cells transfected with scrambled sequences
(n = 5) (red labels). Disruption of binding site 4421–4427th region resulted in higher luciferase activity (blue labels) whereas mutation at 28–34th

region had no influence and the reduced luciferase activity levels (green labels) were similar as WT. * P,0.005, as compared to scrambled control
(one-way ANOVA). (D) Immunofluorescence of ITGB8 in human limbal epithelium. Positive immunoreactivity was observed scattered in basal layer
and continuous in superficial layers. No observable expression was noted in the parabasal layers. (E) Immunoperoxidase staining of ITGB8 in
organotypic generated epithelia. Distinct ITGB8 expression was observed in epithelial layers generated from CEPCs transfected with scrambled
sequences whereas reduced expression was found in epithelia from pre-miR-145-transfected CEPCs. Scale bars (D, E): 50 mm.
doi:10.1371/journal.pone.0021249.g005
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