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Abstract

Fungal infestation on wheat is an increasingly grave nutritional problem in many countries worldwide. Fusarium species are
especially harmful pathogens due to their toxic metabolites. In this work we studied volatile compounds released by F.
cerealis, F. graminearum, F. culmorum and F. redolens using SPME-GC/MS. By using an electronic nose we were able to
differentiate between infected and non-infected wheat grains in the post-harvest chain. Our electronic nose was capable of
distinguishing between four wheat Fusaria species with an accuracy higher than 80%.
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Introduction

Fusarium species, F. graminearum and F. culmorum in particluar, are

widespread pathogens in all cereal growing areas worldwide and

one of the most important genera of plant pathogenic fungi on

earth [1,2]. Toxic metabolites, especially the mycotoxin deox-

ynivalenol (DON, Vomitoxin) and zearalenone (ZEA) are

produced from these genera [3].

In 2001 the WHO/FAO carried out a world-wide study

comprising Argentina, Brazil, Canada, China, Finland, Germany,

Italy, the Netherlands, Norway, Sweden, the United Kingdom,

Uruguay and the USA. It was estimated therein that, on the

average, 57% of the wheat samples analyzed (11.444) contained

deoxynivalenol (DON) [4]. Results from random analysis in

Germany indicate that only 29% of all cereal-based products are

devoid of Fusarium-toxins [5]. The mycotoxin thus appears to

spread to food products becoming a potential and presumably

serious health risk to humans [6]. Thus, the FAO has issued

guidelines and regulatory limits for Fusarium mycotoxins [7].

As a consequence, there is an absolute need for early and readily

applicable methods to detect Fusarium-infected grain and to

distinguish between relevant and harmless species. So far Fusarium

metabolites have been detected and analyzed using GC-MS [8],

LC-UV or LC-MS [9], TLC [10], fluorescence immunoassays

[11], NIRS [12], HPLC-MS [13], ELISA [14], whereas whole

fungi were detected using ELISA or PCR techniques [15–17].

While some of these approaches are able to detect specific species,

they commonly lack quantitative analysis [18]. Others do not

allow differentiating between different Fusarium species (ELISA)

[17]. Quantitative PCR turned out to be the most precise method,

albeit expensive and time-consuming [17]. However, all of the

methods used so far are laboratory–based, and none of them

allows the on-line detection and quantification, possibly in the

field.

Fusaria have been shown to emanate a number of volatile

compounds, specifically carbonyls, hydrocarbons, ketones,

terpenes and complex mixtures of alcohols [19–24]. While

these studies suggested a number of relevant compounds, none

of them turned out to be a specific marker for any of the

Fusaria. It thus seems to be the pattern of chemicals that is

characteristic for any of the species. In the laboratory, such

patterns would commonly be analyzed using standard analytical

equipment, e.g., gas chromatography–mass spectrometry (GC–

MS) [25]. A similar objective can be obtained by using an

electronic nose [26], i.e., an array of solid-state sensors that are

non-selectively sensitive to the relevant chemicals and the

responses of which reflect the chemical information contained in

the sample. Note that this detection scheme is in many respects

similar to natural olfaction where hundreds of different

receptors allow to distinguish among tens of thousands of

different odors [27]. Electronic noses have been applied in

different fields providing useful identification and classification

of samples [28]. The identification of contaminated grains was

attempted by several groups. These studies were based on

various sensor technologies such as chemosensitive field effect

transistors [29], conducting polymers [30], metal oxide

semiconductors [31] and quartz microbalances [32].

To differentiate on-line between whole, dry wheat grains that

were differentially contaminated by four Fusarium species, we here

used an electronic nose based on an array of metalloporphyrin-

coated quartz microbalances. The discrimination properties of this

instrument were demonstrated in several applications to study food
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processes [33] and lung cancer diagnosis from breath analysis and

medical diagnosis [34].

Materials and Methods

Samples
Grains from soft wheat (cv Isengrain, harvest season 2009,

Germany) were used. The seeds were water-saturated for 24 hours

to ensure rehydration and then autoclaved twice for 15 min at

121uC. For each sample 100 g sterilized kernels were inoculated

with ten 0.560.5 cm2 slices of fungal mycelia derived from

cultures grown on potato dextrose agar (PDA). Incubation was

carried out for 5, 10 and 15 days at a relative humidity of 70% and

at 27uC. Infected samples were dried to 13% moisture content and

stored at 4uC to block further fungal growing. We used the fungus

species Fusarium graminearum, Fusarium culmorum, Fusarium cerealis and

Fusarium redolens. Sterilized, non-infected kernels incubated over 0,

5, 10 or 15 days as well as an untreated probe served as controls.

The number of samples was chosen in respect of the sample

variability artificially induced by inoculating microorganisms in

homogeneous grain samples. Thus, the influence of the natural

variability among grains, e.g., due to species variability and crop

production is not taken into account here.

Headspace generation
For both GC/MS and Enose measurements, grain samples (3 g)

were enclosed in Teflon-sealed vials. Prior to the measurements,

the samples were kept in a thermal bath for 30 min at constant

temperature. The Enose experiments were carried out at a sample

temperature of 30uC. GC/MS analyses were done at 30uC and

70uC. In addition, an empty vial was added as a reference air

source.

Electronic Nose analysis
The core of the electronic nose used in this paper consisted of an

array of eight quartz microbalances (QMB), each being a quartz

crystal resonator with mass-dependent eigenfrequency f. Slight

mass changes (Dm) of the quartz surface result in frequency

changes (Df) of the electrical output signal of the oscillator circuit.

The quantities Dm and Df are linearly related to each other in the

low-perturbation regime [35]. Our Enose consisted of QMB with

a fundamental frequency of 20 MHz and a mass sensitivity in the

order of a few nanograms. QMBs can be turned into chemical

sensors by coating their surfaces with layers of chemically sensitive

materials. In this work we coated the QMBs with layers of

metalloporphyrins. Regarding their sensing properties metallopor-

phyrins host several interaction mechanisms from weak and non-

selective Van der Waals forces to the more energetic and specific

coordination of the central metal atom. The balance between

these forces can be controlled by the nature of the porphyrins’

peripheral group and the metal atom, so that metalloporphyrins

with different sensitivities for volatile compounds can be obtained

[36] and assembled to sensor arrays for electronic noses [37].

For the experiments of this paper, the grain samples were closed

in a sealed vial with an inlet and an outlet. Vials were kept at a

constant temperature in order to allow for a stable headspace

composition. The headspace was extracted by a flow of ambient

air, filtered through a CaCO3 bed. The flow was maintained

constant at 7.5 ml/min by a peristaltic pump of the electronic

nose. The filtered ambient air was also used to clean the sensors

and to establish the reference signal. Sensor signals were calculated

as the signal frequency shift, Df = fs2fa, with fs and fa being

obtained from the sample headspace and filtered ambient air.

Sensors were exposed to a sample for 60 s, followed by a 5 min

Figure 1. Enose results indicating different Fusarium species and infection levels. A: Scores plot of the first two latent variables, showing
groups of F. culmorum, F. graminearum, F. redolens and F. cerealis. B: Discrimination between high- (15 days incubation) and low -infected (5 to 10
days incubation) samples of Fusarium. The diagram shows the scores of the first two out of 3 latent variables.
doi:10.1371/journal.pone.0021026.g001

Table 1. Confusion matrix of true vs. estimated values of
species classification.

True value

Estimated
value

F. culmorum F. graminearum F. redolens F. cerealis

F. culmorum 9 0 0 0

F. graminearum 0 5 0 1

F. redolens 0 0 8 1

F. cerealis 0 0 0 8

Classification was done by PLS-DA.
doi:10.1371/journal.pone.0021026.t001

Electronic Nose Detection of Fusaria on Wheat
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cleaning and regeneration phase with reference air. All measure-

ments were repeated three times.

GC/MS analysis
GC/MS analysis were performed using a gas chromatograph

(QP2010, Shimadzu, Japan) connected to a mass spectrometer. An

EQUITY-5 capillary column (l, 30 m; i.d., 0.25 mm; 0.25 mm)

was used in splitless mode with a programmed temperature time

course (starting at 40uC and increasing, up to 250uC, at a rate of

10uC /min and beyond at a rate of 20uC /min, up to 300uC,

followed by a hold time of 2 min). Helium (p = 14.5 kPa) was used

as carrier gas with a total flow of 5.4 ml/min and a column flow of

0.59 ml/min. The mass spectrometer worked at an ionization

energy of 70 eV and a mass range from 40 to 300 m/z.

Headspace collection was performed by solid phase microex-

traction (SPME) with the carboxen/polydimethylsiloxane (CAR-

PDMS, 75 mm) fiber (Supelco). After exposure of the fiber to the

pre-heated headspace of the grains for 30 min, its contents were

injected into the GC for 1 min at an injection temperature of

250uC.

Compound identification was done using the NIST library.

Data analysis
The QMB frequency differences, Df, between the steady-state

reference (air) and the recording phase was used as feature vector.

The classification of the different samples was based on a

discriminant analysis. We used the partial least squares discrim-

inant analysis (PLS-DA), which is an algorithm originally

developed for quantitative regression [38]. Before the application

of PLS-DA, Enose data were properly auto-scaled (zero mean,

unitary variance). Discrimination models have been cross-

validated by the leave-one-out method in order to estimate the

classification performance. Data evaluation was done using

Matlab (Mathworks).

Results

Species identification
As a first step we investigated the capability of the Enose to

differentiate between Fusarium strains. The PLS-DA model used

for this discrimination in the infected samples covered five latent

variables, the first two of which are shown in Figure 1A. The

smallest variance within a group occured in the samples of F.

cerealis. Samples of this group were overlapping with the highly

contaminated samples of F. redolens and F. culmorum. The widest

distribution was found in the samples of F. graminearum showing

a partial overlap with F. culmorum and F. cerealis. It can be

noticed that the gas chromatographic profiles from F. redolens

and F. culmorum are similar. However, there was a large

interclass variance detectable. Thus, the model has a satisfactory

capability of differentiating different classes, as confirmed by the

confusion matrix (Table 1). In the cross-validation F. culmorum

and F. cerealis were perfectly recognized (100% correct). The

classification rates of F. graminearum and F. redolens were 83% and

89%, respectively. The correct classification rate across all fungi

was 94%.

Classification of infection level
Correctly classifying the level of infection turned out to be

slightly more difficult due to a high interspecies variability and the

need for many data samples at the various concentrations. Thus, a

binary classification with three latent variables in total was done

(Figure 1B). For that purpose samples with an incubation time of

15 days were classified as highly infected, while samples having

been incubated over 5 or 10 days were merged and classified as

low-infected. This led to a higher variability in the low level

Figure 2. Enose results indicating Fusarium infection. A: Frequency shift of the quartz microbalance sensors during measurements of infected
(n = 32) and control (n = 15) samples, and of ambient air (n = 5). Error bars indicate standard deviations. B: Scores plot of the first two latent variables
of the PLS-DA model showing groups of infected and non-infected samples. The Model covers four latent variables in total.
doi:10.1371/journal.pone.0021026.g002

Table 2. Confusion matrix of true vs. estimated values of
binary classification of infection levels.

True values Estimated values

Low High

Low 20 1

High 2 9

Samples with incubation times of 5 to 10 days were classified as low, samples
with 15 days as high. Classification was done by PLS-DA.
doi:10.1371/journal.pone.0021026.t002
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probes. Nevertheless, there was a clear difference detected.

Classification of the infection level (Table 2) showed that 91% of

the samples were correctly classified. However, 18% of highly

infected samples were classified as low-infected, all of them being

F. graminearum samples.

Fungi vs. Control
For a qualitative analysis all measurements were split into two

groups (infected vs. control). Figure 2A shows average sensor

responses of infected vs. control samples or ambient air. For the

infected samples, the responses of all sensors were on the average

16 Hz higher than for the controls. Ambient air gave very low

responses. The signals were lower than 50% as compared to grain

measurements. Furthermore, a PLS-DA model was performed on

these data with a total of four latent variables. The scores plot of

the first two variables (Figure 2B) showed a segregation of infected

from control samples, although with a slight overlap. Accordingly,

the major portion (91%) of infected probes are recognized

correctly by cross-validation (confusion matrix, Table 3). Eight

out of 47 measurements led however to a misclassification due to

large variances within the groups. All of the false negatives

originated from F. redolens at a high infection level. The variance of

the F. redolens group might thus be explained by the fact that the

high concentrations of those samples were associated with changes

in the relative components of the patterns. These probes also led to

false classifications during species identification (Table 1). Further,

the data of the infected group showed also a rather large variance,

most presumably due to the heterogeneity of the dataset consisting

of probes from different fungi and at different levels of infection. In

fact, using GC/MS yielded a complex composition of the

headspace (Table 4). While some substances such as ethanol or

hexadecane appeared in all samples, several other compounds

reported to be infection-specific (2-methyl-1-propanol, 3-methyl-

butanol, 1-octen-3-ol and 3-octanone [8,23,30,39]) were differen-

tially detected in some but never in all samples.

The total amount of volatiles found in our GC/MS analysis

clearly increased with increasing sampling temperature. Samples

infected at 70uC emitted approximately 5-fold more volatiles than

at 30uC, which expectedly led to a larger variance. In control

samples the corresponding increase was just 60% (Figure 3).

Discussion

F. graminearum and F. culmorum are known mycotoxin producers

and thus potentially hazardous. It is therefore important to

differentiate between Fusarium species. They are the most

pathogenic and most frequently occurring Fusaria species [1]. In

wheat and barley the pathogens lead to a destructive disease called

Fusarium head blight (FHB). The fungi affect mainly living plants,

especially during warm and wet weather conditions in the time of

flowering [40]. The occurrence of FHB leads to a reduction in

grain size, kernel weight, germination rate as well as a depression

in quality parameters [1,41]. Thus, high economic losses are going

Table 4. Volatile compounds released by the analyzed fungi and an untreated control (sampling temperature, 70uC).

Compound Control F. cerealis F. graminearum F. culmorum F. redolens

Alcohols

Ethanol X X X X X

2-methyl-1-propanol X X X

3-methyl-butanol X X X X

1-octen-3-ol X X X X

Carbonyls

2-methyl-propanal X X X

Acetic Acid X X X

3-methyl-butanal X X X X

Hexanal X X X X X

3-octanone X

Benzeneacetaldehyde X X

Hydrocarbons

p-xylene X X X

Hexadecane X X X X X

3,3,4-trimethyl-hexane X X X X

3,7-dimethyl-decane X X X X X

Miscellaneous

Butyrolactone X X X

2,2-dimethyl-1-propanol benzoate X X

doi:10.1371/journal.pone.0021026.t004

Table 3. Confusion matrix of true vs. estimated values,
summarizing the classification results of infection.

True value Estimated value

Control Infected

Control 10 5

Infected 3 29

Estimation was done by PLS-DA classifier.
doi:10.1371/journal.pone.0021026.t003
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along with FHB infection. Furthermore there are hazardous effects

of the toxic metabolites produced by Fusarium. Contaminated

cereals, if used in livestock feed, cause a reduction in food uptake

and eventually economic losses [42]. The relevance for humans

should not be underestimated since mycotoxins, when entering

food products, represent a potential toxicity [6].

We used a linear classifier for our data analysis. A more complex

classifier such as a neural network would presumably improve the

classification rate. However, there is a balance between the classifier

performance and the generalisability of the results. If the complexity

of the classifier is kept low, the results are usually more general,

whereas results obtained with more complex classifiers tend to be

less prone to generalization. For this study we therefore preferred a

simple and robust classifier. The result that 18% of highly infected

samples were classified as low infected ones appears to be the price

for the simple classifier. As a consequence, the risk of samples

classified as low infected must not be underestimated. A more

complex analysis, the results of which can at the same time be

generalised, is of course desirable and would certainly be preferred

in many cases. We are currently developing a bionic algorithm of

this kind hopefully achieving both requirements.

Our Enose analyses performed at 30uC turned out to be more

reproducible than those performed at 70uC. This somewhat

unexpected behavior may have the following explanations. First,

while transferring the gas from the source to the sensor array, the

temperature was not kept constant, so that a temperature drop

might have induced condensation phenomena of some volatile

compounds resulting in a change of the composition of the

sample prior to entering the sensor cell. Second, the adsorption of

volatiles onto a porphyrin layer is a temperature-dependent

process, the efficiency of which decreases with increasing

temperatures.

The false positive classifications observed are brought about by

a high variance in our control groups. There are several possible

reasons for this. As our model performed a binary classification, it

was unable to differentiate between species or levels. Second, the

control groups contained samples exposed to different incubation

times. Third, incubation of non-inoculated grains may have

changed the composition of odor compounds. In practical terms,

false negative classifications would seriously compromise the Enose

approach, while false positive classifications were considered

acceptable, though unsatisfactory.

As we aimed at a qualitative recognition of infected samples, we

took the classification rates as efficiency measure. The fact that all

classification rates were higher than 83%, most of them being

much higher, clearly indicated that chemometrical fingerprints

allow the detection of fungal infection as well as the discrimination

between specific Fusaria species.

In this paper we tried to bridge the obvious gap between the

relevance of Fusarium infestation and its simple, fast, on-line,

portable and quantitative measurement. We show that the

metalloporphyrin-based Enose can be used to qualitatively detect

and correctly classify dry, whole, Fusarium-infected wheat grains.

Even low-contaminated grains were accurately detected, allowing

them to be excluded from the food or feed chain. Second, in some

practical cases a Fusarium infestation–specific signal must be

recognised in the presence of a background of interfering

molecular species. This would commonly be achieved–if neces-

sary–by increasing the number of sensors. Third, the Enose meets

most analytical requirements needed. It is a mobile, inexpensive

and relatively fast electronic device, capable of differentiating

hazardous grain from innocuous grain and thereby guaranteeing

the compliance with existing health standards.
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Figure 3. Temperature-dependency of abundancies. Comparison of total volatile abundances of four Fusaria species and controls as obtained
from the GC/MS measurements taken at two different sampling temperatures.
doi:10.1371/journal.pone.0021026.g003
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