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Abstract

A recent study by Bromenshenk et al., published in PLoS One (2010), used proteomic analysis to identify peptides
purportedly of Iridovirus and Nosema origin; however the validity of this finding is controversial. We show here through re-
analysis of a subset of this data that many of the spectra identified by Bromenshenk et al. as deriving from Iridovirus and
Nosema proteins are actually products from Apis mellifera honey bee proteins. We find no reliable evidence that proteins
from Iridovirus and Nosema are present in the samples that were re-analyzed. This article is also intended as a learning
exercise for illustrating some of the potential pitfalls of analysis of mass spectrometry proteomic data and to encourage
authors to observe MS/MS data reporting guidelines that would facilitate recognition of analysis problems during the
review process.
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Introduction

Identification of proteins in complex biological samples through

MS/MS peptide fragmentation analysis is a mature technique,

supported by multiple data analysis packages [1]. The standard

approach involves digesting proteins into peptides using a

proteolytic enzyme, most commonly trypsin, then sequentially

isolating individual peptides in the mass spectrometer, fragmenting

the peptides, and measuring the masses of the resulting

fragmentation products [2].

Peptides are identified by database searching strategies.

Starting from a protein database containing potential proteins

that could be present in the sample, these proteins are digested in

silico by a search engine; e.g. if trypsin was used as the proteolytic

enzyme, the search engine would calculate the masses of all

peptides that could be produced by cleavage after lysine and

arginine residues, to create a virtual peptide database. For

identification of peptides in the sample, the search engine first

filters this peptide database to determine all potential peptides

that have the same mass as an observed peptide in the sample. It

then performs an in silico fragmentation of each of these peptides

and compares the list of fragment ions that would be expected

from each of the sequences in the peptide database with the list of

fragment masses observed in the fragmentation spectrum derived

from a peptide in the sample. Results are scored, depending on

the search engine used, on the basis of cross-correlation between

theoretical and observed spectra, or using scoring systems based

on empirical or statistical analysis of fragments observed in

spectra. The result is a best-scoring match that may be correct or

incorrect.

These scores are converted into a statistical measure such as a

probability or an expectation value by either theoretical or

empirical means to try to determine which assignments are

reliable. For example, widely used tools for post-processing results

from the search engines such as Sequest [3] are the Peptide and

Protein Prophet programs [4]. These re-score results on the basis

of several metrics; for example, as peptides are derived from

proteins, they will give increased score to identifications of peptides

present in proteins that have already been identified as being

present in the sample on the basis of other peptide identifications.

The software then makes the assumption that within the results

there will be two distributions of scores present: scores of spectra

matched to peptides that are correctly assigned and scores

matched to spectra that are products of random matches. The

software tries to deconvolve these two distributions to allow

conversion of scores into a probability of an assignment being

correct.

Having determined a score threshold to be used for reporting

results a second metric, a false discovery rate (FDR), can be

calculated that measures the reliability of a set of results as a

whole. The standard approach to determine this global error rate

is to search data against a decoy database of the same size as the

one queried for peptide and protein identification, but one that

does not contain any correct peptide sequences. The most

common way to create such a database is to shuffle or reverse the

sequences present in the normal database. Based on the number

of spectral matches to peptides in this decoy database above a

given threshold score it is possible to estimate the number of

random matches in the results from the target normal database

[5].

Unreliable results can be produced by the use of an

inappropriate database, incorrect search engine parameters, or

employment of an unsuitable acceptance score threshold. As a

result, the proteomics community has outlined a series of
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publication guidelines that describe minimal information required

in order to allow independent assessment of MS proteomics results

[6,7]. They also encourage the deposition of raw MS data sets in

public repositories such as Tranche [8] that allows independent re-

analysis of data.

In this manuscript, we show that the identifications of Iridovirus

and Nosema in three representative honey bee samples reported

by Bromenshenk et al. [9] resulted from the use of an inappropriate

database.

Results

Searching the honey bee-derived protein sample data against

all species in the NCBI non-redundant database resulted in the

identification of seventy to ninety previously unreported Apis

mellifera honey bee proteins in each sample (Supporting

Information S1). In addition to these honey bee identifications,

highly conserved proteins such as actin, tubulin, ribosomal

subunits and heat shock proteins were matched to other insect

species such as Nasonia vitripennis, Drosphila melanogaster, and

Bombyx morii. These are likely mis-identified species that

should belong to honey bee proteins, but could have been

missed due to incomplete sequence information for the Apis

genus in the NCBInr database. Finally, a few proteins were

identified from unrelated organisms including tick, tuberculosis,

and spider; however, these proteins were identified based on

one- or two-peptide matches and cannot be expected to be

reliable species identifications. The only exception is the

identification of human keratin peptides, which are common

laboratory contaminants.

Furthermore, these searches did not match any peptide spectra

to either Nosema or Iridovirus, the major species previously

reported [9]. Nosema and Iridovirus are both well represented in

the NCBInr database, with 2135 and 505 entries respectively,

compared with 9,746 Apis mellifera entries. Over one third of the

spectra matched in the previous report were automatically

reassigned to highly abundant honey bee proteins in the Protein

Prospector searches, reported in Supporting Information S2. An

example of a reassigned spectrum is shown in Figure 1. Increasing

the precursor mass error tolerance, or reducing the database to

sequences only from the Apis genus allowed for a few additional

peptide identifications (indicated in italics in Supporting Informa-

tion S2). Seventy-four out of 172 spectra previously matched to

Nosema or Iridovirus were reassigned in this analysis. The other

Figure 1. Example of a reassigned spectrum, with m/z 803.3 (2+) at 102.371 minutes in sample ECBC_Bees03. A) Assignment to
peptide sequence IMNANVNELILNTR2+ from Acc#58585098 Apis mellifera major royal jelly protein 1. B) The published assignment to
TILTTKVQNINIEK2+ from Acc# NP_149513.1 from Iridovirus IIV6 protein 050L.
doi:10.1371/journal.pone.0020873.g001
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spectra did not return a confident identification, despite

considering Nosema and Iridovirus proteins. In all proteomic

analyses there are a significant number of spectra acquired that

cannot be reliably assigned, so having many unassigned spectra is

normal.

Discussion

Including all relevant species in database searches for these

samples from the Bromenshenk et al. study [9] has resulted in the

corrected identification of peptides derived from several highly

abundant honey bee proteins such as mellitin, vitellogenin and

major royal jelly proteins. These peptide identifications were

predictable, because honey bee proteins would be expected to be

orders of magnitude greater in abundance over any microbial

pathogens that may have been present in the original honey bee

samples, and are corroborated by the matching of several peptides

to a single protein rather than single peptide identifications

reported in the previous analysis.

At issue in the previous analysis is the usage of a highly restricted

database of only 978 entries. Over half of these entries were

Iridovirus, and no honey bee sequences were included. This is a

case where the journal publication guidelines in the proteomics

community [6,7] would have redirected the analysis before

publication of false identifications. They clearly state: ‘‘If the

database or library used is very small (,1000 entries) or excludes

common contaminants, justification must be specifically provided

since this may generate misleading assignments and an inaccurate

false discovery rate estimate.’’

All the identifications reported in the previous analysis of these

samples had Protein/Peptide Prophet probabilities greater than

0.95. The reason for these grossly inaccurate probability

estimates is that Peptide Prophet makes the assumption that

there are correct answers among those submitted to it for

analysis. If this is not the case it ends up modeling the highest

scoring incorrect answers as being reliable assignments. If the

authors had tried to calculate a FDR for their dataset by

searching against a decoy database, the problem would have been

immediately apparent, as they would have observed as many

matches to the decoy database as to the target normal database.

Target-decoy database searching is easy to perform, so is a

sensible step in all proteomic analyses to get a second

independent measure of reliability to results independent of the

probabilities reported by other software.

A recent article by Foster [10] addressed the high probability of

a high false discovery rate in the Bromenshenk study, even in the

absence of having access to raw data files. The analysis here agrees

strongly with Foster’s arguments that were based on the logic of

protein abundance and the frequency of missed trypsin cleavages

reported in the Bromenshenk study. The analysis here identified

peptides with missed trypsin cleavages of ,17% for single missed

cleavages and ,5% double missed cleavages, consistent with

Foster’s analysis.

We conclude that there is no evidence for the presence of

Iridovirus or Nosema peptides in a representative set of data from

the Bromenshenk study, and that most if not all previously

identified peptides can be explained as deriving from highly

abundant honey bee proteins. This does not preclude evidence

from other work, such as genomic sequencing efforts (Runckel,

Flenniken et al. manuscript under review), which do support the

presence of Nosema in similar samples. The use of a severely

restricted database that excluded honey bee sequences in the

previous study seriously draws into question their evidence of

linkage between colony collapse disorder and the presence of

Iridovirus and Nosema infection.

Methods

Three representative sample files were analyzed from the

Bromenshenk et al. study and these have been made publicly

available through deposition in Tranche at ProteomeCommon-

s.org (data may be downloaded using the following hashes:

0BSo6r0GEZffeibHTbbdfkoQah4QIgQyfbrPR8NVqSY5/RD5G

BguMg6PgYF5ZX/RtaKn0eove2FUZjhSUWR7FOYbCX0AAA

AAAAAEEA = = ). Previous analysis of these data was reported in a

supplementary report titled ECBC-TR-814, obtained through the

editors of PLoS One, and in this report the results for ECBC-

Bees02, ECBC-Bees03 and ECBC-Bees04 were identified as Test

10, Test 34 and Test 32 respectively.

Data were processed and database searched using Protein Pros-

pector v. 5.7.1 (http://prospector.ucsf.edu/prospector/mshome.

htm). Data were searched against all species in the NCBI non-

redundant database from 6/17/2010, since the samples were

prepared from whole honey bee soluble lysates and were hypothe-

sized to contain multiple microbes [9]. For false discovery rate

estimation, this database containing 11,205,216 entries was concat-

enated with a duplicate database containing 11,205,216 randomized

entries, for a total of 22,410,432 entries in the final database [5].

Peptide matching was performed using trypsin as the digestion

enzyme, and mass accuracy was set at 0.8 Da for both parent and

fragment masses. Searches were performed allowing for one non-

specific trypsin cleavage per peptide and two missed cleavages, as

no protease inhibitors were included in the sample preparation

reported. Up to two variable modifications to side-chains were

allowed from the following list: acetyl (protein N-term), acetyl+ox-

idation (protein N-term Met), GlnRpyro-Glu (N-term Gln), Met-

loss (protein N-term Met), Met-loss+acetyl (protein N-term Met),

oxidation (Met), oxidation (Trp), and dioxidation (Trp). Threshold

values for reporting protein and peptide identifications from

Protein Prospector searches were: minimum protein score 22,

minimum peptide score 15, maximum E-value protein 0.01, and

maximum E-value peptide 0.05. FDR at this threshold was

estimated at 2.4% for proteins and 0.7% for peptides.

Supporting Information

Supporting Information S1 Protein prospector search
results for ECBC_02 (Proteins and Peptides identified in
Tables S1 and S2, respectively), ECBC_3 (Proteins and
Peptides identified in Tables S3 and S4, respectively),
and ECBC_4 (Proteins and Peptides identified in Tables
S5 and S6, respectively).
(XLS)

Supporting Information S2 Re-analysis of ECBC_02, re-
ported previously as Test 10 (Table S7), ECBC_03,
reported as Test 34 (Table S8), and ECBC_04, reported
as Test 32 (Table S9).
(XLS)
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