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Abstract

Some protein design tasks cannot be modeled by the traditional single state design strategy of finding a sequence that is
optimal for a single fixed backbone. Such cases require multistate design, where a single sequence is threaded onto
multiple backbones (states) and evaluated for its strengths and weaknesses on each backbone. For example, to design a
protein that can switch between two specific conformations, it is necessary to to find a sequence that is compatible with
both backbone conformations. We present in this paper a generic implementation of multistate design that is suited for a
wide range of protein design tasks and demonstrate in silico its capabilities at two design tasks: one of redesigning an
obligate homodimer into an obligate heterodimer such that the new monomers would not homodimerize, and one of
redesigning a promiscuous interface to bind to only a single partner and to no longer bind the rest of its partners. Both
tasks contained negative design in that multistate design was asked to find sequences that would produce high energies for
several of the states being modeled. Success at negative design was assessed by computationally redocking the undesired
protein-pair interactions; we found that multistate design’s accuracy improved as the diversity of conformations for the
undesired protein-pair interactions increased. The paper concludes with a discussion of the pitfalls of negative design,
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which has proven considerably more challenging than positive design.
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Introduction

The last fifteen years have produced remarkable advances in the
field of protein design [1-3], with the redesign and stabilization of
existing proteins [4-10], the de novo design of protein structures
[11,12], the altering of existing protein functionality [13,14], the
redesign of existing protein/protein interfaces [15,16], and the
design of new enzymes [17-19]. The advances have come
primarily from the use of computational approaches: the challenge
of choosing a sequence to perform a desired task is formulated as
an optimization problem which can be given to a computer to
solve. Typically, the backbone of a particular protein is held fixed
and the conformations of its sidechains (and their amino acid
identities) are altered to minimize an energy function. The
conformations of the side chains are taken from observed
conformations from the Protein Data Bank (PDB) called
“rotamers” [20-22] and are typically represented with all their
atoms including hydrogens. The energy functions being optimized
are often built from those available in molecular dynamics
packages and include terms for van der Waals interactions,
hydrogen bonding, solvation, electrostatics, and torsional strain.
This standard formulation of minimizing the energy of a sequence
on a fixed backbone has proven very useful in a variety of tasks: in
de novo design, finding a low energy sequence compatible with a
given backbone has been used to produce several proteins that
adopt that backbone conformation; in protein interface design,
finding a low-energy sequence compatible with a particular
docked orientation of the two proteins has been used to produce
an interaction between the two proteins [23].
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Not all protein design tasks can be modeled by optimizing the
sequence for a single structure. For example, one might want to
redesign the homodimeric interface of Immunoglobulin G, IgG,
(as Genentech has [24]) to create heterodimeric antibodies that,
in turn, can be loaded with two variable domains specific for two
different substrates. Indeed, such ‘‘bispecific antibodies” are
increasingly common in the treatment of cancer and show
promise in other therapies [25]. Redesigning the homodimeric
mterface of IgG requires coming up with a sequence that not only
allows for the two monomers to heterodimerize but also ensures
that neither of the monomers homodimerize. With the standard
protein design formulation, the optimization of the sequence for a
single structure (in this case, the heterodimer) leaves the design
algorithm blind to whether or not the monomers could
homodimerize. The problem stems from the fact that the
standard design methodology can only examine a single state of
the protein at one time; the solution to this problem is simply to
model multiple states simultaneously.

In multistate design, the optimization problem is not as straight
forward as in single state design; instead of optimizing the energy
for one state, one has to find a sequence that has a good energy for
one state and possibly a bad energy for another. To this end,
multistate design requires a “fitness function” to rank sequences
based on how well they meet the goals of a particular design task.
The fitness function is evaluated by first threading a single
sequence onto multiple states, calculating the energy of that
sequence on each state, and finally combining those energies to
produce a single value. A significant hurdle in solving a multistate
design problem is formulating a fitness function that captures the
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design goals. Havranek and Harbury, in trying to design
homodimeric coiled coils that would not also heterodimerize,
maximized the probability of homodimer formation by using a
partition function that included the energies of competing
heterodimeric states and an aggregate state [26]. Ambroggio and
Kuhlman optimized the sum of the energies for two conformations
of a single sequence so that it would form a monomer in the
presence of zinc, and a trimer in its absence [27]. Grigoryan,
Reinke, and Keating optimized the energy of Bzip-peptide
heterodimerization under the constraint that the energy gap
between heterodimers and homodimers exceed some threshold
[28]. Ashworth et al. optimized the specificity of the I-Msoll
homoendonuclease by favoring the binding energy for I-Msoll to
the target DNA sequence over alternate DNA sequences [29].

This paper presents a generic multistate design implementation
for solving arbitrary multistate design problems: the software is
generic in that it allows the user to program their fitness function
from a text file, encouraging the user to search through fitness-
function space, and not just sequence space. We test our
implementation at two design tasks: a feterodimerization task wherein
an existing homodimer is redesigned so that the new monomers
heterodimerize, but do not homodimerize, and an orthogonal
interface redesign task wherein a promiscuous protein A, which
naturally binds proteins B, C and D, is redesigned so that A
continues to bind B, but no longer binds C or D. We demonstrate,
in silico, the success of our mulitistate design program at each of
these tasks. In the heterodimerization task, we show that the
heterodimeric species is favored over the homodimeric species,
and that multistate design does a better job than single-state design
in disfavoring the homodimers. In the orthogonal interface
redesign task, we show that we can preserve the AB binding
energy, while substantially decreasing the AC and AD binding
energies.

Both design tasks feature negatie design in that there are
interactions between certain pairs of proteins which must be
destabilized to meet the design goals. This can be captured in the
fitness function by subracting the energies for the states repre-
fosenting the undesired interactions (called negative states) from the
energies of the desired interactions (called positive states). Typically,
multistate design destabilizes the negative states by introducing
collisions across the interface; however, these collisions are often
easily resolved by separating the proteins slightly. In such a case,
multistate design would predict that it has destabilized the
interaction for a pair of proteins, yet subsequent redocking can
find low-energy conformations for them. If multistate design only
considers a single conformation for each negative state, then its
predictions for their energies contain substantial amounts of error.
We solve this problem by allowing the negative states to choose the
lowest energy conformation among a large set of available
conformations, including those partially separated conformations.
We generate this set of conformations in an iterative fashion by
redocking the outputs generated by multistate design. In each
“round,” we perform multstate design and follow it with docking
of the negative states. If the energies of the negative states
predicted by multistate design greatly disagree with the energies
produced by docking, we continue on to the next round,
expanding the set of conformations for the negative states. We
demonstrate i silico what had previously been hypothesized about
this approach [26]: that representing many conformations for the
negative states improves the accuracy of multistate design.

In keeping with the theme of this special collection, we also
include a full description of how to repeat our computational
experiments as a ‘“‘protocol capture” included in the Supporting
Information File S1. This includes an in-depth description of the
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mput-file formats, as well as the set of input files, command lines,
and job-control scripts used in this study.

Methods

Software

Our software separates its search through sequence space and
its search through side chain conformation space. A genetic
algorithm explores sequence space in an outer loop, and each state
optimizes its rotamers for a given sequence in an inner loop. The
energies produced in this inner loop are fed to a user-defined
fitness function that guides the genetic algorithm’s search through
sequence space. To keep simulations fast, the implementation uses
MPI to distribute the inner-loop calculations across multiple
processors. The software is written as part of the ROSETTA3
molecular modeling suite [30] and will be available in the 3.3
release. We rely on Rosetta’s standard “scorel2” score function
[31] and refer to units of this score function when referring to
Rosetta Energy Units (REU).

Genetic Algorithm. The genetic algorithm, described first in
the context of mulitistate design by Havranek and Harbury [26]
and whose implementation comes from Ashworth et al. [29],
maintains a population of 100 sequences and is run for 15 x |seg|
generations, where |seq| is the length of the sequence being
designed (i.e. the number of positions being mutated). Between
generation i and generation i+1, the genetic algorithm
propagates the 50 sequences with the best (lowest) fitness, and
generates 50 new sequences with 98% generated as point mutants
from the best 50 sequences of the previous generation, and 2%
generated as crossover combinations of existing sequences. These
parameters were chosen by testing the algorithm at interface
sequence recovery with a fitness function described by the energy
of the complex — effectively, single-state design. These parameters
yielded energies and sequences similar to Rosetta’s existing single-
state design algorithm.

State Definition. A state in our implementation refers to one
of the many possible structures on which a sequence is being
optimized. Each state is defined by three things: 1) a fixed backbone
scaffold, 2) a mapping between some or all of the residues on this
scaffold and positions in the sequence being optimized in the outer
loop, and 3) a secondary rotamer-optimization file. The fixed
backbone scaffold is given by a PDB file. The mapping is given in a
correspondence file that lists which residues on the scaffold take their
identify from which positions in the sequence optimized by the
genetic algorithm (e.g. “residue 24 on chain A takes its identity from
position 3 in the sequence the genetic algorithm optimizes”). The
rotamers for each of the residues listed in the correspondence file are
optimized in each iteration through the outer-loop. The secondary
rotamer-optimization file, called a secondary resfile defines which
residues in addition to those listed in the correspondence file should
also have their rotamers optimized.

Rotamer Optimization. At the start of execution, the
program builds a fixed set of rotamers for all allowed amino acids
at each residue for each state. When a particular sequence is
assigned to a state, the program selects the appropriate subset of
rotamers and performs rotamer optimization with this subset. It uses
a slight variation on the original FASTER algorithm [32] of first
assigning the backbone-minimum-energy conformation (BMEC)
and then performing iterative single-residue perturbation/relaxa-
tion (sPR) until convergence. It incorporates a performance
enhancement of only relaxing the ten neighbors of the perturbed
residue that have the greatest-magnitude-interaction energies with
the perturbed rotamer [33].
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The rotamers for every sequence encountered by the genetic
algorithm are optimized on each state. This rotamer optimization
step, also referred to as “packing,” is the most time consuming step
in multistate design. For this reason, we tested several other
rotamer packing algortithms.

In addition to the BMEC+sPR algorithm, we examined two
simulated annealing algorithms: Rosetta’s standard simulated
annealing algorithm [34], and another algorithm, the multi-cool
annealing algorithm. The two algorithms are similar in that they
consider single residue rotamer substitutions and wuse the
Metropolis criterion [35] to decide whether to accept or reject
each substitution on the basis of the change in energy induced by
the substitution.

Briefly, Rosetta’s standard annealer starts a geometric cooling
trajectory from kT =100 down to 0.3 in an outer loop. At each
temperature, it performs 5 X |rotamers| rotamer substitutions. If
the energy of the final rotamer assignment at the conclusion of the
set of fixed rotamer substitutions for the last three iterations of the
outer loop has plateaued, then the temperature is raised back to
kT =100 to begin cooling again. Convergence is determined by
comparing the final energy at the conclusion of iteration i to the
average energy at the conclusion of rounds i —1, i—2, and i —3; if
the energy at round i is not less than —1 REU lower than this
average, then the energy is considered converged. After 19
iterations of the outer loop, the lowest-energy rotamer assignment
encountered thus far is restored, and quenching rotamer
substitutions are performed (effectively, k'T' = 0). The lowest-energy
rotamer assignment encountered over the whole trajectory is
returned.

The multi-cool annealer differs from the standard annealer in
the amount of time it spends at low temperature, especially the
amount of time it spends quenching. In an initial geometric
cooling trajectory from kT =10 down to 0.2 performed in 20
iterations, the annealer performs fixed-temperature rotamer
substitutions. It performs 3 x |rotamers| rotamer substitutions at
each temperature. Three times in the middle of each set of fixed-
temperature rotamer substitutions (sixty times total), the annealer
performs quench-and-restore operations — saving the current rotamer
assignment, performing quenching rotamer substitutions until no
new rotamer substitutions can be made, and then restoring the
pre-quench rotamers. After cooling to 0.2, the annealer then
performs six rounds of cooling from kT =0.25 to 0.05, using as
starting points the 10 lowest-energy quenched rotamer assign-
ments taken from the quench-and-restore steps in the initial
cooling from 10 to 0.2. In this second set of cooling trajectories, it
performs 5 |rotamers| rotamer substitutions at each fixed
temperature. Quench-and-restore operations are performed at
the end of each set of fixed-temperature rotamer substitutions
before the next temperature is assigned. The lowest-energy
rotamer assignment encountered over the course of the whole
trajectory is returned.

We also examined several hybrid simulated annealing and
FASTER algorithms as originally suggested by Allen and Mayo
[33]. Most of these algorithms began with a shortened simulated
annealing trajectory where, at each temperature, fewer than
normal rotamer substitutions were performed, but Rosetta’s
standard temperature schedule was used. The length of the
simulated annealing trajectory relative to the standard trajectory
is given by the percentage out front in the name of each
algorithm— eg. “5% SimA” represents a trajectory performing
5% as many rotamer substitutions at each fixed temperature.
Several of these algorithms are iterated multiple times, and the
best energy from all iterations is returned (e.g. the 8x(5%Si-
mA+sPR) algorithm iterates through 8 independent trajectories of
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simulated annealing followed by iterative sPR until convergence).
The various rotamer optimization algorithms we tested are
compared in Table 1.

Over the course of a multistate-design trajectory, rotamer-pair
energies are computed as needed and stored in an interaction
graph data structure for reuse [36-38] instead of all being
computed up-front; this saves roughly 25% of the pair energy
calculations and the memory needed to store those pair energies.
Optionally, the user may set a ceiling on the amount of memory
dedicated toward pair energy storage. The interaction graph
storing pair energies for reuse honors that ceiling by discarding
submatrices of rotamer-pair energies for particular amino-acid
pair interactions; it maintains a binary heap of amino-acid-pair-
submatrix-access orders and, when discarding a submatrix,
chooses the submatrix whose most recent access was furthest in
the past. This behavior means that some rotamer-pair energies
may be computed multiple times.

Fitness Function Definition. The genetic algorithm evaluates
the fitness function once for every sequence it examines; the format
for the fitness file is geared toward describing how the energies of all
the states being modeled should be combined to compute the fitness
for a particular sequence, once the rotamers for that sequence have
been optimized on each state. This file has two responsibilities: state
declaration and fitness-function specification. The fitness-function-
definition file format provides seven commands to meet these two
responsibilities. They are referred to as “commands” as our
software effectively defines a programming language for multistate
design. It is possible to specify expressions using basic arithmetic
such as addition, subtraction, and multiplication as well as with min
and max functions for identifying the minimum or maximum values
from a vector of values. The min function is particularly useful for
finding the lowest scoring state from an ensemble of negative states.
The seven commands are described in detail in the Supporting
Information File S1 and examples of how they are used in the two
design tasks for this paper are given as well.

Redocking. After each round of multistate design, we redocked
the negative states to find alternate low-energy conformations, and
then designed against these alternate docked conformations in
subsequent rounds (Figure 1). We used the dock_pert rigid-body
docking protocol [39] that begins with a small random rigid body
perturbation of an initial docked conformation. Starting from the
output structures from multistate design, we split the two chains,
packed each chain separately, and concatenated the packed
structures. This step relieved intra-chain collisions frequently
present in the negative states which the shorter docking local_refine
protocol seemed willing to leave intact. These structures were then
fed as input for fifty trajectories of the dock_pert protocol. The lowest
energy docked conformation of these fifty was split, its chains packed
individually, and the AGp;q was calculated as the difference in energy
of the bound and unbound chains. All parameters and scripts for
these redocking and packing protocols are given in the Supporting
Information File S1.

Detailed Workflow

Both the heterodimerization task and the orthogonal interface
redesign task were similar in their overall setup. In both cases, one
protein interface was desired and two protein interfaces were
undesired. In both cases, an overarching iterative process was used
where, starting with crystal and NMR structures as models for our
positive and negative states, we ran multistate design to generate
candidate sequences and then ran rigid-body docking to relax the
structures for the negative states (Figure 1). Sequences were
evaluated on the basis of the binding energy of both the desired
and undesired interactions after redocking.

July 2011 | Volume 6 | Issue 7 | 20937



Generic Multistate Design

Heterodimerization Task Workflow. Choosing what to design:
The dimeric hepatocyte nuclear factor 1l-alpha from T.
Thermophilus (PDB ID: 1USM) was selected as a worthy
heterodimerization target. The hydrophobic residues at the
center of the dimerization interface, F21, A24, 1.25, A28, G32,
L44, V46 and W48, were selected as candidates for redesign. The
(mostly polar) residues at the boundary of the interface, R22, N29,
D36, H41, P42, R43, T45 and E47, were prevented from being
designed but were allowed to pack. In general, it seems that
Rosetta does not do well at the design of polar residues at protein
interfaces [16], so we restricted our mutations to the hydrophobic
core of the iterface. This selection allowed 8 mutations per
monomer for 16 designable positions total.

Input file preparation: In this task, it is convenient to talk about two
chemical species, the A monomer and the B monomer, which can
form five possible arrangements: the A monomer alone, the B
monomer alone, the AB heterodimer, the AA homodimer, and the
BB homodimer. States representing all five arrangements were
defined with PDBs, correspondence files, and secondary resfiles for
each. The 16 positions in the sequence optimized by the genetic
algorithm were arranged with the odd elements assigned to the
“A” chemical species, and the even elements assigned to the “B”
chemical species. The sequence “HfaaGMMagRIVMLEFF,” for
example, would describe a heterodimer where the A monomer has
the mutations F21H, (A24), L25G, A28M, (G32), (L44), V46M,
V48F, and the B monomer has the mutations (F21) (A24) L25M
(A28) G32R L44V V46L V48F — where positions with lower case
letters in the first sequence, or in parenthesis in the second
expansion, represent the wild-type sequence. This convention for
residue correspondence is arbitrary and, for the sake of the search
through sequence space itself, irrelevant. The correspondence file
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Table 1. Comparison of Rotamer Optimization Algorithms.
Algorithm % at % wli % wli % wli % > Time Rel.

Cons. 10—3 REU 10-' REU 1 REU 100 REU Avg (s) Perf.
Standard Annealer 25.3 (26.0) 32.7 (34.5) 42.7 (45.2) 98.5 (91.7) 2E-3 (0) 0.128 1.53x
Multi-cool Annealer 82.8 (85.1) 84.2 (86.6) 87.9 (89.8) 99.2 (97.2) 6E-4 (0) 0.129 1.55x
100% SimA+sPR 81.5 (81.6) 95.1 (96.4) 96.8 (97.3) 99.6 (99.0) 4E-4 (0) 0.165 1.97 x
50% SimA+sPR 81.4 (81.6) 94.9 (96.2) 96.5 (97.2) 99.5 (99.0) 5E-4 (0) 0.118 1.41x%
20% SimA+sPR 80.9 (81.1) 94.4 (95.8) 96.1 (96.8) 99.3 (98.7) 7E-4 (0) 0.094 1.12x
10% SimA+sPR 80.9 (81.1) 94.4 (95.8) 95.8 (96.5) 99.1 (98.5) 2E-3 (3E-4) 0.091 1.09 x
8x(5% SimA+sPR) 84.9 (84.5) 98.8 (99.5) 99.6 (99.6) 99.9 (99.7) 9E-5 (0) 0.481 5.75x%
4x(5% SimA+sPR) 84.3 (84.0) 98.2 (99.1) 99.0 (99.2) 99.8 (99.5) 5E-4 (0) 0.255 3.05x%
2x(5% SimA+sPR) 82.7 (82.9) 96.4 (97.7) 97.5 (98.1) 99.6 (99.1) 6E-4 (0) 0.143 1.71x
5% SimA+sPR 80.8 (81.1) 94.2 (95.8) 95.7 (96.6) 98.9 (98.4) 2E-3 (0) 0.087 1.05x%
8x(2.5% SimA+sPR) 85.0 (84.5) 98.9 (99.6) 99.6 (99.6) 99.9 (99.8) 0 (0) 0.465 5.56 x
4x(2.5% SimA+sPR) 84.2 (83.8) 98.0 (98.9) 98.9 (99.0) 99.8 (99.6) 6E-4 (0) 0.248 297 %
2x%(2.5% SimA+sPR) 82.4 (82.5) 96.1 (97.4) 97.2 (97.8) 99.4 (99.1) 1E-3 (0) 0.140 1.67 x
2.5% SimA+sPR 80.4 (80.7) 94.0 (95.4) 95.6 (96.3) 98.8 (98.3) 2E-3 (5E-4) 0.085 1.02x
BMEC+sPR 80.0 (80.6) 93.5 (95.2) 95.1 (96.1) 98.5 (97.9) 3E-3 (1E-3) 0.084 1.00 x
Fifteen rotamer optimization algorithms were compared by examining the energies they produced and their running times in a head-to-head comparison in optimizing
rotamers for 10 K sequences. Details of the optimization algorithms are given in the Methods Section. We defined the “consensus energy” for each sequence examined
as the lowest energy found by any of the algorithms. Each algorithm is described by the percentage of the trajectories where it reached the consensus energy, where it
reached to within 0.001, to within 0.1, and to within 1 Rosetta energy units (REU) of the consensus energy, (in the columns labeled “% at Cons.”, “% w/i 10~3 REU”,
“% w/i 10~! REU”, and “% w/i 1 REU" respectively), the percentage of the trajectories for which it failed to find an energy within 100 REU of the consensus energy
(labeled “% > 100 REU), its mean running time, in seconds (labeled Time Avg.), and its relative mean running time as compared against the BMEC+sPR algorithm, which
was the fastest (labled Rel. Perf.). Parenthetical percentages reflect these frequencies when considering only the subset of sequences with a consensus energy less than
—30 REU. 8 K of the 10 K sequences fell into this category.
doi:10.1371/journal.pone.0020937.t001

for the AA states listed both chain 1 and chain 2 residues as
corresponding to the odd positions, the correspondence file for the
BB states listed both chain 1 and chain 2 residues as corresponding
to the even positions, and the correspondence file for the AB states
listed chain 1 residues as corresponding to the odd positions and
chain 2 residues as corresponding to the even positions. The same
secondary resfile was used for the AB, AA, and BB species.

Fitness function definition: The fitness function for this design task
examined the difference in binding energies between the the AB
heterodimer and the AA and BB homodimers. If the variables 4,
B, AB, AA, and BB hold the best energies over all states in the A,
B, AB, AA and BB arrangements given a particular sequence
which has been threaded on to all states, then the fitness function
we optimized was

ﬁtness:AB+ Wk (AAGAB,AA +AAGAB’BB)+CSZE

AAG B aa=AG p—AG 44

AAG 4 p3=AGp—AGpp

AG p=AB—A—B

AGAA :min(AA —2 % A,O)
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of off-target interactions
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Off-target yes
interactions
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t

Multistate Design

Rigid Body Docking

Output designs

Figure 1. Iterative multistate design. This flow chart summarizes the way we used rigid-body docking to expand the set of conformations that
we designed against. A “round” of multistate design is a single execution of the multistate design executable with a given set of input positive and
negative states. The first round begins using the experimentally determined structure(s) (either from x-ray crystallography or NMR) for both positive
and negative states; subsequent rounds include low-energy conformations for the undesired interactions in the set of negative states generated by
redocking the models for those interactions generated by prior rounds of multistate design.

doi:10.1371/journal.pone.0020937.g001

AGBB =Wlil’l(BB— 2 % B,O)

where, AAG4p 44 and AAG 4p pp represent the binding-energy gaps,
and the binding-energy-gap weight, w, balances the total energy of the
heterodimer (AB) and the binding energy gaps. This weight was
varied between 1 and 6, to generate a spectrum of design results.
The sequence constraint energy, ¢stE, is described in the next
paragraph. Note that we cap the maximum binding energy for the
negative states at 0. We describe this cap in greater detail in the
Discussion section.

The fitness function included a sequence-constraint term, cstE
in the fitness expression above, that contained two features: a
homodimer penalty and a minimal mutation bonus. The homodimer
penalty gave a positive score representing the number of positions on
A and B that were assigned the same amino acid, clipped at 0 if the
number of identical positions were 6 or fewer, and stepped by 5 REU
for every successive identical amino acid pair. The mutation penalty
added a penalty of 1 REU for each mutation beyond the first five to
either chain. The homodimer penalty was intended to push the
search in sequence space away from homodimers, which we found in
preliminary testing would sometimes get designed; the mutation
penalty was added to bias the search to the minimal set of mutations
required to accomplish the task. The full sequence constraint
definition file for the heterodimerization task is included in the
Supplemental Information.

As a control, we simulated single-state design with our multistate
design software by setting the weight on the binding-energy-gaps
to zero. The sequence-constraint term remained present in the
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fitness function to favor the design of heterodimers over
homodimers. The remainder of the protocol following multistate
design (packing and redocking) remained unchanged.

terative design and docking. We performed four rounds of design
and docking. In each round, we ran one multistate design
trajectory for each combination of binding-energy-gap weights (of
which there were six) and conformation for the heterodimeric
complex (of which there were seven), where, in addition to the
crystal structure of the homodimer, the other six conformations
were generated by performing rigid body docking on the wildtype
homodimer and selecting conformations with sub-angstrom RMS
from the wildtype structure. Thus, forty two multistate design
trajectories were performed in each round. Following each
multistate design trajectory, we ran 50 docking trajectories for
both the positive and negative states using the dock-pert protocol.
After redocking, the conformations of the homodimers (the
negative states) which had binding energies < —20 REU were
identified. These structures were filtered to select a subset with
mutual Co RMS (without superposition) >0.25 A, and the
resulting set of structures was then used for the negative states in
the next round.

Job management: Each batch of jobs was composed of two main
features: the set of PDB files defining the states which should be
optimized (the state version), and the set of residues which were
allowed to redesign and pack on each of the states (the design
definition). Each batch ran separate jobs for each combination of
models of the positive state (the heterodimer) and weight, w, on the
binding-energy-gap bonus. A Python2.6 script created the set of
files necessary for a single batch of multistate design jobs. This
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script, the set of input files necessary for it, and the command lines
we used to execute this script are provided in the Supporting
Information File S1. Following each round of multistate design, we
redocked the homo- and heterodimers using the RosettaScripts
executable [40], and then packed the monomers using the fixbb
(fixed-backbone design) executable. All simulations were per-
formed with SVN revision 39931 of the Rosetta3 source code and
SVN revision 39914 of the RoseETTA3 database.

Orthogonal Interface Redesign Task Workflow. Choosing
what to design: For the orthogonal interface redesign task, we chose
to redesign the interactions in the Ral signaling network. Ral is a
small GTPase protein that is involved in a wide variety of cellular
functions including endocytosis, transport and tethering of
secretory vesicles to the plasma membrane, regulation of
transcription, and maintenance of the cytoskeleton, among many
others [41]. Ral has also been shown to be important for Ras-
mediated tumorigenesis and tumor cell metastasis [42,43]. Ral
exists in two isoforms, RalA and RalB, which are 82% identical,
and has five known effectors: RalBP1, Sech, Exo84, Filamin, and
ZONAB. The Ral signaling network is an attractive model system
for testing the multistate design protocol for two reasons. First,
structures of RalB in complex with RalBP1 (PDB: 2KWI) [44] and
RalA in complex with Sec (PDB: 1UAD) [45] and Ex084 (PDB:
1ZC3) [46] have been solved. Second, some amino acid positions
on Ral are contacted by more than one effector, making
orthoganol interface redesign nontrivial. If there were no overlap
between the various interfaces, then simply converting all the off-
target interface surfaces to arginine would likely have produced the
desired set of interactions. We should point out that, although
2KWI is actually the structure of the interaction between RalB/
RalBP1, RalA and RalB have complete sequence identity at all of
the interface positions considered in this study. Henceforth, we
refer to this complex as Ral/RalBP1 to imply that the RalB
structure is used to model the RalA structure in complex with
RalBP1.

We decided to redesign RalA to retain its affinity for RalBP1,
but to remove its affinity for Sec and Exo84. Two different setups
of the redesign task were performed with multistate design. In the
first setup, we selected residues on RalA that we thought could
destabilize the interface between RalA/Sec5 and RalA/Exo84
without disturbing the Ral/RalBP1 interaction. Residues L14,
Y36, Q63, and E73 were chosen because they interact with either
Secd or Exo84 but not RalBP1. Additional positions that were
designed included E38, K47, A48, D49, S50 and Rb52.
Mutagenesis studies have indicated that these residues affect
Ex084 and Sec) binding [46]. Note that RalA residues A48, D49,
S50 and R52 are in close proximity to RalBP1; mutations to these
residues would impact both RalA’s interactions with Sec5 and
Ex084 and its interactions with RalBP1. Design at these positions
is therefore non-trivial.

For the second setup of this task, we excluded some of the
already-characterized specificity-determining positions and also
allowed more residues at the Ral/RalBP1 interface to be designed.
From the structures of the Ral-effector complexes, mutations on
Ral that disrupt binding to each individual effector have already
been identified. For example, the D49N mutant of RalA disrupts
binding to RalBP1 but not Sec or Ex084, and the D49E mutant
disrupts binding to Sec5 and Exo84 but not to RalBP1 [47,48].
Similarly, the mutations E38R and A48W have been shown to
destroy binding with Sec5 and Exo84, respectively [46]. In order
to make the design task more challenging, we left these positions
fixed to their native amino acids. Additionally, for this setup we
allowed more residues at the interface between Ral/RalBP1 to be
designed, to see if the binding energy of the positive state could be
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further improved. Together, these changes expanded the number
of designable residues from 8 to 16. The residues allowed to
change in this setup were L14, K16, Y36, K47, S50, R52, 63,
D65, L67, E73, D74, Y75, A77, 178, N81, and Y82. With this
design definition, we hoped to identify new specificity-conferring
mutations for Ral.

Input file preparation: An important step in setting up the
orthogonal interface design is obtaining reliable starting structures
for design. The crystal structures for the RalA/Secb and RalA/
Ex084 interactions were packed and minimized using Rosetta to
obtain low energy models. The structure of Ral/RalBP1 is more
difficult to handle in this way because its PDB entry is an ensemble
of NMR models which vary in conformation considerably. All of
the models in the 2KWTI structure were separated into individual
models, packed, and minimized. We then chose the four lowest-
energy structures, models 1, 15, 29 and 30, and redocked them
with Rosetta [39]. Model 30 produced the best docking funnel and
binding energy, and did not substantially change the conformation
of the interface (C, RMSD <2.0 A). The lowest-energy docked
conformation starting from model-30 was used for the Ral/
RalBP1 complex.

For convenience it is useful to describe the proteins modeled as
four different chemical species. Each protein monomer is
described as A (RalA), B (RalBP1), C (Sec5) or D (Ex084). The
three dimers can be described as as AB (Ral/RalBP1), AC (RalA/
Secd) or AD (RalA/Ex084). The AB species refers to the best
packed, minimized, and docked model 30 from 2KWI while AC
and AD refer to the packed and minimized 1UAD and 1ZC3
structures respectively.

Fitness _function definition: The fitness function used for orthogonal
interface design was constructed to use the binding energy of the
desired Ral/RalBP1 interaction and the binding energies of the
undesired RalA/Secb and RalA/Ex084 interactions. Using the
nomenclature described above, with AB, AC, AD, Ay, A., A4, B,
and C, representing the energy of each of the corresponding dimer
or monomer under a particular sequence assignment (A
representing the energy of the Ral backbone taken from the
Ral/RalBP1 structure, A. representing the energy of the RalA
backbone taken from the RalA/Sec5 structure, and A4 represent-
ing the energy of the RalA backbone taken from the RalA/Exo084

structure), the fitness function we minimized was

ﬁtness=AB+w * (AAGAB,AC +AAGAB)AD)

AAG B 4c=AG43—AGyc

AAG B 4p=AG43—AGyp

AGyp=AB—A4,—B

AG 4c =min(AC— A, — C,0)

AG4p=min(AD—A,;—D,0)
where w is the weight used to balance the total energy of the AB

complex and the binding-energy-gaps for AC and AD. The weight
was varied in independent runs between 1 and 12 in increments of
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1. We capped the binding energies of the negative states at 0 as we
did in the heterodimerization task. We computed binding energies
by comparing the energies of the dimers with energies of the
monomers sharing the same backbone conformations; this meant
modeling extra states (4. and A4y), but gave more reliable results
than if we had only modeled the 4; monomer. The Discussion
section raises this point again.

We ran two separate single state design (SSD) tasks as controls
for this method. This protocol optimized the binding energy of AB
while ignoring the binding energies of AC and AD. In the first
control run, we allowed design of all of the residues included in the
multistate design setup-scheme 2 (SSD 1). In the second control
run (SSD 2), we designed only residues on RalA that are at the
interface with RalBP1 in an effort to mirror redesign of only one
complex. The set of residues in this case were as follows: K16,
A48, D49, S50, R52, D65, L67, N81, Y82, R84, S85, G86. We
used the same protocol as above except the weight (w) of the fitness
function is set to O to force the design algorithm to ignore binding
of AC and AD.

terative design and docking. Iterative rounds of design and docking
were performed for each setup of the othogonal interface redesign
task. Two rounds of design and docking were performed for setup
one, and three rounds were done for setup two. Each round for
setup one consisted of twelve multistate design trajectories, one for
each value of the binding-energy-gap-weight. For setup two, the
number of design trajectories in each round varied. The number
of design trajectories in rounds one, two and three were twelve,
eighteen and thirty-six, respectively. The additional trajectories
were obtained by 1) varying the binding-energy-gap-weight
between 1 and 12 in a smaller increment of 0.5 and 2) running
multiple trajectories for the same binding-energy-weight. The
number of trajectories per round for setup two was increased to
better see how the binding energy error changed between rounds.

Job management: A similar python script as described for the
heterodimerization task was used to prepare batches of multistate
design jobs and can be found in the Supporting Information File
S1. All simulations were performed with SVN revision 39931 of
the ROSETTA3 source code and SVN revision 39914 of the
RoserTA3 database. Sequence logos were created using WebLogo
v.2.8.2 [49].

Results

Comparison of Rotamer Optimization Algorithms

The outer loop of our multistate design algorithm explores
sequence space, and for each sequence it examines, it performs a
rotamer optimization of that sequence for each of the states. As the
vast majority of the running time is spent in rotamer optimization,
we compared a set of optimization algorithms to examine
reliability and speed. We tested fifteen subtle variations and
combinations of the FASTER and simulated annealing algorithms
(see the Methods Section for details) in a head to head comparison
where we sampled 10 K sequences encountered in the course of a
multistate design trajectory. The fitness function we used in this
trajectory optimized the total energy of a single state for the 32
interface residues from the 1USM heterodimerization task.
Running times excluded the expense of computing rotamer-pair
energies, but did include the expense of initializing a small data
structure to store those energies — this extra expense was well
worth the time as it improved cache efficiency greatly. Running
times were measured on an Intel 17 920, 2.67 GHz processor with
12 GB RAM using a single thread.

Table 1 summarizes the comparison between these fifteen
algorithms. For each sequence in the 10 K we repacked, we
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compared the energy computed by each of the packing algorithms
to the lowest-energy produced by any of the algorithms, which we
defined as the consensus energy. It should be noted that the
consensus energy is not the same as the energy from the global-
minimum energy conformation (GMEC) [50]. None the less,
comparing energies against the consensus energy is a reasonable
way to show that packing algorithms are imperfect. Table 1
describes the quality of each packing algorithm by its frequency of
reaching the consensus energy, and its frequency of reaching to
within 1073, 107!, and 1 REU of the consensus energy. It also
describes these frequencies when considering only the subset of
sequences with a consensus energy less than —30 REU. (The best
energies were found in the neighborhood of —90 REU.) This
subset of sequences is meant to reflect those which are relatively
collision free and whose energies the user might be particularly
interested in measuring accurately. In particular, if a negative state
has an available collision-free rotamer placement, and the packing
protocol fails to find this placement, then the fitness function will
appear better than it should. The Discussion section addresses this
point again.

The BMEC+sPR algorithm, which is the one we decided to use
in our design simulations for this study, proved to be the fastest,
and was further than a tenth of an energy unit from the consensus
energy only 3.9% of the time when considering the collision-free
placements. In the vast majority of the cases, all the FASTER
algorithms converged to the same energy or, when they arrived at
higher-energy assignments, were within a tenth of an energy unit
of the consensus energy. None of the algorithms arrived at the
consensus energy 100% of the time; this suggests that there will
always be some noise in the fitness for any given sequence. For
states whose energies we were particularly interested in getting
correct (in particular, the positive states and the monomer states),
we declared multiple copies of those states in their state files,
packed them in duplicate (and on separate processors), and then
took the best energy. This is somewhat similar to using the
2%(5%SimA+sBR) algorithm, except that the extra effort of
packing twice can be focused on a small subset of all states,
providing higher accuracy for those states without increasing the
overall running time of the trajectory.

Surprisingly, Rosetta’s standard simulated annealing algorithm
was further than a tenth of an energy unit from the consensus
energy in over half the trajectories. The multi-cool annealer, on
the other hand, was within 0.1 REU of the consensus energy
nearly 90% of the time, and at the consensus energy as often as
any of the FASTER based algorithms. This result is worth noting
for single-state design applications. A key difference between
FASTER and simulated annealing is that FASTER examines
every rotamer-pair energy while simulated annealing examines a
small minority. In single-state design, the expense of computing all
of the rotamer-pair energies is considerably greater than the
expense of optimizing rotamers once the energies are computed,
so a technique that performs as well as FASTER while computing
many fewer rotamer-pair energies would, on the whole, be

preferable [38].

Heterodimerization task

Out iterative protocol for designing a heterodimer began by
using the crystal structure of the homodimer to model the
negative-state conformations and the heterodimer (Figure 1). After
the first round of design, the homodimeric forms were redocked.
The redocked homodimers with the lowest binding energies were
used as alternate conformations for the second round of design.
This process of design, redocking and feeding in the low-energy
docked conformation back into the next round of design continued
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for a third and a fourth round (Figure 2). The fitness function used
in multistate design and the residues allowed to redesign are
described in the Methods section.

We compared this iterative design strategy against the simpler
single-state design strategy, using the multistate design algorithm,
but optimizing only for the energy of the heterodimeric state
(Figure 3A). As Havranek and Harbury observed [26], single state
design fails to simultaneously destabilize both homodimeric
species, though, by luck, it may destabilize one of the two. In
contrast, multistate design is able to produce the desired
destabilization of the homodimers relative to the heterodimers.
Such designs are represented in the lower-left cornert of Figure 3A.
Table 2 highlights a few designs where both homodimers were
destabilized by at least 10 REU relative to the heterodimer and the
heterdimer’s total energy had not been overly compromised
relative to the native (total energy < —298 REU).

Our results also suggest that iterative negative design improves
multistate design. We defined the error in multistate design as the
difference between the homodimer binding energies computed by
multistate design and the homodimer binding energies computed
after redocking, and measured this error for each of the four
rounds of design. The distribution of binding-energy errors shifted
to smaller values as more conformations of the negative states were
included. The mean binding energy errors for the four rounds
were 16.5, 11.5, 7.4 and 4.8 REU. This shift is evident in the
histogram of binding energy errors, as shown in Figure 3B. After
four rounds, there were sixty seven conformations used to model
each of the two homodimer interactions. These simulations,
counting the positive states, included 140 states total.

The search through sequence space which the genetic algorithm
performs is NP-Complete for the same reasons that the search
through rotamer space is NP-complete [51]. Though the genetic
algorithm seems to perform well, we do not expect it to find the
absolute best sequence for a given fitness function. For this reason
we ran the entirety of the multistate design algorithm several times.
We are thus not surprised that some of our trajectories generated
in later rounds produced worse results than some of the best results
from the earlier rounds. Similarly, the inaccuracy in the early
rounds of design did not preclude multistate design from
serendipitously finding some sequences that both destabilized the
homodimers and generated low-energy heterodimers (as several of
the best designs in Table 2 came from early rounds). That said,
this experiment does suggest that accuracy in negative design does
increase with the expansion of conformational sampling for the
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negative states. Indeed the problem with designs that were
generated in later rounds tended to be that the total energies of
the heterodimers were low, even though their binding energies
were quite good. This was a consequence of the set of binding-
energy-gap weights we examined in this study. The values we
scanned for the binding-energy-gap weight, 1 through 6, favored
the binding energy of the heterodimer over its total energy. That
is, the fitness function can be rewritten as fitness=AB+ wx
2% AG4p—wAG 44 —wAGpp. Therefore, any weight, w, above
0.5 favors trading 1 REU of heterodimer total energy for 1 REU
of heterodimer binding energy, and all the weights we scanned
were above this break-even point of 0.5. We also ran a set of
trajectories using weights between 0.1 and 0.5; however, these
trajectories failed to produce designs that sufficiently destabilized
both homodimers.

In response to this weakness in our original fitness function, we
ran a series of mulitistate design trajectories using an alternate
fitness function:

fitness2 = AB+w x bonus_homo_destab+ pen_het_destab

bonus_homo_destab= AA_destab+ BB_destab

AA_destab=hetOK * (—30—min(AG44,—12))

BB_destab=hetOK * (—30—min(AGpg,—12))

hetOK =AG p< —15

pen_het_destab=max(0,—24 +AG 4p)

where the terms AG 45, AG 14, and AGpp have the same definition as
in the original fitness function. Fitness function 2 aimed to stabilize
the heterodimer, to preserve the binding energy of the heterodimer
near the wildtype value of —24 REU, and to destabilize the
homodimer binding energies toward —12 REU. The weight, w,
applied to the bonus for destabilizing the homodimers was sampled at

Figure 2. Iterative expansion of the negative state set. A) the original TUSM homodimeric complex used as both the positive and negative
states in the first round of multistate design, B) the thirteen negative states used in the second round, C) the forty one negative states used in the
third round, and D) the sixty seven negative states used in the fourth round.

doi:10.1371/journal.pone.0020937.g002
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Figure 3. Binding energies differences for the heterodimerization redesign task. A) The distribution of AAGs for the homodimers vs the
heterodimers comparing single state design (SSD) against multistate design (MSD). Binding energies were computed by redocking each of the
complexes, and computing the difference between the lowest-energy from docking and the energies of the unbound monomers after their interface
residues were allowed to pack. B) Histogram of the homodimer binding energy errors for each of the four rounds of multistate design. Errors were
measured as the difference in the binding energies as computed by multistate design and as computed after redocking.

doi:10.1371/journal.pone.0020937.g003

values 0.5, 0.75, 1.0, 1.5, and 2.0. The purpose of the hetOK variable
was to avoid applying a homodimer-destabilization bonus to
sequences where the heterodimer did not have a good energy; this
decision was made to avoid creating local minima in the fitness-
function landscape in regions that were distant from the kinds of
sequences we were secking. The main feature of this second fitness
function is that, because it did not reward the heterodimer binding
energy beyond —24 REU, it did not seek to trade total energy for
binding energy and thus produced designs with better heterodimer

Table 2. Selected heterodimeric sequences.

total energies than the first fitness function. On average, the designs
produced with this fitness function had a total energy of —300.7
REU, whereas the designs from round four produced with the
original fitness function had an average total energy of —288.9 REU.
One of the sequences produced with the original fitness function
suffered from a pitfall where a packing failure in one of the monomers
produced an apparent binding energy of —70 REU for the
heterodimer and binding energy gaps of —30 and —50 REU; the
fitness function rewarded this sequence heavily, in spite of the fact that

Design No. Designed sequence Design Round Total Energy AGyp AG 4 AGpp
wt falaglvw/falaglvw - —307.3 —234 - -

1 HalaRVAF/HaGMgIMF 1 —298.5 —25.6 —15.6 —124
2 HaGMgAvVF/faRaRIIF 1 —304.1 —26.4 —134 -10.8
3 fSlaRMvY/HaGMgIAH 2 —298.5 —246 -124 —4.8
4 HaGMgTvF/YaMaRMIw 2 —299.7.9 —24.7 -12.0 -93
5 faRaRllw/HaGMgAVF 4 —305.0 —26.5 =79 —14.4
6 faRaRVvY/HaGMgIMF 4 —302.8 —27.5 -89 -11.9
7 HaTGglIMF/falaHlvw * —304.4 —26.9 —-174 —16.6
8 SaQaglvY/falaQIvF * —306.5 —23.2 -17.9 —15.2
9 HaGMglEF/falaRlvw * —3023 —26.0 -11.9 —133

@ PLoS ONE | www.plosone.org

Chain A and chain B sequences for selected heterodimer designs, their total energies, and binding energies, in REUs. The first six designs were selected based on the
total energy of the heterodimer (< —298 REU) and that both homodimer binding energies were destabilized relative to the heterodimer binding energy by 10 REU, the
last three designs originated from the “fitness2” fitness function, and though they generally had smaller binding energy gaps between the heterodimer and the
homodimers, their heterodimer total energies were generally better than designs produced by the first fitness function. The models for these designs output by
multistate design and those output by docking are included in the Supporting Information File S2.
doi:10.1371/journal.pone.0020937.t002
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the total energy of the heterodimer had been destabilized to —158
REU. Excluding this failed design improves the average heterodimer
energy for round-four designs to —293.3 REU, which is still several
energy units worse than those produced with the second fitness
function. The second fitness function both avoids the pitfall of
rewarding the destabilization of the (negative state) monomers, and of
overly preferring heterodimer binding energy to heterodimer total
energy.

Orthogonal Interface Redesign

As another test of the multistate design protocol, we decided to
redesign specificity in the Ral signaling network. Our design goal
for this task was to redesign RalA so that it would only interact
with RalBP1 and not with Sec5 or Exo84. For the first setup
scheme, any position on RalA that we thought could be used to
mmprove specificity for RalBP1 was allowed to change. This set
included positions which have already been shown to be important
for specificity with the various Ral effectors. The results from
setup-scheme 1 are shown in Table 3. The predicted binidng
energies given in this table reflect energies computed after
redocking all of the complexes output by the design protocol.
After only one round of design and docking, many designs showed
large destabilizations to the RalA/Sec5 and RalA/Exo84
interfaces while maintaining native-like Ral/RalBP1 binding
energies.

It was reassuring to us to see that the multistate protocol
recapitulated some known specificity-changing mutations. Lysine-
47 in wild-type RalA was mutated most often to glutamic acid.
Fukai et al. found that the K47E mutation weakens binding to Sec5
10-fold and to Ex084 about 40-fold [45]. Alanine-48 of RalA, part
of the switch I region and at the interface of all three effectors, is
mutated to arginine in all of the round one and most of the round
two designs. A tryptophan mutation at this residue was previously
found to decrease binding of Exo84 but had no effect on Sec)
[45]. We suspect that this tryptophan’s effect on Ex084 binding is
due to steric repulsion and hypothesize that the designed arginine
at this residue would work equally well. Replacing arginine-52
with a tryptophan decreases Sec5 binding ~ 100-fold while having
no effect on Exo084 binding [45]. Rosetta did not design any
tryptophanes at this position, but did select other bulky
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hydrophobic residues including phenylalanine and methionine.
Not all specificity changing mutations were recovered. The
multistate design protocol failed to identify the destabilization of
both Sec5 and Exo84 binding induced by the glutamic acid
mutation at residue 49 [48]; instead, it chose the wild-type aspartic
acid at this position in all of the designs.

In the second setup scheme, multistate design found many new
RalA mutations that have not been previously characterized. As
described in the Methods section, the difference between the two
setup schemes was the set of residues allowed to change. Briefly,
the second scheme included all of the positions varied in the first
scheme except positions 38, 48, and 49, and the second scheme
allowed more residues at the Ral/RalBP1 interface to vary. The
results from this setup scheme and the results from the single-state
design control runs are shown in Figure 4. Again, multistate design
succeeded at destabilizing the undesired interactions better than
could be achieved simply by positive design for a single state, as is
shown by the points in the lower left quadrant of Figure 4. Single
state design produced designs that have good binding energies for
the target interface Ral/RalBP1, but they also have good binding
energies for the RalA/Exo084 interaction (Table 4). Only the
designs created with multistate design showed significant destabi-
lization of both off-target interactions, RalA/Secd and RalA/
Ex084. As in the heterodimerization task, we calculated the
difference in binding energy gaps between what was reported by
multistate design and what was reported by docking. The mean
binding energy errors for rounds one, two, and three were 36.7,
11.4, and 7.2 REU showing that multistate design’s accuracy at
negative design increases as the number of negative states
increases.

The designed amino acids from this second design setup fell into
three categories: those which appeared important for RalA
stability or RalBP1 binding (often including the native amino
acid), those which appeared to destabilize either Sec5 binding or
Ex084 binding, and those which showed no clear preference. The
sequence profile of these designs is given in Figure 5. In most of the
designs, multistate design chose the native Ral amino acid for
positions which are important for Ral stability, or for RalBP1
binding. For example, serine-50, which is consistently recovered,
forms hydrogen bonds with two residues on RalBP1, threonine-
437 and glutamine-433. Similarly, tyrosine-82, in the core of the

@ PLoS ONE | www.plosone.org
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Table 3. Selected orthogonal interface sequences from setup-scheme 1.
Design round Design no. Designed sequence Total Energy AGyp AGup_4c AG4p_4p M

AB AC AD
- wt lyek adsr ge —463.0 —226 2.7 87 - - -
1 1 DWQE Rdsr ED —463.6 —244 —16.7 —185 0.1 1.4 1.7
1 2 DWQE Rdsr ED —463.7 —237 —16.2 —183 0.1 4.7 5
2 3 DKWW Yds| Te —460.2 —21.6 —15.7 —=17.7 0.2 25 52
1 4 DRQE RdsM HD —461.3 —238 —-17.9 —154 0.1 23 22
1 5 DRQE RdsM HD —463.4 —23.0 —12.8 —204 0.1 1.1 4
1 6 DRQE RdsM HD —463.6 —23.7 —14.5 —18.6 0.1 26 24
2 7 DKWW Ydsl TD —461.0 —223 —14.3 —18.5 0.1 3.7 58
2 8 ELQW FdsF Ee —457.6 —22.1 —16.3 —15.7 0.1 24 4.3
1 9 DWQE Rdsr ED —461.1 —235 —15.0 —16.6 0.1 1 33
2 10 DKWW Rdsl SW —458.8 —22.0 —145 =171 0.2 52 53
Sequences, energies (in REUs), and RMSD’s of designs created multistate design (MSD). All of the MSD designs shown have binding energy gaps between the positive
and negative states greater than 10 REU.
doi:10.1371/journal.pone.0020937.t003
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Figure 4. Binding energy differences for the orthogonal interface redesign task. Binding energy differences between the positive state AB
(Ral/RalBP1) and negative states AC (RalA/Sec5) and AD(RalA/Exo84) following multistate design (MSD) and single state design (SSD). Binding energy
differences between the native AB and AC, and AB and AD states (black) are shown for reference. Consecutive rounds of MSD (red, blue, and purple)
on protein A residues, listed in Methods, decrease the binding energy to C and D by a larger magnitude than SSD. Two different methods of SSD are
shown: SSD 1 (green) allows design on the same residues as MSD, and SSD 2 (orange) allows design on residues that are at the AB interface. Neither
of the SSD methods explicitly disfavor binding to C or D. AB binding energy maintained, in all cases, between —22.0 and —25.0 REU.

doi:10.1371/journal.pone.0020937.9g004

interface, maintains its contact with RalBP1 histidine-413. The
wild type leucine at the very buried position 67 is the most
frequently selected amino acid at that position. Tyrosine is also
designed frequently at this position because it can form a good
intramolecular hydrogen bond with arginine-78. Similarly,
multistate design preferred arginine or histidine, instead of the
wild-type lysine, at position 16 because of weak intramolecular
hydrogen bonds.

Multistate design readily identified positions that destabilized
the negative states. Ral positions 36 and 52 are important
specificity positions for Secd. Multistate design favored lysine at
position 36 because it creates a clash with Secb residue glycine-28.
Similarly, it liked to mutate position 52, an arginine in wild-type
Ral which points out into solvent, to phenylalanine, leucine, or
isoleucine. These residues all create clashes with threonine-28 on
Secd. Several positions appear to be important for preventing
association with Exo84. Multistate design frequently mutated
residue 14 to glutamic acid which clashes with a loop in Exo084.
The wild type asparagine at position 81 in Ral makes two
sidechain-backbone hydrogen bonds with Exo84. Multistate
design changed this position to aspartic acid exclusively, and its
sidechain cannot form hydrogen bonds in the low-energy redocked
Ex084 structures. This aspartic acid also interacts favorably with
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RalBP1’s lysine at residue 421 in the Ral/RalBP1 design models.
Any large, bulky residue at position 78 can produce a clash with
Exo084. Multistate design favored placing arginine at this position,
but even leucine is able to destabilize this interface. Finally,
multistate design almost always placed either the wild-type alanine
or a serine at position 77. Serine is a good choice for this position
as it forms a small clash with the Exo84 backbone and adds a
favorable interaction with RalBP1 residue glutamine-417.

A number of positions, specifically 47, 73, 74 and 75, displayed
no clear preference among the designed sequences. Multistate
design generally favored placing polar amino acids at these
positions given that they are surface-exposed. Except for position
47, none of these positions look like they could provide significant
amounts of specificity to the interface. The wild type Ral tyrosine
at position 75 participates in a hydrogen bond with Exo84 serine-
276. Multistate design removed this favorable interaction, and
placed mostly histidine and arginine at this position. Positions 63
and 65, natively glutamine and aspartic acid, respectively, are in
the middle of a beta-sheet in RalA and were also mutated to a
wide variety of amino acids. Multistate design displayed a small
preference for glutamic and aspartic acids at these positions,
respectively. These mutations make sense as in the wild-type Ral/
RalBP1 structure an arginine residue on RalBPl, arginine-434,
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Table 4. Selected orthogonal interface sequences from setup-scheme 2.
Design no. Designed sequence Total Energy AGyp AGp—ac AGp_4p M

AB AC AD
wt lkyk srqd ledy ainy —466.2 —225 2.8 8.8 - - -
ssd,1 VRYE srEd YDKy SRDy —4725 —24.0 -22 —6.5 0.1 0.3 0.2
2 VRyF srEd FDEH STDy —469.1 -237 -19 —6.5 0.1 0.2 0.3
3 VRYE srEd YDKy SRDy —472.2 —233 -0.5 —4.4 0.1 0.1 0.2
4 VRYE srEd YDKy SRDy —472.1 -233 -37 -53 0.1 0.2 0.2
5 VRYE srEd YDKy SRDy —472.0 —23.1 -32 —5.4 0.1 0.1 0.4
6 VRyE srEd YDKy SRDy —4719 -23.0 -28 —42 0.1 0.1 0.1
7 VRyE srEd YDKy SRDy —470.8 —229 0.9 —54 0.1 0.1 0.1
8 RRyE sHEE YDKy SRDy —471.1 -226 2.1 -73 0.2 0.1 0.9
9 VRYE srEd YDKy SRDy —471.1 —224 1.2 —53 0.1 0.1 0.2
10 VRYyE srEd YDKy SRDy —471.1 —223 24 —4.3 0.1 0.1 0.1
msd, 1 WFKF sFSG IKQH SWDy —460.4 —259 -17.0 -11.8 0.1 4.5 0.8
2 EHKN sFEd YGRE STDF —465.5 —25.0 —15.8 —16.2 0.1 6.6 2.2
3 RRTQ sLVV YKRE SSDF —465.6 —25.0 -129 =155 0.0 6.0 13
4 DHTF sITd IKNQ SWDy —463.2 —24.7 —10.1 —138 0.1 0.6 1.0
5 EHKT sFES IKSR SLDy —462.6 —245 —14.6 =187 0.1 6.2 0.4
6 EHKT sFES IDSR SLDy —464.5 —24.5 —15.5 —14.9 0.1 6.2 0.4
7 KRRF sLVV IKQH SWDy —462.5 —24.2 —14.4 —145 0.1 0.9 33
8 EHKT sFES IDSR SLDy —464.3 —24.1 —14.8 —14.2 0.1 54 0.6
9 EHKT sFES INSR SLDy —464.0 —24.0 —145 —15.8 0.1 5.4 1.8
10 EHKG sFEd IKQH SRDy —464.1 —238 —149 -12.8 0.1 6.3 4.8
Sequences, energies (in REUs), and RMSD's of designs created with single state design (SSD) and multistate design (MSD). All of the MSD designs shown have binding
energy gaps between the positive and negative states greater than 10. None of the SSD designs are predicted to have this amount of specificity.
doi:10.1371/journal.pone.0020937.t004

bits

weblogo.berkeley.edu

14 16 36 47 50 52 63 65 67 73 74 75 77 78 81 82

Figure 5. Sequence propensity of RalA residues from multistate-design. Sequence logo of the designs produced by multistate design in
setup-scheme 2 for the RalA orthogonal interface redesign task. Positions 50, 67, and 16 showed preferences for amino acids that stabilized the RalA
monomer or that stabilized the Ral/RalBP1 complex. Positions 36 and 52 showed preferences for amino acids that destabilized the RalA/Sec5
interaction; positions 14, 77, 78, and 81 showed preferences for amino acids that destabilized the RalA/Exo84 interface. Positions 47, 73, 74 and 75
displayed no clear preferences, except for non-wildtype amino acids, as the native amino acids formed favorable contacts with either Sec5 or Exo84.
doi:10.1371/journal.pone.0020937.9005
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interacts with the aspartic acid at Ral position 65. This same
arginine residue can interact with a glutamic acid at position 63, if
an aspartic acid at position 65 is not present.

Discussion

Here we have presented a generic implementation of multistate
design which allows users to rapidly customize the fitness function
to be optimized, and have shown how the implementation can be
used in two related, yet distinct, design tasks. In fact, the ease with
which new states can be added and their energies managed
through the fitness-function-definition file made it possible to
perform multiple rounds of negative design with increasing
diversity in the conformations available to the negative states,
thereby increasing multistate design’s accuracy, which to our
knowledge has not previously been reported.

The implementation separates its search through sequence
space and conformation space as many prior examples of
multistate design have [26,27,29,52], as opposed to their
simultaneous optimization in the belief-propagation algorithm
presented by Fromer et al. [53], or the reduced-representation,
sequence-space-only optimizations presented by Nautiyal et al. [54]
and by Grigoryan et al. [28,55]. The explicit rotamer optimization
we perform in our inner loop was able to find interesting through-
residue interactions where one residue can pre-order a neighbor-
ing residue such that this second residue’s interaction with a third
residue would be unfavorable (Figure 6A); in contrast, Grigoryan
et al. ’s [55] score function, which represents amino-acid pair
interactions by their average rotamer-pair-interaction energies,
would be unable to capture the pre-ordering effect that the first
residue exerted on the second.

In contrast to the multi-specificity algorithms presented by
Humphris and Kortemme [52] and Fromer et al. [53,56], the
implementation is suited to perform both positive and negative

BJ b
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design. We have tuned the parameters of our genetic algorithm to
behave as well as Rosetta’s existing single-state design algorithm at
single-state design problems, but we have not compared the
genetic algorithm’s performance to the intriguing FASTER-MSD
algorithm presented by Allen and Mayo [57], whose implemen-
tation starting from our existing code should be straight forward.

Our design protocol does not explicitly consider side chain
entropy, as the energy of a sequence threaded onto a backbone is
calculated by searching for the combination of rotamers with the
lowest energy. In contrast, in their minDEE/K* algorithm
Georgiwev, Lillen and Donald [58] return a distribution of
energies for alternative side chain packing arrangements of a single
sequence. Such distributions may be useful, as they could capture
the sidechain entropy of unbound conformations, though the role
sidechain entropy plays in protein structure remains unclear
[569,60].

It turns out that there are many more pitfalls of performing
negative design than of performing positive design. For our
implementation to be robust to any possible fitness function, where
any state could end up playing both a negative and a positive
design role, we had to ferret out the several ways in which
multistate design can fail. In the remainder of this section, we
present our insights into these challenges as they might prove
useful for other researchers interested in performing negative
design. These challenges derive from three problems: suboptimal
rotamer placement, the missing rotamer problem, and the fixed-
backbone assumption.

Suboptimal rotamer placement

If, when optimizing the rotamers for a negative state, the
optimization algorithm should fail to find the optimal energy (e.g.
by leaving a collision between two rotamers), then the calculated
fitness will be better than what it would be if the optimization
algorithm had succeeded; the larger the failure, the better the

1

Figure 6. Curious cases from negative design. A) Placing both F52 and W63 on RalA (green) destabilizes its interaction with Sec5 (magenta). In
the docked conformation, the F52 and W63 rotamers collide in the least-awful-rotamer placement available. In the unbound state (orange) these
residues relax out of collision. W63 disrupts binding with Sec5 through F52, but neither residue disrupts binding on its own. Unfortunately, W63 is
incompatible with the RalA backbones from the crystal structures, though it is compatible with the RalB backbone in the NMR structure. Here, a
discrepancy between the backbone conformations of Ral in its various states lead to a questionable design. B) The Missing Rotamer Problem
encountered while trying to redesign chain E of human uracil-DNA glycosylase bound to a protein inhibitor (PDB ID: TUGH). The mutation F267 on
chain E (green) is consistently chosen by multistate design when optimizing for binding energy, not because F267 forms favorable contacts with its
(polar) neighbors on chain | (cyan), but because the rotamer it finds in the bound state is absent from the set of rotamers for the unbound state; the
best available rotamer for the unbound state (orange) has a high-energy collision with the C atom on residue 279. The green rotamer collides with
the chain E backbone (with an energy ~ 5.1 REU) and, in the unbound, is pruned by Rosetta’s bump check machinery (threshold of 5.0 REU); however,
in the bound state, slightly favorable interactions with the chain | backbone rescue this rotamer by pushing its energy just beneath the bump-check
threshold (~4.9 REU). Placing phenylalanine at 267 and anything besides glycine at 279 produces a large energy difference in the bound and
unbound states which masquerades as an excellent binding energy.

doi:10.1371/journal.pone.0020937.9g006
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computed fitness will be. There are two ways that packing
algorithms can fail: systematically and randomly (Figure 7). Both
are problematic, but systematic failure — where a portion of a
sequence is consistently mispacked — corrupts the entire popula-
tion of sequences (Figure 7A). That is, if a portion of a sequence
leads to a systematic packing failure, then point mutants of that
sequence will also lead to systematic packing failures and will also
have very favorable fitnesses. Eventually the pool of sequences the
genetic algorithm keeps will fill entirely with those sequences
which produce the systematic packing failure. None of the designs
produced by such a trajectory are worth examining. On the other
hand, random failure, where as a rare event a collision remains
unresolved in a negative state, will not result in the corruption of
the entire pool of sequences. The neighboring sequences to the
one which produced the packing failure will not be any more
prone to packing failures than any other, so the pool of sequences
the genetic algorithm keeps will not fill up with sequences that
produce packing failures (Figure 7B).

Since packing failures are likely to occur in any given multistate
design trajectory, it is important to select a fitness function that
avoids overly rewarding mispacked sequences. In the first fitness
function used in the heterodimerization task, packing failures of
the monomers produced large apparent binding energies which in
turn were seen as very favorable. That is, once the homodimeric
states were fully destabilized, the fitness function simplifies to:
fitness=AB+w *x2x AGyp=AB+w %2 x (AB—A— B). Here,
because the monomers’ energies sit behind a minus sign, they
are negative states; their destabilization would improve the fitness.
However, in this task, there is no driving motivation to destabilize
the monomers; in fact, destabilizing the monomers to the point of
their unfolding would be highly undesired. To address this
problem, we tested a second fitness function to limit the reward for
improving the heterodimer binding energy. This fitness function
capped the reward for the heterodimer binding energy once it
reached —24 REU; effectively, the monomers were negative states
only if the binding energy was less than —24 REU, and were no
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longer negative states once the binding energy crossed that
threshold.

The missing rotamer problem

If a rotamer is present in a positive state (e.g. the bound
conformation of two chains, A and B) and absent in a
corresponding negative state (e.g. the unbound conformation of
chain A), multistate design will exploit its absence producing
designs of dubious quality (Figure 6B). Just as in the suboptimal-
rotamer placement case, if a negative state (but not its
corresponding positive state) is assigned a high energy, then the
computed fitness will be better than it should be. Absent rotamers
allow this opportunity: the “good rotamer” that’s needed in the
negative state is absent and is chosen in the positive state. If the
rotamer had not been absent, then the sequences leveraging the
missing rotamer would not have produced favorable fitnesses.
Missing rotamers effectively create systematic packing failures.

Rosetta’s logic for building rotamers has three opportunities to
build different rotamers for different states. First. Neighbor-
dependent extra-rotamer building logic: by default, the addition of
extra rotamers by taking samples at ¢ for x; and y, through the
use of the “-ex1” and “-ex2” flags is only performed at residues
with more than 18 Cp neighbors within 10 A. Residues in
unbound states often have fewer neighbors than the same residues
in the bound states, so the default behavior would generally build
fewer rotamers in the (negative) unbound states than in the
(positive) bound states. To avoid this problem, this default
behavior is disabled in multistate design so that extra rotamers
are built at all residues. As a consequence, multistate design has to
consider many more rotamers than does single state design.

Second. Backbone-collision filter to remove rotamers (bump check in
Rosetta jargon): Rosetta calculates the Lennard-Jones energy for a
rotamer with the background and discards rotamers whose energies
exceed a threshold (as is commonly done). We have encountered a
case where a phenylalanine rotamer on one chain in the unbound
state collides with its backbone slightly beyond Rosetta’s default

Figure 7. Packing failures from the (negative state) monomers of 1TUSM. A) Due to the nature of the BMEC+sPR algorithm, it systematically
failed to relieve the Y28/T44 collision in the presence of M46. The colliding rotamers are shown in green; the collision-free placement is shown in
orange. The collision is highlighted with a red circle. When multistate design encountered these three amino acids, the bound state produced a
decent energy, the unbound state produced a high energy, and the strength of the apparent binding energy caused the fitness to be exceptional.
Since this is a systematic failure, all the sequences in the genetic algorithm’s pool at the end of the design trajectory that produced this sequence
contained these three amino acids and their unrelieved collision. Fortunately, not all multistate design trajectories encountered these three amino
acids together. B) The Multicool Annealer also fails randomly; in one multistate-design trajectory, a single packing failure left an unresolved collision
(red circle) between E24 and the backbone of D20 (green sidechains) that was in fact resolvable (orange sidechains). This collision made this
sequence appear to have the best fitness. Since this was a random and not a systematic failure, none of the other sequences in the genetic
algorithm’s pool exhibited this flawed packing.

doi:10.1371/journal.pone.0020937.g007
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threshold for exclusion, but is rescued in the bound state by favorable
contacts across the interface (Figure 6B). When multistate design
optimized the binding energy across this interface, it always selected
phenylalanine at this residue, in spite of high energy in the bound
state, because the energy in the unbound state was dramatically worse
and the apparent binding energy was excellent. Unfortunately, the
solution to this problem would not have been to simply use the
repulsive component of the Lennard-Jones term in the bump-check
scoring and to exclude the attractive component which, here, rescued
the high-energy rotamer. If the tables had been turned so that the
dimer was the negative state, the monomer the positive state, and
bump check pruned the PHE rotamer for the dimer but not the
monomer, then exactly the same situation would have arisen where a
missing rotamer would have produced an apparent, but incorrect,
destabilization of the dimer over the monomer. Our solution to this
problem was to disable the bump check filter. As a consequence,
multistate design has to consider many more rotamers than does
single state design.

Third. Backbone-dependent rotamer building: Rosetta uses the
2002 version of Dunbrack’s backbone dependent rotamer library
[61]. This means that the set of rotamers built for one backbone
might not be the same set of rotamers built on another backbone.
This problem unfortunately changes the “fixed backbone
assumption” of multistate design into a somewhat less desirable
“fixed backbone requirement.” In light of this problem, we
restricted our simulations to only compare energies between states
with the same backbone conformations. In our docking trajecto-
ries, we similarly performed rigid-body docking only to prevent
alternate backbones from being added into the negative states in
subsequent rounds. The missing rotamer problem could be
avoided entirely if, instead of performing discrete rotamer
optimization, we performed continuous rotamer optimization
[62,63], but this would surely come at the price of longer running
times since rotamer-pair energies could not be saved and reused.

Fixed backbone assumption. There are three ways in which the
fixed-backbone assumption affected our results. The first two
relate to the fixed-backbone assumption’s restrictions on the rigid-
body degrees of freedom connecting the two chains, the third
relates to the restriction on the internal degrees of freedom in each
individual chain. First, we found in preliminary trajectories, before
we introduced the cap at 0 for the binding energies of the
undesired interactions, that multistate design would often
introduce the largest collision it could into the negative states in
order to increase the gap between the positive- and negative-state
energies. Allen and Mayo observed a similar behavior in negative
design and chose to cap repulsive interactions between residue
pairs at +50 energy units [57]. In the heterodimerization task,
multistate design often introduced collisions into one of the two
homodimers while failing to destabilize the other homodimer. The
fitness function rewarded a pair of binding energy gaps of (—1000
REU, +3 REU) more than it rewarded binding energy gaps of
(—10 REU, —10 REU) even though a binding energy gap of
—1000 REU was physically impossible. This problem is due to the
fixed backbone assumption. Since the backbones are held fixed,
they cannot separate to remove strain across the interface. There is
a subtle issue here: once the apparent binding energy from a
particular conformation goes positive, that conformation can no
longer be considered valid. Binding energies cannot be positive.
Instead, the model of two proteins held rigidly docked against each
other breaks down. There are two solutions to this problem: use a
cap in the fitness function to limit the negative-state binding
energies at zero (which we did) or add an alternate undocked
conformation containing both chains, but where the chains are
physically separated by ~ 20 A; this “undocked” conformation for
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the dimer would presumably be chosen as the minimum energy
conformation once collisions had been introduced into all the
other docked conformations. The advantages of the first solution
are that it avoids any errors stemming from packing discrepancies
between the unbound monomers and the undocked dimer, and
that it is one state (one CPU) per negative species cheaper to
execute. The use of a cap on the binding energies for the negative
states is original to this study and has the clear advantage of
focusing multistate design’s efforts on stabilizing the positive states
once the negative states have been fully destabilized.

Second, we found that rigid-body docking was often able to
relax away collisions present in the homodimeric sequences that
came out of the early rounds of design. Multistate design can only
design against states it can see, and there are a surprising number
of low-energy docked conformations for our homodimers. Keating
et al. [64] similarly noticed that allowing their backbones to relax
after introducing mutations improved their ability to predict the
adopted conformations and binding energies of their hetordimeric
coiled-coils. Havrakek and Harbury [26] noticed that a single
round of multistate design overstated the destabilization of the
heterodimeric species they were designing against; they suggested
that the addition of more states could overcome this problem and
our i silico results are consistent with this hypothesis.

The third way that the fixed backbone assumption impacted our
results is more difficult to describe. In the setup-scheme 1 designs
for the RalA task, multistate design found a pair of mutations,
W63 and F52 (Figure 6A), where the binding with Secd was
disrupted, but at the cost of destabilizing the RalA backbones
taken from the crystal structures (states 4, and Ay). In contrast,
the NMR models of RalB bound to RalBPl were able to
accommodate these mutations. Since the 4, and A4 energies of
the RalA monomers from the negative states were invisible to the
fitness function, multistate design dutifully chose these mutations.
The destabilization of the backbone conformation for RalA from
the Sec)d crystal structure is worrisome in this case because the
section of the RalA backbone being designed has such high
agreement between the Sec5-bound and Exo84-bound crystal
structures (though, the RalBPl-bound NMR models showed
significant disagreement). We did not want to disrupt the crystal
conformation. The fixed-backbone assumption was more of a
requirement in this case: we designed for a backbone we were
unsure about (the NMR model) without considering a backbone
we were Interested in preserving (the crystal backbone), but, if the
same backbone had been present in all three models, we would not
have encountered this issue. We tried twice to skirt this problem by
docking the crystal structure of RalA against the RalBP1 models,
and by docking the RalB-NMR structures against the Sec5 and
Ex084 models, but neither approach resulted in good docking
funnels or satisfactory binding energies.

There were two possible solutions to this problem: to modify the
fitness function to disfavor the destabilization of the RalA crystal
structure, or to redefine the set of positions which are allowed to
design. Taking the first approach, one could have included the
energies of the crystal forms of the unbound RalA states in the fitness
function: fitness=AB+w (AAGAB,AC + AAGAB,AD) +A.+Ay.
Such a fitness function has the unfortunate consequence of triple-
counting stabilizing mutations to the RalA structure. Alternatively,
one could penalize the destabilization of the crystal forms of
RalA beyond some threshold: fitness= AB+w * (AAG4p ac+
AAGAB,AD)—i—max(Ac—)c,0)2+max(Ad—y,0)2 where x and y
are some predetermined constants representing an upper bound on
how destabilized the RalA monomers could become before the
penalty kicks in. We went with the second option and expanded the
set of designable positions. This had the serendipitous effect of
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favoring sequences on the RalA backbone which were compatible
with all three structures; the fitnesses for the best designs which lacked
the F52/W63 pair were better than those with them.

Supporting Information

File S1 “Protocol capture” file that contains the input files,
command lines, and support scripts that were used in this
computational study.

(BZ2)

File 82 Design models generated by this study for both the
heterodimerization task and the orthogonal interface redesign task.

(BZ2)
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