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Abstract

Background: The objectives of this study were to determine the capacity of BED incidence testing to a) estimate the effect
of a HIV prevention intervention and b) provide adequate statistical power, when used among young people from sub-
Saharan African settings with high HIV incidence rates.

Methods: Firstly, after having elaborated plausible scenarios based on empirical data and the characteristics of the BED HIV-
1 Capture EIA (BED) assay, we conducted statistical calculations to determine the BED theoretical power and HIV incidence
rate ratio (IRR) associated with an intervention when using BED incidence testing. Secondly, we simulated a cross-sectional
study conducted in a population among whom an HIV intervention was rolled out. Simulated data were analyzed using a
log-linear Poisson model to recalculate the IRR and its confidence interval, and estimate the BED practical power.
Calculations were conducted with and without corrections for misclassifications.

Results: Calculations showed that BED incidence testing can yield a BED theoretical power of 75% or more of the power
that can be obtained in a classical cohort study conducted over a duration equal to the BED window period. Statistical
analyses using simulated populations showed that the effect of a prevention intervention can be estimated with precision
using classical statistical analysis of BED incidence testing data, even with an imprecise knowledge of the characteristics of
the BED assay. The BED practical power was lower but of the same magnitude as the BED theoretical power.

Conclusions: BED incidence testing can be applied to reasonably small samples to achieve good statistical power when
used among young people to estimate IRR.
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Introduction

Since the first detuned enzyme immunoassay to detect recent

HIV seroconversion was described in 1998 [1], there has been

great interest in the application of laboratory methods to measure

HIV incidence rates from cross-sectional samples [2]. Currently,

the most widely used incidence assay is the BED HIV-1 Capture

EIA (BED) assay [3]. HIV incidence estimation is increasingly

being incorporated into HIV/AIDS surveillance activities in both

resource-rich and developing countries [4]. However, in 2005, the

UNAIDS Reference Group on Estimates, Modeling and Projec-

tions issued a cautionary statement about using BED to estimate

HIV incidence rates and called for the development of additional

laboratory and modeling methodologies [5].

The ability to reliably measure HIV incidence rate ratios (IRR)

using cross-sectional data has vast public health importance in

HIV surveillance and in prevention studies. In HIV surveillance, it

will facilitate the identification of high risk groups. In HIV

prevention studies, it will allow for the assessment of the roll-out of

current interventions, such as male circumcision, or future

interventions, such as microbicides and antiretroviral treatment

as prevention. Reliable measures of HIV incidence rates from

cross-sectional studies would reduce the need to recruit and

maintain large and costly longitudinal cohorts. However, two of

the current challenges in using HIV incidence assays to

characterize HIV incidence rates are a) knowledge of the BED

window period (i.e. time between first infection and when the test

can reliably detect that infection) and b) misclassifications. The

main source of misclassifications is the number of HIV-infected

persons falsely identified as recent seroconverters, which depends

on the proportion of HIV-positive participants whose infection

duration exceeds the BED window period.
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To reduce the sample size needed to achieve adequate statistical

power, it would make sense to use BED incidence testing among

young people because they constitute a group with a) a high HIV

incidence rate and b) low HIV prevalence, since initiation of

sexual activity is relatively recent.

The objectives of this study were to determine the capacity of BED

incidence testing to a) estimate the effect of a prevention intervention

and b) provide adequate statistical power, when used among young

people from sub-Saharan African settings with high HIV incidence

rates. Numerical values were obtained from published data.

Methods

The details of the following calculations are provided in the

Text S1, in which some computations were performed using a

symbolic calculator [6].

A theoretical estimations of the effect and of the power
We considered a population of young people at time t = 0, aged

a1 to a2, from an area where HIV is predominantly transmitted

heterosexually. We called T the maximum duration from their

onset of sexual activity, which occurred at age a1, so that T = a2-a1.

We supposed that the age distribution was uniform. This

population was divided into a control group of size N and an

intervention group of size N/m. The intervention was delivered at

some time V years before t = 0, independently of HIV status. We

supposed that all participants were HIV-negative at age a1, and

that they were only tested for HIV after the end of the

intervention. We assumed that HIV testing allowed us to a)

perfectly detect HIV-positive and HIV-negative individuals, and b)

imperfectly evaluate those having seroconverted during the BED

window period (W). We called ‘‘tested recent seroconverters’’ these

latter individuals, in contrast with those HIV-positive and long-

term seroconverters. Misclassifications were due to participants

who were falsely identified as recent seroconverters and those

falsely identified as long-term seroconverters. The HIV incidence

rate (i) was reduced by the effect (x) of the intervention, which was

the IRR between the two groups. Because of the usually low value

of the product of i by T, we approximated the probability of HIV

infection during any duration lower than T by the product of the

HIV incidence rate by this duration.

We adopted the terminology introduced by McDougal et al. [7],

who considered three time intervals. The first interval was before

HIV testing and equal in duration to the BED window period W.

The second interval was immediately before the first interval and

equal in duration to W. The third interval was the period before the

first and the second intervals. The specificities associated with the

second and third intervals are called the short-term (r1), and the

long-term (r2) specificities. The sensitivity is noted Se. To simplify

calculations, we considered that T was at least twice as long as W,

which is the case in practice. We assumed that all the parameters

were independent, and thus constant with time and age. In

particular, we did not assume a) any relationship between the

sensitivity and the specificities, b) any relationship between age and

the sensitivity and the specificities, as it has been verified for the long-

term specificity [8]. Any relationship between the sensitivity and the

specificities can be taken into account when using numerical values.

Under these hypotheses, the mean number of those tested

recent seroconverters (Ntr) in the intervention group was given by

the following formula:

(Ntr)intervention~
iNW

mT
(AxzB): ð1Þ

In Formula 1, A and B are given by
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In these last formulae, a, b and c are fractions and depend on the

duration of the intervention (V). They are given for V#T by

V = aW+bW+c(T-2W), and are equal to one for V$T.

The number of individuals tested recent seroconverters in the

control group was obtained from Formula 1 by replacing x by one.

The estimated effect of the intervention (x̂x) was calculated using

the following formula:

x̂x~m 1z
B

A

� �
Ntrintervention

Ntrcontrol
{

B

A
ð2Þ

As shown in the Text S1, the estimated effect calculated using

Formula 2 is the maximum likelihood estimation of the effect.

The Text S1indicates the mathematical expression of the

asymptotic (i.e. when N is large) 95% confidence interval (CI) of x̂x.

The case of an intervention being delivered before or at the

onset of sexual activity is discussed in section 5 of the Text S1. In

this instance, the estimation of the intervention effect was equal to

the ratio of the number of individuals tested recent seroconverters

in the study groups, and did not depend on the characteristics of

the BED incidence assay. We defined the BED theoretical power

as the power obtained by statistical calculations. It appears that

this BED theoretical power, and thus the calculation of the

confidence interval, still depends on these characteristics.

In the Text S1, we also considered the case where the inferior

limit of the age range was higher than the age at onset of sexual

activity.

To avoid the hypotheses underlying the use of the delta method,

and to circumvent the assumption that N is large, we ran

simulations to compute the estimated effect of the intervention in

function of N, m, i, W, T, V, r1, r2 and Se. We proceeded as

follows: The distribution (D) of 10,000 values of the intervention

effect was obtained by sampling the number of individuals tested

recent seroconverters in each group from a binomial law,

characterized by a number of trials equal to N (for the control

group) or N/m (for the intervention group) and a probability equal

to (Ntr)control=N (for the control group) or m(Ntr)intervention=N (for

the intervention group). Ntr was calculated for each group as

described above. The effect was calculated using Formula 2. In

addition, the 0.025 to 0.975 percentile interval (D) of the effect

distribution around a nominal value of one was obtained by

generating another set of 10,000 values. The statistical power,

which is called here the ‘‘BED theoretical power’’, was given by

the proportion of values of D outside the interval D.

This process was repeated by replacing the sensitivity and the

specificities with one, to obtain the ‘‘cohort power’’, which is the

statistical power in the case of a classical cohort study. In such

study, individuals, who are HIV-negative at recruitment, are

followed-up for a duration of time equal to the BED window

HIV Incidence Tests to Evaluate HIV Intervention
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period and tested for HIV at the end of that duration, assuming no

loss to follow-up. As shown in the Text S1, in some cases, the BED

theoretical power can be slightly higher than the cohort power.

B Practical estimation of the effect and of the BED power
In practice, the BED theoretical power estimation detailed

above is not usable because empirical studies give individual data.

Independently of the previous section, we examined how to

estimate HIV IRR from empirical data using the following

method: We considered an individual j aged gj years-old and

belonging to the intervention group. We considered that the

duration of the intervention Vj varied between individuals. We

defined Tj = gj-a1 and assumed that the intervention was delivered

to that individual for Vj years, independently of his/her HIV

status. We first calculated the theoretical probability of being

tested recent seroconverter, for an HIV-positive individual having

initiated sexual activity Tj years ago, with Tj lower than a given

maximum value Tmax. Secondly, we simulated random samples of

individuals belonging to the intervention and control groups, using

these probabilities. These samples corresponded to what could be

obtained when conducting a cross-sectional study. Lastly, we

analyzed the simulated populations with classical statistical

methods to estimate the value of the intervention effect, which

was then used to simulate the data and assess the statistical power,

called the ‘‘BED practical power’’ in this study. In this section, we

use the same notations as in the previous paragraph.

Probabilities to be HIV positive and to be tested recent

seroconverter. For an individual from the intervention group,

the probability to be HIV-positive was given by the following

formula:

Pz~iW(AA’xzBB’) ð3Þ

The probability of being tested recent seroconverter when HIV-

positive was given by the following formula:

PTR zj ~
A’xzB’

AA’xzBB’
ð4Þ

In these formulae, A9 and B9 were calculated for five cases,

depending on the relative values of T, W and V, and were

independent of the HIV incidence rate. These cases are described

in the Text S1. In the case of T$2W, we obtained:

A’~aSezb(1{r1)zc(1{r2)
(T{2W)

W

B’~Se(1{a)z(1{r1)(1{b)z(1{r2)
(T{2W)

W
(1{c)

In each of the five cases, the values of AA9 and BB9 were obtained

from A9 and B9 by replacing the specificities by zero and the

sensitivity by one. For individuals in the control group, the

probability to be HIV-positive and the probability to be tested

recent seroconverter when HIV-positive were obtained by

replacing x by one in Formulae 3 and 4.

Simulation of samples. We simulated an intervention group

and a control group of the same size (N). The duration T since

sexual debut was sampled from a uniform distribution between

zero and the maximum Tmax. For individuals from the

intervention group, the time V since the beginning of the

intervention was sampled from a uniform distribution between a

minimum (Vmin) and a maximum (Vmax). HIV status and, for

those HIV-positive, results of the BED incidence testing (tested

recent seroconverter or not) were randomly allocated according to

Formulae 3 and 4. Each individual was then characterized by the

three following variables: T, HIV status, and tested recent

seroconverter (Yes or No) for those HIV-positive. In addition,

the following general variables were used: N, i, x, W, Tmax, Vmin,

Vmax, r1, r2 and V. This simulation process was repeated 10,000

times.

Estimation of the intervention effect and of the BED

practical power. We recalculated the effect of the intervention,

computed as an HIV IRR, from the simulated samples. We used a

Poisson log-linear model which is equivalent to the exponential

model [9,10,11], assuming that the instantaneous incidence is

constant over time. This model was applied to all individuals from

each simulation. This model required the knowledge of the

probability k1 of being infected with HIV within the window

period W for individuals tested HIV-positive and recent

seroconverters, as well as the probability k2 of being infected

with HIV within W for those tested HIV-positive and tested long-

term seroconverters. As described in the Text S1, for intervention

group participants, calculations gave the following expressions for

k1 and k2.

k1~Se
C’xzD’
A’xzB’

and k2~(1{Se)
C’xzD’

(AA’{A’)xzBB’{B’

C9 and D9 were obtained from A9 and B9 by replacing the

specificities and the sensitivity by one. AA9 and BB9 were obtained

from A9 and B9 by replacing the specificities by zero and the

sensitivity by one. The corresponding values of k1 and k2 for

participants in the control group were obtained by replacing x by

one. The values of k1 and k2 did not depend on the HIV incidence

rate. To correct for an effect due to misclassifications (false recent

seroconverters and false long-term seroconverters), weights of k1

were used for individuals tested recent seroconverters, weights of

k2 were used for those tested long-term seroconverter, and weights

of one were used for those tested HIV-negative. Because the

weights depended on the effect of the intervention, Poisson log-

linear regressions were repeated until a stable value for the

intervention effect was reached. This process was initiated with a

value of 0.5 for the first calculation of the weights. The duration of

HIV exposure was introduced as an offset in the model. Each

individual who remained HIV-negative was denoted as having a

duration of exposure equal to the minimum value between W and

T. Each individual who became HIV-positive was denoted as

having a duration of exposure equal to half the minimum value

between W and T. The estimated effect was calculated as the

median effect generated from the 10,000 simulated samples. The

statistical power needed to obtain a significant value for the HIV

IRR was calculated as the fraction of the samples with a p-value

lower than 0.05.

C Numerical values
The conventional cut-off value for the BED assay is 0.80,

corresponding to a BED window period W of about six months.

However, an empirical study has shown that higher cut-off

values of up to 1.89, corresponding to a W of about 15 months,

can be used among young people [12]. We used values of W of

six, nine, 12 and 15 months in this study. There are several

approaches to establish the relationship between the cut-off value

and W. One consists in considering a cohort of HIV-negative

individuals followed up for a period of 2W, and then choosing a

cut-off value such that, at the end of the 2W-period, the number

HIV Incidence Tests to Evaluate HIV Intervention
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of those who became HIV-positive during the second W period

is equal to the number of those tested recent seroconverters. This

is the method used in the publication quoted above, and what

was applied in the present study. This method implies that the

sensitivity is equal to the short-term specificity. Using other

relationships between the cut-off value and W leads to other

equations, such as sensitivity equals short-term specificity plus

one minus long-term specificity [13]. The two methods give very

close results because one minus the long-term specificity is in the

range of 0.05 to 0.08.

Using empirical data from a previous study [12], we chose to

use a linear relationship between the long-term specificity and W

(in months), r2 = 1–0.0071W, and a constant value for the

sensitivity, Se = 0.87. However, we also varied these numbers

across a wide range of possible numerical values.

We selected baseline values for HIV incidence rates of 2.1% per

year among young men and 5% per-year among young women,

which are typical HIV incidence rates in high HIV incidence

settings of sub-Saharan Africa. We chose an intervention reducing

the HIV incidence rate by 60%, corresponding to an effect (IRR)

of 0.4. Among men, these baseline data correspond to what was

observed during the male circumcision trial conducted in Orange

Farm (South Africa) [14].

D Generation of results
BED theoretical power. We computed the theoretical

power of the BED assay (the BED theoretical power) using the

baseline scenarios. This BED theoretical power was also calculated

as a fraction of the power obtained in a cohort study (called the

cohort power). We assessed the effect of the baseline values on the

BED theoretical power by varying a) the sample size of each

group, b) the BED incidence assay window period W, c) the

duration since sexual debut, d) the HIV incidence rate in the

control group, e) the specificities and the sensitivity of the assay, f)

the duration of the intervention and g) the effect of the

intervention on HIV incidence rates.

Practical estimations. To assess the possibility of

estimating the intervention effect, and to calculate the BED

practical power when using a Poisson regression log-linear model

on empirical data, we first simulated sets of control and

intervention groups using the numerical values of the baseline

scenarios. We then analyzed the simulated samples using the

numerical values of the baseline scenario for the BED incidence

assay characteristics (specificities, sensitivity and window period).

This represented a theoretical situation where the characteristics

of the BED assay are perfectly known, which is not the case in

reality. To analyze the effect of these uncertainties, we analyzed

the simulated population with characteristics for the assay

different from those used to generate the samples. We also

assessed the effect of not including offsets or weights when

estimating the intervention effect and calculating the BED

practical power. Not including weights corresponds to not

correcting the data for misclassifications.

Programming. The program was written in R [15], and is

available upon request from the corresponding author. In

addition, we created a spreadsheet to calculate by simulation the

BED theoretical power to detect an expected effect of an

intervention when the following parameters are known: age at

onset of sexual activity, age range, HIV incidence rate in the

control group, expected effect of the intervention, duration of the

intervention, and lastly the window period, sensitivity, and

specificities of the BED assay. This spreadsheet is available upon

request from the corresponding author.

E Empirical example
We reanalysed the BED results obtained from data collected at

the last follow-up visit of the Orange Farm male circumcision trial

(ANRS-1265) [12,14]. The research protocol for this trial was

reviewed and approved by the University of the Witwatersrand

Human Research Ethics Committee (Medical) on February 22nd,

2002 (protocol study no. M020104). In this trial, male participants,

aged 18 to 24, were recruited from the general population of the

township of Orange Farm (South Africa) and followed up for 21

months. The recruitment, randomization between intervention

(male circumcision) and control groups, and follow-up were

conducted independently of the participants HIV status. Among

the 3274 participants recruited, 2949 were tested for HIV at the last

follow-up visit (21-month visit). Among them, 2752 remained HIV-

negative, 125 were HIV-positive at recruitment and 72 serocon-

verted during follow-up. Among the 197 HIV-positive samples at

the last follow-up visit, 195 BED results were obtained. This dataset

was analyzed using a mean reported age at first sexual intercourse of

16.7 years, assuming a) a constant HIV incidence rate and b) a

linear increase of the HIV incidence rate from a value of zero at age

16.7. The intention-to-treat effect of male circumcision was

calculated for various cut-off values and various values for the

sensitivity and specificities indicated above. The estimated effects

were qualitatively compared with the value obtained from classical

survival analysis, which was 0.40 (95% CI: 0.24–0.68).

Lastly, we conducted a sensitivity analysis by varying the

sensitivity and the specificities, in order to evaluate the impact of

these changes on the estimated effect of the intervention.

Results

BED theoretical power
The baseline scenarios for young men (scenario 1) and young

women (scenario 2) are detailed in Table 1. As shown in this table,

the BED theoretical power, obtained by simulations to detect a

significant effect, increases with increasing HIV incidence rate

(scenario 2), BED window period W (scenarios 3, 4 and 5), sample

size (scenario 6), and duration of the intervention (scenario 10).

The power decreases with increasing time from sexual debut

(scenarios 7 and 8), with decreasing intervention effect (scenario 9)

and with decreasing specificities and sensitivity of the assay

(scenarios 11 and 12). This table shows that the ratio between the

BED theoretical power and the cohort power is always high, equal

to 75% or more. Figure 1 shows the variation of the BED

theoretical power with the ratio of the HIV incidence rate to HIV

prevalence for the baseline scenarios. This power increases for

ratios varying from 0.1 to 0.4, and then stabilizes.

To obtain a power of 80%, with a BED window period of one

year and with the other values being those of scenario 1, the

sample size of each group should to be 670 for young women,

assuming an HIV incidence rate of 5% per year, and 1,650 for

young men, assuming an HIV incidence rate of 2.1% per year.

Practical estimations
Table 2 presents the results obtained when estimating the

intervention effect on simulated data using a log-linear Poisson

model. It shows that this estimation is always relatively close to the

real value. It also indicates that the cases where estimations are the

poorest are when a) the characteristics of the assay are not known

with precision (simulations 6 and 9) and b) the Poisson model is not

weighted (simulations 3 to 5).

In all other cases, this estimation ranged from 0.37 to 0.39 for a

real value of 0.40. Table 2 also shows that the BED practical power

was about 3/4 of the BED theoretical power for men and was about
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Table 1. BED theoretical power needed to obtain a statistically significant HIV incidence rate ratio among young people when
using BED incidence testing; results were obtained by simulations.

Scenario 1b 2c 3 4 5 6 7 8 9 10 11 12

Data

Sample size in each group 1500 1500 1500 1500 1500 2000 1500 1500 1500 1500 1500 1500

BED Incidence assay
window period (months)

6 6 9 12 15 6 6 6 6 6 6 6

Duration from sexual
debut (years)

6 6 6 6 6 6 9 12 6 6 6 6

HIV incidence rate in the
control group (% per year)

2.1 5.0 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1

Short-term specificity 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.80 0.75

Long-term specificity 0.96 0.96 0.94 0.91 0.89 0.96 0.96 0.96 0.96 0.96 0.90 0.85

Sensitivity 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.80 0.75

Duration of the
intervention (years)

2 2 2 2 2 2 2 2 2 4 2 2

Effect of the interventiona 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.5 0.4 0.4 0.4

Results

BED theoretical power 0.62 0.91 0.73 0.77 0.85 0.72 0.53 0.50 0.45 0.70 0.54 0.53

Cohort power 0.66 0.93 0.80 0.88 0.94 0.75 0.67 0.67 0.47 0.66 0.65 0.66

BED theoretical power/
Cohort power (%)

94 97 91 87 90 95 80 75 95 1.07 83 81

Incidence rate/Prevalence in
the control group (per year)

0.33 0.33 0.33 0.33 0.33 0.33 0.22 0.17 0.33 0.33 0.33 0.33

aFactor by which the incidence rate is multiplied in the intervention group in comparison with the control group.
bBaseline scenario for young men.
cBaseline scenario for young women.
doi:10.1371/journal.pone.0021149.t001

Figure 1. BED theoretical power as a function of the HIV incidence rate to HIV prevalence ratio. Results were obtained by simulations.
The figure represents the BED theoretical power among young men and women as a function of the HIV incidence rate to HIV prevalence ratio for
the baseline scenarios.
doi:10.1371/journal.pone.0021149.g001
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the same as the BED theoretical power for women. The average

weights k1 ranged from 0.44 to 0.83 among the intervention group

and from 0.61 to 0.93 among the control group.

To obtain a BED practical power equal to the cohort power

indicated in Table 1 for the baseline scenarios (0.66 and 0.93), the

sample size of each group had to be increased from 1,500 to 2,100

for men, and from 1,500 to 1,650 for women.

To obtain a BED practical power of 0.80 for the baseline

scenarios, with a BED window period W of one year and

corresponding values for the specificities and sensitivity, the sample

size of each group was calculated to be 1,540 for men and 600 for

women.

The calculations in the Text S1demonstrate that, in order to

keep the weights k1, which correct for misclassifications,

reasonably close to 1 (i.e., between 0.5 and 1), a) the time period

from the onset of sexual debut to the upper age limit should be

lower than 10 to 11 years and b) in the control group, the HIV

incidence rate to HIV prevalence ratio should be higher than 0.09

to 0.10 year21.

We generated datasets using the baseline scenarios but with a

HIV incidence rate linearly increasing from age a1 to a2. The slope

was selected in order to obtain the same number of HIV-positive

cases in the control group when the HIV incidence rate was

constant. We then analysed these datasets assuming a) a HIV

incidence rate constant with age and b) a HIV incidence rate

linearly increasing, as in the simulated data. In the first case, we

obtained an effect of 0.33 (95% CI: 0.13–0.83) and 0.31 (95%CI:

0.17–0.57). In the second case, the values were 0.39 (95%CI:

0.18–0.85) and 0.37 (95%CI: 0.22–0.62).

Empirical example
The results are presented in Table 3. The values obtained for

the effect of male circumcision on the HIV incidence rate, when

assuming that this rate is constant, were in reasonably good

Table 2. HIV incidence rate ratio and BED practical power when using log-linear Poisson regression to analyze simulated samples
of young people.

Simulation number 1 2 3 4 5 6 7 8 9 10 11

Scenario # used to
generate the sample

1 1 1 1 1 1 1 2 2 2 12

Values used to analyze the sample

Use of offset Yes No Yes Yes Yes Yes Yes Yes Yes Yes Yes

Weights for tested recenta k1 k1 1 k1 1 k1 k1 k1 k1 k1 k1

Weights for tested long-termb k2 k2 k2 0 0 k2 k2 k2 k2 k2 k2

BED Incidence assay
window period (months)

6 6 6 6 6 6 8 6 6 8 6

Short-term specificity 0.87 0.87 0.87 0.87 NA 0.80 0.87 0.87 0.80 0.87 0.75

Long-term specificity 0.96 0.96 0.96 0.96 NA 0.90 0.96 0.96 0.90 0.96 0.85

Sensitivity 0.87 0.87 0.87 0.87 NA 0.80 0.87 0.87 0.80 0.87 0.75

Results

Number of tested recent

Intervention 8 8 8 8 8 8 8 19 19 19 13

Control 17 17 17 17 17 17 17 42 42 41 24

Effect of the interventionc 0.39 0.39 0.44 0.39 0.44 0.35 0.40 0.37 0.34 0.39 0.38

95% CI: inferior limit 0.15 0.15 0.20 0.14 0.19 0.12 0.17 0.20 0.17 0.22 0.15

95% CI: superior limit 1.01 1.00 0.97 1.09 1.02 1.01 0.98 0.69 0.67 0.69 1.00

HIV incidence rate (% per year) 2.2 2.9 1.9 2.5 2.0 1.9 5.8 5.1 4.9 2.2

95% CI: inferior limit 1.3 NC 1.8 1.1 1.6 1.1 1.2 4.2 3.6 3.6 1.3

95% CI: superior limit 3.7 4.5 3.3 4.1 3.4 3.0 8.1 7.3 6.7 3.7

BED practical power 0.49 0.50 0.52 0.41 0.47 0.49 0.52 0.92 0.93 0.93 0.50

Average weights for tested recenta:

Intervention 0.66 0.66 1 0.65 1 0.46 0.72 0.65 0.46 0.72 0.33

Control 0.75 0.75 1 0.75 1 0.58 0.79 0.75 0.58 0.79 0.46

Average weights for tested long-termb:

Intervention 0.012 0.013 0.014 0 0 0.021 0.020 0.013 0.021 0.021 0.029

Control 0.024 0.024 0.024 0 0 0.039 0.036 0.025 0.039 0.038 0.052

BED practical/BED theoretical
powerd (%)

0.79 0.81 0.84 0.66 0.76 0.79 0.84 1.01 1.02 1.02 0.94

NC = not calculable NA = Not applicable CI = confidence interval.
a bWeights k1 and k2 introduced in the Poisson log-linear model for each group a among HIV-positive tested recent seroconverters and b among HIV-positive tested

long-term seroconverters.
cFactor by which the incidence rate is multiplied in the intervention group in comparison with the control group.
dThe BED theoretical power was obtained from Table 1 (0.62 for simulations 1 thru 7, 0.91 for simulations 8 thru 10, and 0.53 for simulation 11).
doi:10.1371/journal.pone.0021149.t002
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agreement with the values obtained from classical survival analysis.

The hypothesis of a constant HIV incidence rate is justified by the

linear variation of HIV prevalence with age ranging from 18 to 26,

as shown in Figure 2. HIV prevalence was zero for the age range

15 to 17. As shown in Table 3, the effect was statistically significant

for all of the four BED cut-off values.

When we did not correct for the sensitivity (i.e. Se = 1), we

obtained the following values for the effect of the intervention:

0.43, 0.38, 0.35 and 0.38, which are very close to the values

reported in Table 3.

When we did not correct for the short-term specificity (i.e.

r1 = 1), we obtained the values 0.41, 0.35, 0.33 and 0.39, which

are also very close to the values reported in Table 3.

When we did not correct for the long-term specificity (i.e.

r2 = 1), we obtained the values 0.52, 0.49, 0.48 and 0.50, which

are, in this case, underestimations of the effect of the intervention.

Figure 2. HIV prevalence by age obtained among uncircumcised men of the Orange Farm Community. This figure represents the HIV
prevalence by age, with 95% confidence intervals, obtained among a random sample of uncircumcised men of the Orange Farm (South Africa)
Community in 2007. A linear regression line has been added to the data.
doi:10.1371/journal.pone.0021149.g002

Table 3. Intention-to-treat effect of male circumcision estimated using BED incidence testing of blood samples obtained at the
last follow-up visit of the Orange Farm male circumcision trial.

Parameters

Cut-off 0.8 1.0 1.5 1.9

BED Incidence assay
window period (months)

6.5 8.1 12.1 15.4

Short-term specificity 0.87 0.87 0.87 0.87

Long-term specificity 0.96 0.94 0.91 0.89

Sensitivity 0.87 0.87 0.87 0.87

Shape of HIV incidence rate by age Constant Constant Constant Constant

Weights for tested recenta k1 k1 k1 k1

Weights for tested long-termb k2 k2 k2 k2

Results

Effect of the interventionc 0.42 0.36 0.34 0.37

95% CI 0.19–0.93 0.17–0.78 0.17–0.65 0.21–0.64

CI = confidence interval.
a bWeights k1 and k2 introduced in the Poisson log-linear model for each group a among HIV-positive tested recent seroconverters and b among HIV-positive tested

long-term seroconverters.
cFactor by which the incidence rate is multiplied in the intervention group in comparison with the control group.
doi:10.1371/journal.pone.0021149.t003
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When we did not correct for misclassifications (i.e. k1 = 1 and

k2 = 0, or Se = r1 =r2 = 1), we obtained 0.53 (95%CI: 0.29–0.97),

0.49 (95%CI: 0.28–0.87), 0.49 (95%CI: 0.30–0.80) and 0.52

(95%CI: 0.35–0.80), which are also, and not surprisingly,

underestimations of the effect of the intervention with, however,

a statistically significant effect.

When we decreased the BED window period by 20%, the

impact of the intervention was reduced by 0.6% to 1.9%. When

we decreased the sensitivity by 20%, the impact of the intervention

was changed by 22.1% to 4.2%. When we decreased the short-

term specificity by 20%, the impact of the intervention was

changed by 227% to 35%. When we decreased the long-term

specificity by 20%, the impact of the intervention was increased

from 4.4% to 5.3%.

Discussion

Using theoretical analyses and mathematical simulations based

on realistic scenarios, we investigated the performance of the BED

incidence assay when used among young people recruited for a

cross-sectional survey from high HIV incidence rate areas of sub-

Saharan Africa. We were able to demonstrate that BED incidence

testing a) has the ability to measure with substantial precision the

effect of an HIV intervention aiming to reduce the HIV incidence

rate and b) can lead to a statistical power close to the power

obtained in classical cohort studies conducted among samples of

the same size as the cross sectional survey and in which HIV-

negative people are followed-up over a period of time equal to the

BED window period.

An illustration of the use of BED incidence testing to assess

the effect of an intervention was provided in another study

published by some of the co-authors [12]. The study

demonstrated that the protective effect of male circumcision

could have been calculated using only blood samples collected

from participants at the last follow-up visit of the Orange Farm

male circumcision trial. This was shown using BED window

periods ranging from six to 15 months, despite the presence at

baseline of HIV-positive individuals who were followed-up

exactly as HIV-negative participants. In the present study, the

baseline scenario was based on data from the Orange Farm

trial, and it demonstrated an adequate power and a precise

estimation of the intervention effect. This is the reason why it

was possible to replicate the results of the Orange Farm trial.

However, the present study has a wider scope and its findings

can be applied to various situations where the population

consists of young people among whom HIV is predominantly

transmitted heterosexually.

Our results are explained by the fact that in sub-Saharan

African settings with high HIV incidence rates and where

transmission is predominantly heterosexual, young people have

been exposed to HIV for a short duration because of their recent

onset of sexual activity. Hence, the use of the BED incidence assay

is optimized because the ratio of HIV incidence rate with HIV

prevalence is high. This high ratio leads to a lower absolute

number of individuals falsely identified as recent seroconverters, in

comparison with a population with a lower ratio, such as

populations with wider age ranges. Another interest in studying

young people is that the fraction of HIV-positive individuals on

antiretroviral drugs or having low CD4 counts is lower than

among older age cohorts because HIV infection is on average

more recent. It ensues that young HIV positive people are more

likely to be true recent seroconverters, hence the proportion of

corrections for misclassifications due to these factors are lower

[16,17].

We found that a Poisson log-linear model, which is a classical

multivariate statistical technique, can be used to analyze individual

data obtained with BED incidence testing, and estimate with

precision the effect of an intervention aiming to reduce HIV

incidence rates. Such estimation was obtained by correcting for

misclassifications, although it appears that a precise knowledge of

the characteristics of the BED HIV incidence assay (sensitivity,

specificities and window period) is not critical. This finding should

lead to a wider use of these assays in HIV prevention research

conducted among young people of sub-Saharan African settings

with high HIV incidence rates. Moreover, such method has the

ability to take into account cofactors of HIV incidence which can

be included in the Poisson log-linear model. These cofactors may

be collected among, or reported by, participants when a blood

sample is also obtained. As such, the heterogeneity among

participants can be accounted for, as long as it is not hidden. In

addition, it is also possible to take into account propensity score

weights. This allows to control for the selection bias due to a non-

randomized intervention, when the risk behaviour of intervention

and control group participants is likely dissimilar. The two

approaches can even be combined into the so-called double

robust estimation [18].

By searching the literature, we found only one study having

used classical statistical methods to analyze risk factors of recent

HIV infections identified with BED incidence testing [19].

However, to analyze risk factors of recent HIV infections is not

the same as to use BED incidence testing to estimate HIV IRR. As

shown in our study, correcting the BED incidence assay results to

calculate HIV IRR leads to a better estimation of the intervention

effect. Our study provides a theoretical framework for this type of

estimation.

Our calculations demonstrate that sample sizes needed to

estimate HIV IRR among young people and achieve an adequate

statistical power can remain reasonably small. This result should

change the assumption that HIV incidence assays are not practical

because they require very large samples. Large samples may be

needed to provide a precise estimation of HIV incidence rates

among the general population [20].

Our theoretical and practical calculations of the estimated

intervention effect, statistical power and confidence interval are

general, but make the main assumption that the HIV incidence

rate is constant as a function of time and age, as it is customary in

this type of study [21]. To obtain simplified formulae, it was also

assumed that the product of the HIV incidence rate by the

duration since age at sexual debut is relatively small (i.e. no more

than 0.35). These assumptions are acceptable when studying

people from a limited age range, for a limited period of time, and

with a recent onset of sexual activity. This is why our study

concentrated on young people, even though our results are more

general, as discussed in section A6 of the Text S1, where we

considered an age range with a inferior limit higher than the age at

onset of sexual activity.

Another interest in using incidence assays among young people

is the possibility to increase the assay window period by increasing

the cut-off value. For the BED assay, the conventional cut-off

value is 0.80. However a literature search showed that this value

has no real scientific basis. The possibility, when analyzing data

from young people, to use higher cut-off values of up to 1.89,

corresponding to a BED window period of about 15 months, has

already been demonstrated in a recent study [12] and is consistent

with theoretical studies showing that BED estimates can reflect an

HIV incidence rate more than two years in the past [17]. A

systematic review of the BED incidence assay [22] found that they

could produce accurate estimates of HIV incidence rates, but that
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they were very sensitive to methodological and parameter choices.

In particular, it was recommended that locally validated

calibration parameters be used to compute incidence rates and

correct for misclassifications [22]. Accordingly, our results were

obtained with numerical values for the BED window period, the

cut-off values, the specificities and the sensitivity yielded from a

study conducted in Orange Farm among young men [12].

However, the mathematical expressions of our findings are

general. Their use requires knowledge of the BED window period

to correct for misclassifications, as well as the sensitivity and the

specificities of the assay. These characteristics depend on the cut-

off value used as well as the setting where the data are obtained.

We compared results obtained during a classical cohort studies

with those obtained using the BED assay, with a window period

equal in duration to the duration of the cohort studies follow-up

period. However, cohort studies may have follow-up periods

lasting longer than the window period. To compensate, the size of

the cross-sectional survey during which BED incidence data is

collected would have to be increased.

Vaccine, microbicide, pre-exposure prophylaxis or other

potential HIV prevention or intervention studies would benefit

from precise comparison of short-term incidence rates through the

estimation of IRR using cross-sectional surveys. This requires that

not all participants receive the intervention, otherwise no

comparison will be possible and no IRR could be calculated.

Cross-sectional HIV IRR measures would reduce the need to

recruit longitudinal cohorts which are costly, and may suffer from

recruitment bias.

Estimating the effect of an intervention by assessing the IRR is

important in HIV prevention research. This effect may be more

difficult to assess using longitudinal cohorts than cross-sectional

studies. The current male circumcision roll-out study in Orange

Farm (ANRS-12126), in which free medicalised male circumcision

is made available to the community [23], was established to

evaluate the effect of male circumcision on the HIV incidence rate

in real life circumstances. The results of our study show that this

effect may well be assessed by conducting a post-intervention

cross-sectional survey. One additional advantage is that cross-

sectional respondents are more likely to be representative of the

population. Such characteristics are difficult to obtain when

recruiting a cohort. Another example is Project Accept (National

Institute of Mental Health, HPTN 043) [24], a community-based

randomized trial providing community mobilization, mobile HIV

voluntary counseling and testing, and comprehensive post-test

supportive services. Measuring baseline HIV prevalence among

the participating communities might have diluted the effect of the

intervention, therefore the trial outcomes will be assessed using

HIV incidence testing, and comparing IRR between control and

intervention communities.

In conclusion, BED incidence testing may be employed to assess

the effect of prevention interventions conducted among young

people using cross-sectional data.
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