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Abstract

Combinatorial libraries of artificial zinc-finger transcription factors (ZF-TFs) provide a robust tool for inducing and
understanding various functional components of the cancer phenotype. Herein, we utilized combinatorial ZF-TF library
technology to better understand how breast cancer cells acquire resistance to fulvestrant, a clinically important anti-
endocrine therapeutic agent. From a diverse collection of nearly 400,000 different ZF-TFs, we isolated six ZF-TF library
members capable of inducing stable, long-term anti-endocrine drug-resistance in two independent estrogen receptor-
positive breast cancer cell lines. Comparative gene expression profile analysis of the six different ZF-TF-transduced breast
cancer cell lines revealed five distinct clusters of differentially expressed genes. One cluster was shared among all 6 ZF-TF-
transduced cell lines and therefore constituted a common fulvestrant-resistant gene expression signature. Pathway
enrichment-analysis of this common fulvestrant resistant signature also revealed significant overlap with gene sets
associated with an estrogen receptor-negative-like state and with gene sets associated with drug resistance to different
classes of breast cancer anti-endocrine therapeutic agents. Enrichment-analysis of the four remaining unique gene clusters
revealed overlap with myb-regulated genes. Finally, we also demonstrated that the common fulvestrant-resistant signature
is associated with poor prognosis by interrogating five independent, publicly available human breast cancer gene
expression datasets. Our results demonstrate that artificial ZF-TF libraries can be used successfully to induce stable drug-
resistance in human cancer cell lines and to identify a gene expression signature that is associated with a clinically relevant
drug-resistance phenotype.
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Introduction

Combinatorial libraries of artificial zinc-finger transcription

factors (ZF-TFs) provide a powerful tool for inducing and

understanding important cellular phenotypes [1,2]. Zinc fingers

are compact ,30 amino acid domains that can be engineered to

bind various three bp DNA ‘‘subsites’’ [3,4]. By ‘‘mixing and

matching’’ collections of individual zinc fingers with various pre-

selected DNA-binding specificities, large collections (or ‘‘librar-

ies’’) of multi-finger arrays, each predicted to bind a different

spectrum of target DNA sequences, can be easily assembled

[1,2]. These multi-finger arrays can in turn be fused to

transcriptional regulatory domains to create libraries of artificial

ZF-TFs capable of activating or repressing expression of specific

genes. Previous studies have shown that such libraries can be

screened to identify specific ZF-TFs capable of inducing

phenotypes of interest in bacteria, yeast, and mammalian cells

[1,2,5,6,7,8,9,10,11,12].

We sought to use combinatorial ZF-TF library technology to

induce resistance to fulvestrant, a clinically important anti-

endocrine therapeutic agent. In the United States, approximately

70% of all breast cancer patients are diagnosed with estrogen

receptor (ER)-positive breast cancer and anti-endocrine drug

resistance, whether inherent or acquired, occurs in 30% of all ER-

positive breast cancer patients [13,14]. We reasoned that

pertubation of molecular gene expression patterns in cells could

lead to anti-endocrine resistance and that identification of these

gene expression alterations could potentially lead to identification

of novel and more effective therapeutic markers and targets.

In this report, we describe the construction of a large ,400,000

member ZF-TF library and the identification of six library

members capable of inducing stable, long-term anti-endocrine
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drug-resistance in breast cancer cells. High-density microarray

analysis of differential gene expression patterns induced by these

six artificial transcriptional factors revealed a common set of 72

target genes (a common fulvestrant-resistant gene expression

signature) predicted to be involved in cellular pathways influenced

by different classes of anti-endocrine agents. Highlighting the

potential translational relevance of this approach, interrogation of

the common fulvestrant-resistant gene expression signature in

publicly available gene data sets demonstrated a positive

association with poor prognosis in breast cancer patients. Taken

together, our results demonstrate that artificial zinc finger

transcription libraries can be used to induce stable drug-resistance

in human cancer cell lines and to identify clinically relevant genes

associated with the resistance phenotype.

Results

Construction of a combinatorial ZF-TF Library
Individual zinc finger domains typically bind to approximately

3 bp of DNA [4,15]. These domains can be linked together into

longer arrays of three or more fingers capable of recognizing

longer DNA sequences (Figure 1A) [16,17,18]. Previous reports

have described collections of various naturally occurring and

engineered zinc finger domains with specificities for various three

bp DNA sites. Several groups have created artificial ZF-TF

libraries by randomly assembling combinations of individual zinc-

finger domains with pre-characterized DNA-binding specificities

into libraries of either three, four, or six-finger proteins [1,2]. Each

member of such a library has the potential to alter the expression

of a spectrum of different genes in a cell, particularly if fused to a

transcriptional regulatory domain (e.g.—an activation or a

repression domain) [1,2] Using 25 different zinc-finger domains

(Table 1), we used a ‘‘mix and match’’ approach to create a

combinatorial ZF-TF library consisting of as many as 390,625

(254) different four-finger proteins each fused to a NF -KB p65

activation domain encoded in a retroviral vector that can confer

puromycin-resistance (Figure 1B).

Identification of ZF-TFs that induced Fulvestrant-
Resistance in MCF7 Cells

We used the approach outlined in Figure 1C to identify

members of the ZF-TF library that were capable of inducing

resistance to fulvestrant in breast cancer cells. For these

experiments, we transduced MCF7-R73 cells, a monoclonal

MCF7 subline that is highly sensitive to fulvestrant-induced

cytocidal activity [19], with the ZF-TF activator library or with

control retrovirus encoding only the NF-KB p65 activation

domain. Both populations of cells were initially enriched for

transduced cells by selecting for growth in puromycin and then for

fulvestrant-resistant cells by selecting in the presence of 100 nM

fulvestrant. After six weeks of continuous treatment with

fulvestrant, hundreds of drug-resistant colonies emerged from

the population of cells infected with the ZF-TF activator library

(Figure 1D). By contrast, as expected, the control MCF7cells

transduced by the control NF-KB p65-only retrovirus underwent

massive cell death and therefore did not form drug-resistant

colonies.

DNA encoding ZF-TFs was rescued by PCR from the genomic

DNA of pooled fulvestrant-resistant cells. The sequences of the

individual ZF-TFs were determined and 46 unique ZF-TF clones

identified. These 46 unique ZF-TFs were re-cloned into the

retroviral vector and converted into clonal virus stocks that were

used to transduce MCF7-R73 cells. These 46 retrovirally

transduced cell populations were then challenged with fulvestrant

(Figure 1C). Compared with the control MCF7-R73 cells

transduced with the NF-KB p65-only retrovirus (hereafter referred

to as MCF-238 cells), the MCF7-R73 cells transduced with six of

the 46 unique ZF-TFs demonstrated survival and growth in the

presence of 100 nM fulvestrant (Figures 2A and B). The sequences

of the six ZF-TF arrays conferring fulvestrant resistance are

presented in Table 2. To test whether these six ZF-TFs could

induce fulvestrant-resistant in cells other than MCF7-R73, T47D

breast cancer cells, a second fulvestrant-sensitive ER+ human

breast cancer line, were individually transduced with each of the

six different ZF-TFs and challenged with fulvestrant. Similar to

what was observed with MCF7-R73 cells, the six ZF-TFs

conferred resistance to fulvestrant-induced growth inhibition in

T47D cells (Figure 2C). Consistent with its reported mechanism of

action, fulvestrant suppressed ER2alpha expression in all ZF-TF-

induced resistant sublines and the sensitive MCF7-238 control

subline (Figure S1). Given that fulvestrant suppressed ER2 alpha

expression to a level equal to or greater than that observed in the

control cells, it is unlikely that drug resistance was caused by

enhanced drug metabolism or active drug exclusion. In order to

assess the latter possibility, we performed drug sensitivity testing as

previously described [20] to 24 chemotherapeutic agents and

investigational compounds (Table S1) in three different ZF-TF-

transduced fulvestrant-resistant cell lines. Comparison of the

control MCF7-R73 cells to the three ZF-TF fulvestrant resistant

cell lines revealed no significant difference in the pattern of drug

resistance and sensitivity suggesting that the ZF-TFs are not

inducing a multi-drug resistance phenotype (Figure S2).

To rule out that selection in fulvestrant was required for the

phenotype of ZF-induced drug resistance, we transduced MCF7-

R73 cells with the six ZF-TFs, subjected the cells to 3 weeks of

puromycin selection, and then challenged the transduced cells with

100 nM fulvestrant. Despite the absence of selection in fulvestrant,

all six ZF-TFs again conferred fulvestrant resistance (Figure 2D).

To determine if the NF-KB p65 activation domain is required for

ZF-TF-induced fulvestrant resistance, MCF7-R73 cells were

transduced with retrovirus expressing only the ZF-TFs (i.e.-

without a fused p65 activation domain) and challenged with

fulvestrant. These transduced MCF7-R73 cells were all found to

be sensitive to fulvestrant-induced cell growth inhibition and cell

death (Figure 2E), demonstrating that the NF-KB p65 activation

domain is required for ZF-TF-induced fulvestrant resistance.

Gene Expression Profiling
To determine the transcriptional alterations associated with ZF-

TF-induced fulvestrant resistance, we performed comparative

gene expression profiling of each of the six ZF-TF-transduced

MCF7 cell lines relative to the control MCF7-238 cells.

Fulvestrant exposure induces massive cell death in our control

MCF7-238 cells. Thus, in order to avoid the confounding effects of

cell death-associated gene expression alterations, we performed

our expression profiling analysis using MCF7-238 cells and ZF-

TF-induced fulvestrant resistant cells grown in the absence of

fulvestrant for 3 days. Cluster analysis of the differential expression

profiles of the ZF-TF-infected cells and the control cells identified

a shared cluster of genes up-regulated by ZF-TF 7, 19 and 70

(Figure 3A, purple rectangle, henceforth gene cluster 1), and

distinctive gene expression patterns induced by ZF-TF 64, 83 and

115 (Figure 3A, black rectangles, henceforth gene clusters 2, 3 and

4, respectively). A gene cluster consistently up-regulated in all six

fulvestrant resistant cell lines was not identified. However, a 72-

gene cluster was consistently down-regulated in all six fulvestrant

resistant cell lines (Figure 3A, green rectangle, henceforth gene

Transcription Factor Induced Drug Resistance
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cluster 5), and this cluster constituted a common fulvestrant-

resistant gene expression signature (Table S2).

To gain additional insights into the biological processes in which

these various differentially expressed genes are involved, we

performed hypergeometric gene set enrichment analysis (GSEA) of

the different ZF-TF-induced gene set clusters using the BROAD

Institute MSigDB gene set database augmented with ESR1,

ERBB2 and proliferation coexpression modules [21,22], MYB

regulated genes [23] and a signature of long-term estrogen

deprivation [24]. Two prominent findings emerged from this

analysis. First, the shared cluster of up-regulated gene expression

induced by ZF-TF 7, 19 and 70 (cluster 1) and the unique gene

clusters (cluster 2, 3 and 4) induced by ZF-TF 64, 83 and 115,

respectively, show significant overlap with myb-regulated genes

(Tables S3, S4, S5, S6). Second, and most notable, gene set

enrichment analysis of the common fulvestrant resistant gene

expression signature (cluster 5) revealed significant overlap with

gene sets associated with estrogen receptor negative human breast

cancers, with estradiol responsiveness, and with anti-endocrine

drug resistance to tamoxifen [25,26,27], fulvestrant [26] and

aromatase inhibitors [25] in multiple breast cancer cell lines

including long-term estrogen-deprived (LTED) cells [24]. (Table

S7). Thus, the common fulvestrant-resistance gene expression

signature induced by six different ZF-TFs represents an estrogen

receptor-negative-like transcriptional state that is associated with

an anti-endocrine resistance phenotype.

We next sought to compare the patterns of gene expression

observed in our ZF-TF-induced fulvestrant resistant MCF7 cells

Table 1. Twenty-five individual zinc fingers used to construct the combinatorial ZF-TF library.

Zinc Finger Name Expected Target Subsite (59 to 39) Zinc Finger Amino Acid Sequence Reference

LZF01 GAV YKCKQCGKAFGCPSNLRRHGRTH Bae et al., 2003 [19]

LZF02 GAW YRCKYCDRSFSISSNLQRHVRNIH Bae et al., 2003 [19]

LZF03 GGA YKCGQCGKFYSQVSHLTRHQKIH Bae et al., 2003 [19]

LZF04 HGA YKCEECGKAFRQSSHLTTHKIIH Bae et al., 2003 [19]

LZF05 GAA FECKDCGKAFIQKSNLIRHQRTH Bae et al., 2003 [19]

LZF06 NAA YVCSKCGKAFTQSSNLTVHQKIH Bae et al., 2003 [19]

LZF07 GYA YKCPDCGKSFSQSSSLIRHQRTH Bae et al., 2003 [19]

LZF08 HGA YECHDCGKSFRQSTHLTQHRRIH Bae et al., 2003 [19]

LZF09 GHG YVCDVEGCTWKFARSDELNRHKKRH Bae et al., 2003 [19]

LZF10 NGG FQCKTCQRKFSRSDHLKTHTRTH Bae et al., 2003 [19]

LZF11 GGG YKCMECGKAFNRRSHLTRHQRIH Bae et al., 2003 [19]

LZF12 GAG YICRKCGRGFSRKSNLIRHQRTH Bae et al., 2003 [19]

LZF13 AAT YECDHCGKAFSVSSNLNVHRRIH Bae et al., 2003 [19]

LZF14 GTD, GCD YTCKQCGKAFSVSSSLRRHETTH Bae et al., 2003 [19]

LZF15 GCW YECNYCGKTFSVSSTLIRHQRIH Bae et al., 2003 [19]

LZF16 GTG FACPECPKRFMRSDALTRHIKTH Liu et al., 2002 [18]

LZF17 GGC FMCTWSYCGKRFTDRSHLARHKRTH Liu et al., 2002 [18]

LZF18 GCC FACPECPKRFMDRSDLTRHIKTH Liu et al., 2002 [18]

LZF19 AAG FACPECPKRFMRSDNLTQHIKTH Liu et al., 2002 [18]

LZF20 RTC YSCGICGKSFSDSSAKRRHCILH Bae et al., 2003 [19]

LZF21 GRA, MGA YVCRECGRGFRQHSHLVRHKRTH Bae et al., 2003 [19]

LZF22 MAA YMCSECGRGFSQKSNLIIHQRTH Bae et al., 2003 [19]

LZF23 VGA, GAA YECHDCGKSFRQSTHLTRHRRIH Bae et al., 2003 [19]

LZF24 GGW YRCEECGKAFRWPSNLTRHKRIH Bae et al., 2003 [19]

LZF25 NNN YACPVESCDRRFSRKWLLRLHIRIH Joung et al., 2000 [17]

The full amino acid sequence of each finger and the expected target subsite(s) bound by each finger are shown.
doi:10.1371/journal.pone.0021112.t001

Figure 1. Schematic representation of ZF-TF combinatorial library screening approach. (A) Four-ZF-TF protein and mode of DNA target
site recognition. Each finger recognizes 3-bp, and the four-ZF-TF can potentially recognize a 12-bp target. (B) Construction of randomized
combinatorial ZF-TF library. Twenty five DNA fragments each encoding a different ZF (colored spheres) are randomly ‘‘mixed and matched’’ to create
compound DNA segments that encode different four-finger combinations. The library of compound DNA segments is recombined to plasmid which
generates a library of artificial ZF_TF transcription factors in which the combinatorial zinc finger arrays are fused to the NF-KB p65 transcriptional
activation domain. (C) Drug resistance screening design. Retrovirions encoding the ZF-TF library are used to transduce MCF7-R73 cells. Each
transduced MCF7-R73 cell expresses a different ZF-TF that alters the expression of various target genes leading to phenotypic variation. Stably
transduced cells are selected for fulvestrant resistance, ZF-TFs conferring resistance are rescued by PCR, DNA encoding clonal ZF arrays are re-cloned
into a retroviral plasmid, retrovirus is produced, and MCF7-R73 cells transduced by retrovirus bearing individual ZF-TFs. (D) ZF-TF fulvestrant-resistant
cell colonies. MCF7-R73 cells were transduced with control or ZF-TF retrovirions, and exposed to 100 nM fulvestrant. Six weeks post-retroviral
transduction, surviving cells were fixed and stained with crystal violet.
doi:10.1371/journal.pone.0021112.g001
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Figure 2. Fulvestrant resistance induced by 6 different ZF-TFs. (A) Drug sensitivity of fulvestrant-selected MCF7 ZF-TF-transduced cells. MCF7
cells transduced with one of six different ZF-TF-expressing retroviruses selected first in puromycin (the transduction selection marker) and then in
fulvestrant for 1 month were grown in the absence of fulvestrant for 7 days and then challenged with 100 nM fulvestrant or vehicle (0.1% ethanol) for
21 days followed by crystal violet staining and visualization. Data are representative of triplicate experiments. (B and C) Growth curves of MCF7 and
T47D cells in the presence and absence of fulvestrant. Comparison of cell growth rates (cell number, mean +/2 SEM, n = 8; time in days as indicated)
of MCF7 and T47D cells stably transduced with control retrovirus or one of six different ZF-TF-expressing retroviruses (7, 19, 64, 70, 83 and 115) in the
presence (blue line) or absence (pink line) of fulvestrant. (D) Drug sensitivity of fulvestrant non-selected MCF7 ZF-TF cells. MCF7 cells transduced with
one of six different ZF-TF-expressing retroviruses and selected in puromycin for 1 month were grown in the absence of fulvestrant for 7 days and
then challenged with 100 nM fulvestrant or vehicle (0.1% ethanol) for 21 days followed by crystal violet staining and visualization. (E) Drug sensitivity
of MCF cells transduced with ZF-TFs lacking the NF-KB p65 activation domain. MCF7 cells infected with retroviruses encoding ZF-TFs (7,19, 64, 70, 83
and 115) lacking the NF-KB p65 activation domain were selected in puromycin for 1 month and then challenged with 100 nM fulvestrant or vehicle
(0.1% ethanol) for 21 days followed by crystal violet staining for visualization.
doi:10.1371/journal.pone.0021112.g002
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with those found in fulvestrant-resistant MCF-7 progenitor cells

previously identified by another group [19]. These fulvestrant-

resistant clones isolated by Coser et al. represent rare, pre-existing

cells from the heterogeneous mixture of cells found in the MCF7

cell line [19]. Several of the gene clusters (clusters 1, 3 and 4) that

were up-regulated by the ZF-TFs were also selectively up-

regulated in some of the naturally selected pre-existing fulvestrant

resistant cells [19] (Figure 3 B, black and purple rectangles). ZF-

TF 64 was associated with a unique set of upregulated genes

(cluster 2), not observed by Coser et al. in any of their previously

published fulvestrant-resistant clones. However, the common

fulvestrant-resistant gene expression signature (cluster 5) was also

observed in the fulvestrant-resistant cells identified by Coser et al.

(Fig. 3B, green rectangle). Thus, taken together, these results

confirm previous findings by Coser et al. and, also provide

evidence for the existence of alternative molecular pathways

associated with fulvestrant resistance.

To determine the potential clinical relevance of our approach,

we assessed whether the common fulvestrant-resistant gene

expression signature (cluster 5) might have prognostic value for

patients with breast cancer. We hypothesized that a drug

resistance phenotype would be associated with a more aggressive

clinical course and thus its gene expression signature would

correlate with poor prognosis. To test this hypothesis, we formed a

‘‘fulvestrant-resistant metagene’’ signature by averaging the

expression of the 72 genes (cluster 5) that constitute the common

fulvestrant resistance gene expression signature, and tested this

metagene in five independent previously published human breast

cancer data sets by Wang et al. (286 patients) [28], van de Vijver et

al. (295 patients) [29], Chin et al. (130 patients) [30], Miller et al.

(251 patients) [31] and Sotiriou et al. (189 patients) [32]. In four of

five data sets, fulvestrant resistant-metagene values (i.e. tumors that

express the fulvestrant resistance gene expression signature)

correlated with poor prognosis, significantly so in two of the data

sets (Figure 4). These clinical correlation data support the notion

that our ZF-TF-based approach can be used to develop

biomarkers with potential clinical relevance.

Discussion

Previous advances in the clinical treatment of breast cancer

have been strongly influenced by data from in vitro-based

approaches in which drug-resistant cells emerge under selective

drug pressure [33,34,35]. In this study, we undertook a different

approach in which we identified six members of a combinatorial

zinc finger transcription factor library capable of inducing stable

anti-endocrine drug resistance in a clonal breast cancer cell line.

Our results stand in contrast to other recent studies in which in

vitro-based drug resistance in breast cancer cells have arisen by the

selection of pre-existing drug-resistant progenitor cells [19].

Differential gene expression analysis identified a common set of

Table 2. Composition of Zinc Finger-Transcription Factor
Arrays Conferring Fulvestrant Resistance.

ZF-TF clone # Finger 1 Finger 2 Finger 3 Finger 4

7 LZF15 LZF23 LZF10 LZF20

19 LZF10 LZF02 LZF18 LZF12

64 LZF08 LZF25 LZF11 LZF23

70 LZF12 LZF03 LZF04 LZF21

83 LZF10 LZF25 LZF19 LZF23

115 LZF13 LZF14 LZF13 LZF23

Full details and sequences of the individual fingers shown for each ZF-TF are
provided in Table 1.
doi:10.1371/journal.pone.0021112.t002

Figure 3. Clustering of expression profiles from ZF-TF-induced fulvestrant resistant cells. (A) MCF7 cells transduced with ZF-TF-encoding
retrovirus or a control virus. Green box identifies a cluster of 72 genes that are consistently down-regulated by ZF-TF expression- these genes
constitute the common fulvestrant-resistant gene expression signature. Black and purple boxes illustrate that gene clusters that are up-regulated by
subsets of the six different ZF-TFs. Data represent gene expression profiles from replicate retroviral infections and microarray hybridizations. (B) Pre-
existing fulvestrant resistant clones and control MCF-7 cells from Coser et al [19]. Genes are arranged in the same order as in (A). Green box shows
that genes down-regulated by all the ZF-TF infections were also down-regulated in the pre-existing fulvestrant resistant sub-population. Black and
purple boxes show that some of the gene clusters that were up-regulated by various ZF-TFs were also up-regulated in either two or three (F40-6-V,
F40-7-V and F100-16-V) of the four previously described pre-existing fulvestrant resistant subpopulations in the MCF7 cell line [19].
doi:10.1371/journal.pone.0021112.g003
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genes that were all down-regulated by the six artificial ZF-TFs.

Because our ZF-TFs are expected to be activators of gene

expression, we hypothesize that repression of these common genes

is indirect, presumably through activation of one or more

transcriptional repressor proteins.

Interestingly, gene set enrichment analysis of the common

fulvestrant resistance gene expression signature (cluster 5)

revealed that it is composed of genes whose expression is

modulated by estradiol [27,36,37,38]. Because all of these genes

were decreased in their expression, the ZF-TF-induced fulves-

trant resistance we observed is likely to be associated with the

generation of an ‘‘estrogen receptor-negative’’ cell state. These

findings are consistent with that of Creighton et al. in which

tamoxifen-resistant and fulvestrant resistant MCF7-HER2-over-

expressing xenografts shut down classic estrogen receptor gene

expression signaling pathways [26]. Together these observations

are reminiscent of the clinical setting in which anti-estrogen

resistant human breast cancers behave in an aggressive estrogen-

independent manner [14]. In addition, our GSEA results

confirmed the relevance our ZF-TF approach, as our common

fulvestrant resistance gene expression signature demonstrated

highly significant overlap with multiple previously described

breast cancer anti-hormonal resistance gene sets. Specifically our

signature demonstrated significant overlap with those observed

for tamoxifen, fulvestrant and aromatase inhibitor resistance in

multiple breast cancer cell lines including long term estrogen

deprived (LTED) cells [24,25,26,27] . Whether any single genes

or subset of genes within these overlapping gene sets serves as a

‘‘passenger’’ or ‘‘driver’’ of anti-hormonal resistance remains to

be determined.

In addition, our gene set enrichment analysis also identified

four unique myb-regulated gene sets in the ZF-TF-induced

fulvestrant resistant cells. Intriguingly, c-myb is expressed in a

high proportion of ER-positive breast cancers [39] and plays a

pro-proliferative role in ER-positive, but not ER-negative breast

cancer [40]. Expression of c-myb is regulated by estrogen and

antiestrogens, and is altered in long-term estrogen deprived

(LTED) breast cancer cell line model of estrogen-independent

growth [41]. Our analyses identified four unique and indepen-

dent myb-regulated gene sets, rather than a single overlapping

set, a result similar to that observed by Lei et al. [23]. More

specifically, expression of myb proteins in different cell types

resulted in the activation of unique and nearly non-overlapping

sets of genes in each cellular context. Furthermore, deletion and

domain swap experiments resulted in the identification of unique

positive and negative elements in myb that regulate different

cassettes of gene expression [23]. Thus, we hypothesize that the

mostly non-overlapping sets of myb-regulated genes are up-

regulated by the different ZF-TFs in various contexts. Further-

more, taken together, our data suggest that c-myb’s potential role

in anti-estrogen resistance extends beyond the mere expression of

c-myb itself and is likely influenced by other as yet to be defined

factors, which may serve as interesting avenues for future

research.

Figure 4. Prediction of breast cancer outcome using a fulvestrant-resistant gene signature identified by our ZF-TF-based approach.
Patients were stratified using a metagene that was formed by averaging the expression of the 72 genes constituting the common signature for the
fulvestrant resistance phenotype (i.e., the genes of cluster 5 in Fig. 3A). Tumors with metagene values below the median were defined as the
‘‘fulvestrant-resistant metagene’’ and the others as the ‘‘fulvestrant-sensitive metagene.’’ Kaplan-Meier curves for distant metastasis-free survival or
death-from-relapse-free survival using the metagene are based on clinical data described by (A) Wang et al., N = 286 [28], (B) van de Vijver et al.,
N = 295 [29], (C) Chin et al., N = 130 [30], (D) Miller et al., N = 251 [31] and (E) Sotiriou et al., N = 189 [32]. p-values are one-sided.
doi:10.1371/journal.pone.0021112.g004
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Our results provide another important proof-of-principle that

ZF-TF library screening can be used to identify genes associated

with specific phenotypes of interest. One of the strengths of the

ZF-TF approach is that each member of the library has the

potential to regulate the expression of dozens to hundreds of genes

in a cell. This promiscuity, seen in our gene expression analysis, is

not unexpected given the frequency with which any 9 to 12 bp site

(the length of DNA that will likely be bound by a four-finger

protein) will occur just by chance in random sequence and stands

in contrast to other RNAi or cDNA overexpression libraries where

individual members of the library are expected to be specific in

their effects. We speculate that this ability of a single ZF-TF to

regulate multiple genes might provide an advantage for inducing

complex phenotypes that may require the alteration of multiple

cellular pathways. Earlier studies have suggested that differential

gene expression analysis of multiple ZF-TFs can help to define

genes with altered expression associated with an induced

phenotype [7]. Our study includes the largest number of ZF-TFs

that have been profiled for a single induced phenotype and lend

important additional support to the concept that genes responsible

for phenotypes can be deduced despite the relative promiscuity of

the individual ZF-TFs.

Although the combinatorial ZF-TF library we constructed for

this report consists of zinc finger arrays linked to a transcriptional

activation domain, additional libraries consisting of fusions to

other functional domains could also be easily constructed. Building

of such libraries can be easily performed because our library is

encoded on a plasmid in which the coding sequences of the zinc

fingers are flanked by Gateway recombination sites. As we did for

the experiments of this study, the zinc finger library coding

sequences can therefore be readily transferred to any appropriate

Gateway Destination vector and could be easily fused to various

other functional domains (e.g.—transcriptional repression do-

mains, histone modification domains, or DNA methyltransferases).

We also note that the Gateway cloning sites in our library vectors

greatly simplified rescue of zinc finger coding sequences from

genomic DNA of drug-resistant cells and subsequent regeneration

of viral vectors.

In summary, our results provide another important proof-of-

principle for the use of combinatorial ZF-TF libraries to induce

and to study important cellular phenotypes. The features of our

combinatorial library should facilitate construction of additional

ZF fusion protein libraries and simplify the rescue of ZF fusions

from cells exhibiting the desired phenotype. Because members of

the combinatorial library are predicted to have diverse effects on a

cell and because zinc fingers are known to bind DNA in cell types

ranging from humans to bacteria, we envision that this broadly

applicable tool will play an important role in functional genomics

and bioengineering for a wide variety of different organisms. The

results from this study underscore the clinical relevance of our

approach and serve as a relevant model for studying cancer drug

resistance.

Materials and Methods

Cell Culture and Reagents
MCF7-R73 cells, a clonal isolate derived from the MCF7 cell

line were kindly provided by Dr. Toshi Shioda (MGH, Charles-

town, MA) and maintained in a xenoestrogen controlled

environment as described [19], and the T47D and 293T cells

were obtained from American Type Culture Collection (Manassas,

VA) and maintained as described. Fulvestrant was purchased from

Selleck Chemicals LLC (Houston, TX). Puromycin was purchased

from Sigma-Aldrich (St.Louis, MO).

ZF-TF Retroviral Library Production and Drug Resistance
Screening

293T cells were seeded at 56105 cells per 10 cm culture dish,

transfected with 3.2 micrograms of ZT-TF p65 activator library

DNA and 2.4 micrograms and 0.8 micrograms of PMD-MLV

and PMD-G plasmid DNA using Fugene 6 (Roche Applied

Science, Indianapolis IN) according to the manufacture’s protocol

and retroviral supernatant harvested 48 hrs later. MCF7-R73 cells

(66105 per 10 cm plate) were infected with 1.336105 ZF-TF

retrovirions in media containing polybrene. Two days post-

infection the cells were exposed to puromycin (0.4 mg/ml), and

three days later were subjected to continuous combined puromy-

cin and fulvestrant (100 nM) selection for an additional 42 days.

Retroviral DNA was recovered by PCR, subcloned into the

pDONOR plasmid using Gateway technology (Invitrogen), and

subject to DNA sequencing that revealed 46 unique ZF-TF arrays.

The 46 ZF-TFs were re-cloned into the retroviral destination

plasmid using Gateway technology, 46 ZF-TF retroviral superna-

tants generated, and MCF-R73 cells infected and subjected to

puromycin and fulvestrant selection. Six unique ZF-TFs conferred

drug resistance in the presence of continuous fulvestrant exposure.

A control MCF7 cell line (MCF7-R238) was generated by

infecting MCF7-R73 cells with a retrovirus bearing the p65

activation domain only. T47D cells were infected with the six

unique ZF-TF bearing retroviruses and subjected to fulvestrant

exposure as described for the MCF7 cells.

Growth Assays and Crystal Violet Staining
ZF-TF infected MCF7 and T47D cells, and corresponding

control cells were seeded at 1 or 26103 cells per 96-well plate and

grown at 37uC in a humidified incubator containing 5% CO2 in the

presence of puromycin (0.4 micrograms/ml) only and puromycin

plus 100 nM fulvestrant for 10–15 days. At the designated time

points, cells were washed by PBS, fixed with 4% formaldehyde in

PBS for 20 minutes, washed four times with distilled water, and

stained with the Syto 60 (Invitrogen) nuclear stain for 45 minutes in

a dark room. Syto 60 staining was measured with an Odyssey (LI-

COR) 96-well plate reader, and values normalized as % control at 0

day point in puromycin (0.4 micrograms/ml) only treated cells and

puromycin plus 100 nM fulvestrant treated cells. The results were

expressed as means + standard errors for 8 replicate determinations

for each experiment. For crystal violet staining assays 16105 cells

were seeded in each well of 6 well plate, treated with puromycin

(0.4 micrograms/ml) only or puromycin in combination with

100 nM fulvestrant for 3 weeks (or no fulvestrant was treated for 3

weeks, washed in PBS, fixed with 4% formaldehyde in PBS, and

stained with 0.2% crystal violet in 10% ethanol. Stained cells were

washed multiple times with distilled water, dried and images

captured.

Gene Expression Profiling
Transcriptional profiling was performed using Affymetrix

U133-plus 2.0 microarrays as previously described [42]. Control

and ZF-TF-infected MCF7 cells were profiled from two

independent infections and the profiling was performed in four

batches. The MAS5 algorithm was used to produce non-log-

transformed expression values such that the 2% trimmed mean of

the expression values for each sample was 100. The expression

values were corrected for batch effect on a per-probe-set basis as

follows. For each batch N other than the first, we added to the

expression values of batch N the difference between the average

expression value on the first batch and the average expression

value on batch N. All microarray data are MIAME compliant and
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the raw data has been deposited in the NCBI Gene Expression

Omnibus and are accessible [GEO: GSE27444].

Clustering Analysis
The probe-sets with the top 2,500 standard deviations in

expression value were retained and the others discarded. The

resulting matrix was median polished and then each row was scaled

to have mean 0 and standard deviation 1. The resulting matrix was

clustered using average-linkage agglomerative hierarchical cluster-

ing with distance given by one minus the correlation coefficient.

From the pre-existing fulvestrant resistant sub-population and

control data the same 2,500 probe-sets were retained and the rest

discarded. The resulting matrix was median polished and then each

row was scaled to have mean 0 and standard deviation 1.

Hypergeometric Gene Set Enrichment Analysis
A gene-set database was formed by augmenting version 3.0 of the

Broad Institute’s MSigDB gene set database [21] with the six gene

sets found by Wirapati, et. al. [22], to be either correlated or anti-

correlated with ESR1, ERBB2 and AURKA, and with the myb-

regulated genes defined in the supplementary data of Lei

et al. [23] and with the 99 gene LTED signature defined in

supplementary table S4 of Miller et al. [24]. For each gene cluster in

Fig. 3A, we did the following. For each gene-set in the gene-set data

base, a hypergeometric test was performed to determine whether

the intersection of the gene-set with the genes in the gene cluster in

Fig. 3A was larger than would be expected by chance had both been

drawn at random from all the genes on the Affymetrix U133-plus

2.0 microarray. The resulting p-values were adjusted by the Holm

method to control family-wise error rate (FWER).

Kaplan-Meier Analysis
A metagene was formed by averaging the expression of the 72

genes that constituted a common signature for the fulvestrant

resistance phenotype (i.e., the genes of cluster 5 in Fig. 3A).

Tumors with metagene values below the median were defined to

be ‘‘fulvestrant- resistant’’ and the others ‘‘fulvestrant sensitive.’’

Log-rank test was used to test the hypothesis that fulvestrant-

resistant metagene tumors would have worse survival than

fulvestrant-sensitive metagene tumors. If distant metastasis-free

survival data was available for a particular data set, it was utilized;

otherwise death-from-relapse-free survival data was used. P-values

are one-sided.

Supporting Information

Figure S1 Expression of ER2alpha in the ZF-TF-trans-
duced fulvestrant resistant cells. Control-transduced (R238)

and ZF-TF transduced fulvestrant resistant cells (F7, 19, 64, 70, 83

and 115) were exposed to vehicle or fulvestrant (100 nM) for 6 days.

Cells were lysed in RIPA buffer containing protease inhibitor, and

100 micrograms of each lysate was loaded onto a 10% SDS-PAGE

gel and subjected to Western blotting as previously described [43]

using ER-alpha and beta-actin antibodies (Santa Cruz).

(TIF)

Figure S2 Drug Sensitivity of ZF-TF-transduced fulves-
trant resistant cells. Control MCF7 (R238 cells) and ZF-TF

fulvestrant resistant (F7, 19, 64, 70, 83 and 115) cells (56103) were

exposed to vehicle or 20 uM of multiple selective target inhibitors

(see supplemental Table 1) for 72 hrs as previously described. Cell

growth/viability was quantitated by fluorescent nucleic acid

staining of fixed cells using Syto60 (Molecular probes) and a

SpectraMax M5 plate reader. Each bar represents signal intensity

of the treated cells relative to the non-treated cells, and drug

sensitivity is calculated as the fraction of viable treated-cells

relative to untreated-cells within each cell type. A single and

double asterisk represents significant (p,0.05) drug sensitivity in

which the value of signal intensity of treated cells relative to that of

non-treated cells is 0.5–0.75 and 0.2–0.5, respectively; pink-

colored bar represents similar drug sensitivity pattern to the

parental cell line, R73. The frequency of values falling in each

group from different cell lines were tested against the frequency of

values expected in each group from the same cell lines by Chi

Square analysis; differences in drug sensitivity between the control

cells (R73) and the ZF-TF transduced cells (F11, F19 and F64)

were not statistically significant.

(TIF)

Table S1 Chemotherapeutic agents and investigational
compounds used in the drug sensitivity screen.
(XLS)

Table S2 Genes (72) constituting the common fulves-
trant-resistant gene expression signature.
(XLS)

Table S3 Gene Sets enriched in ZF-TF 7, 19, and 70-
induced fulvestrant resistant cells (Gene Cluster 1: 230
genes).
(XLS)

Table S4 Gene Sets enriched in ZF-TF 64-induced
fulvestrant resistant cells (Gene Cluster 2: 225 genes).
(XLS)

Table S5 Gene Sets enriched in ZF-TF 83-induced
fulvestrant resistant cells (Gene Cluster 3: 135 genes).
(XLS)

Table S6 Gene Sets enriched in ZF-TF 115-induced
fulvestrant resistant cells (Gene Cluster 4: 123 genes).
(XLS)

Table S7 Gene Sets enriched in all ZF-TF-induced
fulvestrant resistant cells (Gene Cluster 5: 72 genes).
(XLS)
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